Volumes of Orthogonal Groups and Unitary Groups Are Very Useful in Physics and Mathematics [3, 4]

Total Page:16

File Type:pdf, Size:1020Kb

Volumes of Orthogonal Groups and Unitary Groups Are Very Useful in Physics and Mathematics [3, 4] Volumes of Orthogonal Groups and Unitary Groups ∗ Lin Zhang Institute of Mathematics, Hangzhou Dianzi University, Hangzhou 310018, PR China Abstract The matrix integral has many applications in diverse fields. This review article begins by presenting detailed key background knowledge about matrix integral. Then the volumes of orthogonal groups and unitary groups are computed, respectively. As a unification, we present Mcdonald’s volume formula for a compact Lie group. With this volume formula, one can easily derives the volumes of orthogonal groups and unitary groups. Applications are also presented as well. Specifically, The volume of the set of mixed quantum states is computed by using the volume of unitary group. The volume of a metric ball in unitary group is also computed as well. There are no new results in this article, but only detailed and elementary proofs of existing results. The purpose of the article is pedagogical, and to collect in one place many, if not all, of the quantum information applications of the volumes of orthogonal and unitary groups. arXiv:1509.00537v5 [math-ph] 3 Nov 2017 ∗ E-mail: [email protected]; [email protected] 1 Contents 1 Introduction 3 2 Volumes of orthogonal groups 5 2.1 Preliminary ..................................... ..... 5 2.2 Thecomputationofvolumes . ....... 17 3 Volumes of unitary groups 28 3.1 Preliminary ..................................... ..... 28 3.2 Thecomputationofvolumes . ....... 44 4 The volume of a compact Lie group 55 5 Applications 73 5.1 Hilbert-Schmidt volume of the set of mixed quantum states.............. 73 5.2 Areaoftheboundaryofthesetofmixedstates . ........... 77 5.3 Volumeofametricballinunitarygroup . .......... 79 6 Appendix I: Volumes of a sphere and a ball 85 7 Appendix II: Some useful facts 89 7.1 Matrices with simple eigenvalues form open dense sets of fullmeasure . 89 7.2 Resultsrelatedtoorthogonalgroups . ............ 93 7.3 Resultsrelatedtounitarygroups . ........... 96 8 Appendix III: Some matrix factorizations 107 9 Appendix IV: Selberg’s integral 112 2 1 Introduction Volumes of orthogonal groups and unitary groups are very useful in physics and mathematics [3, 4]. In 1949, Ponting and Potter had already calculated the volume of orthogonal and unitary group [27]. A complete treatment for group manifolds is presented by Marinov [17], who ex- tracted the volumes of groups by studying curved path integrals [18]. There is a general closed formula for any compact Lie group in terms of the root lattice [?]. Clearly the methods used previously are not followed easily. Zyczkowski˙ in his paper [38] gives a re-derivation on the volume of unitary group, but it is still not accessible. The main goal of this paper is to compute the volumes of orthogonal groups and unitary groups in a systematic and elementary way. The obtained formulae is more applicable. As an application, by re-deriving the volumes of orthogonal groups and unitary groups, the authors in [38] computes the volume of the convex (n2 1)-dimensional set D (Cn) of the density − matrices of size n with respect to the Hilbert-Schmidt measure. Recently, the authors in [30] give the integral representation of the exact volume of a metric ball in unitary group; and present diverse applications of volume estimates of metric balls in manifolds in information and coding theory. Before proceeding, we recall some notions in group theory. Assume that a group acts on G the underlying vector space via g x for all g and x . Let x be any nonzero vector in X | i ∈ G ∈X | i . The subset x := g x : g is called the -orbit of x . Denote X G| i { | i ∈ G} G | i∈X xG := g : g x = x . { ∈ G | i | i} We have the following fact: x /xG . G| i ∼ G If x = e , where e is a unit element of , then the action of on x is called free. In this case, G { } G G | i x / e x . G| i ∼ G { }⇐⇒G ∼G| i Now we review a fast track of the volume of a unitary group. Let us consider the unitary groups = (n + 1), n = 1,2,... To establish their structure, we look at spaces in which the group acts G U transitively, and identify the isotropy subgroup. The unitary group (n + 1) acts naturally in U the complex vector space = Cn+1 through the vector or "defining" representation; the image X of any nonzero vector x = ψ Cn+1 is contained in the maximal sphere S2n+1 of radius | i | i ∈ ψ since ψ = Uψ for U (n + 1), and in fact it is easy to see that it sweeps the whole k k k k k k ∈ U sphere when U runs though (n + 1), i.e. the group (n + 1) acts transitively in this sphere. U U The isotropy group of the vector n + 1 is easily seen to be the unitary group with an entry less, | i that is x = (n) 1. Indeed, the following map is onto: G U ⊕ ϕ : (n + 1) (n + 1) n + 1 = S2n+1. U −→ U | i 3 If we identity (n) with (n) 1, as a subgroup of (n + 1), then U U ⊕ U (n) n + 1 = n + 1 , U | i | i implying that ker ϕ = (n), and thus U (n + 1)/ker ϕ (n + 1) n + 1 = S2n+1 = ( (n + 1)/ker ϕ) n + 1 . U ∼ U | i U | i Therefore we have the equivalence relation (n + 1)/ (n)= S2n+1. (1.1) U U This indicates that vol ( (n + 1)) = vol S2n+1 vol ( (n)) , n = 1, 2, . (1.2) U · U That is, 1 3 2n 1 vol ( (n)) = vol S vol S vol S − . (1.3) U × ×···× We can see this in [8]. The volume of the sphere of unit radius embedded in Rn(n > 1), is calculated from the Gaussian integral (see also Appendix I for the details): +∞ t2 √π = e− dt. ∞ Z− Now +∞ n n t2 v 2 √π = e− dt = e−k k dv ∞ Rn Z− Z +∞ +∞ r2 r2 = e− dσdr = σn 1(r)e− dr, Sn 1 − Z0 Z − (r) Z0 Sn 1 where σn 1(r)= Sn 1 dσ is the volume of sphere − (r) of radius r. Since − − (r) R n 1 σn 1(r)= σn 1(1) r − , − − × it follows that +∞ n n 1 r2 √π = σn 1(1) r − e− dr, − × Z0 implying that n 2π 2 vol Sn 1 := . (1.4) − Γ n 2 4 Finally, we get the volume formula of a unitary group: n k n n(n+1) 2π 2 π 2 vol ( (n)) := ∏ = . (1.5) U Γ(k) 1!2! (n 1)! k=1 · · · − 2 Volumes of orthogonal groups 2.1 Preliminary The following standard notations will be used [19]. Scalars will be denoted by lower-case letters, vectors and matrices by capital letters. As far as possible variable matrices will be denoted by X, Y,... and constant matrices by A, B,.... n Let A = [aij] be a n n matrix, then Tr (A) = ∑j=1 ajj is the trace of A, and det(A) is the T× determinant of A, and over a vector or a matrix will denote its transpose. Let X = [xij] be a m n matrix of independent real entries x ’s. We denote the matrix of differentials by dX, i.e. × ij dx dx dx 11 12 · · · 1n dx dx dx 21 22 · · · 2n dX := [dxij]= . . .. dxm1 dxm2 dxmn · · · Then [dX] stands for the product of the m n differential elements × m n [dX] := ∏ ∏ dxij (2.1) i=1 j=1 and when X is a real square symmetric matrix, that is, m = n, X = XT, then [dX] is the product of the n(n + 1)/2 differential elements, that is, n n [dX] := ∏ ∏ dxij = ∏ dxij. (2.2) j=1 i=j i>j Throughout this paper, stated otherwise, we will make use of conventions that the signs will be ignored in the product [dX] of differentials of independent entries. Our notation will be the following: Let X = [x ] be a m n matrix of independent real entries. Then ij × [dX]= m n dx (2.3) ∧i=1 ∧j=1 ij 5 when [dX] appears with integrals or Jacobians of transformations; m n [dX]= ∏i=1 ∏j=1 dxij (2.4) when [dX] appears with integrals involving density functions where the functions are nonnegative and the absolute value of the Jacobian is automatically taken. As Edelman said [7] before, many researchers in Linear Algebra have little known the fact that the familiar matrix factorizations, which can be viewed as changes of variables, have simple Ja- cobians. These Jacobians are used extensively in applications of random matrices in multivariate statistics and physics. It is assumed that the reader is familiar with the calculation of Jacobians when a vector of scalar variables is transformed to a vector of scalar variables. The result is stated here for the sake of completeness. Let the vector of scalar variables X be transformed to Y, where x1 y1 . X = . and Y = . , x y n n by a one-to-one transformation. Let the matrix of partial derivatives be denoted by ∂Y ∂y = i . ∂X ∂x j The the determinant of the matrix ∂yi is known as the Jacobian of the transformation X going ∂xj to Y or Y as a function of X it is writtenh i as ∂y J(Y : X)= det i or [dY]= J(Y : X)[dX], J = 0 ∂x 6 j and 1 J(Y : X)= or 1 = J(Y : X)J(X : Y). J(X : Y) Note that when transforming X to Y the variables can be taken in any order because a permu- tation brings only a change of sign in the determinant and the magnitude remains the same, that is, J remains the same where J denotes the absolute value of J.
Recommended publications
  • INTEGER POINTS and THEIR ORTHOGONAL LATTICES 2 to Remove the Congruence Condition
    INTEGER POINTS ON SPHERES AND THEIR ORTHOGONAL LATTICES MENNY AKA, MANFRED EINSIEDLER, AND URI SHAPIRA (WITH AN APPENDIX BY RUIXIANG ZHANG) Abstract. Linnik proved in the late 1950’s the equidistribution of in- teger points on large spheres under a congruence condition. The congru- ence condition was lifted in 1988 by Duke (building on a break-through by Iwaniec) using completely different techniques. We conjecture that this equidistribution result also extends to the pairs consisting of a vector on the sphere and the shape of the lattice in its orthogonal complement. We use a joining result for higher rank diagonalizable actions to obtain this conjecture under an additional congruence condition. 1. Introduction A theorem of Legendre, whose complete proof was given by Gauss in [Gau86], asserts that an integer D can be written as a sum of three squares if and only if D is not of the form 4m(8k + 7) for some m, k N. Let D = D N : D 0, 4, 7 mod8 and Z3 be the set of primitive∈ vectors { ∈ 6≡ } prim in Z3. Legendre’s Theorem also implies that the set 2 def 3 2 S (D) = v Zprim : v 2 = D n ∈ k k o is non-empty if and only if D D. This important result has been refined in many ways. We are interested∈ in the refinement known as Linnik’s problem. Let S2 def= x R3 : x = 1 . For a subset S of rational odd primes we ∈ k k2 set 2 D(S)= D D : for all p S, D mod p F× .
    [Show full text]
  • Unitary Group - Wikipedia
    Unitary group - Wikipedia https://en.wikipedia.org/wiki/Unitary_group Unitary group In mathematics, the unitary group of degree n, denoted U( n), is the group of n × n unitary matrices, with the group operation of matrix multiplication. The unitary group is a subgroup of the general linear group GL( n, C). Hyperorthogonal group is an archaic name for the unitary group, especially over finite fields. For the group of unitary matrices with determinant 1, see Special unitary group. In the simple case n = 1, the group U(1) corresponds to the circle group, consisting of all complex numbers with absolute value 1 under multiplication. All the unitary groups contain copies of this group. The unitary group U( n) is a real Lie group of dimension n2. The Lie algebra of U( n) consists of n × n skew-Hermitian matrices, with the Lie bracket given by the commutator. The general unitary group (also called the group of unitary similitudes ) consists of all matrices A such that A∗A is a nonzero multiple of the identity matrix, and is just the product of the unitary group with the group of all positive multiples of the identity matrix. Contents Properties Topology Related groups 2-out-of-3 property Special unitary and projective unitary groups G-structure: almost Hermitian Generalizations Indefinite forms Finite fields Degree-2 separable algebras Algebraic groups Unitary group of a quadratic module Polynomial invariants Classifying space See also Notes References Properties Since the determinant of a unitary matrix is a complex number with norm 1, the determinant gives a group 1 of 7 2/23/2018, 10:13 AM Unitary group - Wikipedia https://en.wikipedia.org/wiki/Unitary_group homomorphism The kernel of this homomorphism is the set of unitary matrices with determinant 1.
    [Show full text]
  • GROUP ACTIONS 1. Introduction the Groups Sn, An, and (For N ≥ 3)
    GROUP ACTIONS KEITH CONRAD 1. Introduction The groups Sn, An, and (for n ≥ 3) Dn behave, by their definitions, as permutations on certain sets. The groups Sn and An both permute the set f1; 2; : : : ; ng and Dn can be considered as a group of permutations of a regular n-gon, or even just of its n vertices, since rigid motions of the vertices determine where the rest of the n-gon goes. If we label the vertices of the n-gon in a definite manner by the numbers from 1 to n then we can view Dn as a subgroup of Sn. For instance, the labeling of the square below lets us regard the 90 degree counterclockwise rotation r in D4 as (1234) and the reflection s across the horizontal line bisecting the square as (24). The rest of the elements of D4, as permutations of the vertices, are in the table below the square. 2 3 1 4 1 r r2 r3 s rs r2s r3s (1) (1234) (13)(24) (1432) (24) (12)(34) (13) (14)(23) If we label the vertices in a different way (e.g., swap the labels 1 and 2), we turn the elements of D4 into a different subgroup of S4. More abstractly, if we are given a set X (not necessarily the set of vertices of a square), then the set Sym(X) of all permutations of X is a group under composition, and the subgroup Alt(X) of even permutations of X is a group under composition. If we list the elements of X in a definite order, say as X = fx1; : : : ; xng, then we can think about Sym(X) as Sn and Alt(X) as An, but a listing in a different order leads to different identifications 1 of Sym(X) with Sn and Alt(X) with An.
    [Show full text]
  • The Classical Groups and Domains 1. the Disk, Upper Half-Plane, SL 2(R
    (June 8, 2018) The Classical Groups and Domains Paul Garrett [email protected] http:=/www.math.umn.edu/egarrett/ The complex unit disk D = fz 2 C : jzj < 1g has four families of generalizations to bounded open subsets in Cn with groups acting transitively upon them. Such domains, defined more precisely below, are bounded symmetric domains. First, we recall some standard facts about the unit disk, the upper half-plane, the ambient complex projective line, and corresponding groups acting by linear fractional (M¨obius)transformations. Happily, many of the higher- dimensional bounded symmetric domains behave in a manner that is a simple extension of this simplest case. 1. The disk, upper half-plane, SL2(R), and U(1; 1) 2. Classical groups over C and over R 3. The four families of self-adjoint cones 4. The four families of classical domains 5. Harish-Chandra's and Borel's realization of domains 1. The disk, upper half-plane, SL2(R), and U(1; 1) The group a b GL ( ) = f : a; b; c; d 2 ; ad − bc 6= 0g 2 C c d C acts on the extended complex plane C [ 1 by linear fractional transformations a b az + b (z) = c d cz + d with the traditional natural convention about arithmetic with 1. But we can be more precise, in a form helpful for higher-dimensional cases: introduce homogeneous coordinates for the complex projective line P1, by defining P1 to be a set of cosets u 1 = f : not both u; v are 0g= × = 2 − f0g = × P v C C C where C× acts by scalar multiplication.
    [Show full text]
  • 10 Group Theory
    10 Group theory 10.1 What is a group? A group G is a set of elements f, g, h, ... and an operation called multipli- cation such that for all elements f,g, and h in the group G: 1. The product fg is in the group G (closure); 2. f(gh)=(fg)h (associativity); 3. there is an identity element e in the group G such that ge = eg = g; 1 1 1 4. every g in G has an inverse g− in G such that gg− = g− g = e. Physical transformations naturally form groups. The elements of a group might be all physical transformations on a given set of objects that leave invariant a chosen property of the set of objects. For instance, the objects might be the points (x, y) in a plane. The chosen property could be their distances x2 + y2 from the origin. The physical transformations that leave unchanged these distances are the rotations about the origin p x cos ✓ sin ✓ x 0 = . (10.1) y sin ✓ cos ✓ y ✓ 0◆ ✓− ◆✓ ◆ These rotations form the special orthogonal group in 2 dimensions, SO(2). More generally, suppose the transformations T,T0,T00,... change a set of objects in ways that leave invariant a chosen property property of the objects. Suppose the product T 0 T of the transformations T and T 0 represents the action of T followed by the action of T 0 on the objects. Since both T and T 0 leave the chosen property unchanged, so will their product T 0 T . Thus the closure condition is satisfied.
    [Show full text]
  • Matrix Lie Groups and Their Lie Algebras
    Matrix Lie groups and their Lie algebras Alen Alexanderian∗ Abstract We discuss matrix Lie groups and their corresponding Lie algebras. Some common examples are provided for purpose of illustration. 1 Introduction The goal of these brief note is to provide a quick introduction to matrix Lie groups which are a special class of abstract Lie groups. Study of matrix Lie groups is a fruitful endeavor which allows one an entry to theory of Lie groups without requiring knowl- edge of differential topology. After all, most interesting Lie groups turn out to be matrix groups anyway. An abstract Lie group is defined to be a group which is also a smooth manifold, where the group operations of multiplication and inversion are also smooth. We provide a much simple definition for a matrix Lie group in Section 4. Showing that a matrix Lie group is in fact a Lie group is discussed in standard texts such as [2]. We also discuss Lie algebras [1], and the computation of the Lie algebra of a Lie group in Section 5. We will compute the Lie algebras of several well known Lie groups in that section for the purpose of illustration. 2 Notation Let V be a vector space. We denote by gl(V) the space of all linear transformations on V. If V is a finite-dimensional vector space we may put an arbitrary basis on V and identify elements of gl(V) with their matrix representation. The following define various classes of matrices on Rn: ∗The University of Texas at Austin, USA. E-mail: [email protected] Last revised: July 12, 2013 Matrix Lie groups gl(n) : the space of n
    [Show full text]
  • 1 the Spin Homomorphism SL2(C) → SO1,3(R) a Summary from Multiple Sources Written by Y
    1 The spin homomorphism SL2(C) ! SO1;3(R) A summary from multiple sources written by Y. Feng and Katherine E. Stange Abstract We will discuss the spin homomorphism SL2(C) ! SO1;3(R) in three manners. Firstly we interpret SL2(C) as acting on the Minkowski 1;3 spacetime R ; secondly by viewing the quadratic form as a twisted 1 1 P × P ; and finally using Clifford groups. 1.1 Introduction The spin homomorphism SL2(C) ! SO1;3(R) is a homomorphism of classical matrix Lie groups. The lefthand group con- sists of 2 × 2 complex matrices with determinant 1. The righthand group consists of 4 × 4 real matrices with determinant 1 which preserve some fixed real quadratic form Q of signature (1; 3). This map is alternately called the spinor map and variations. The image of this map is the identity component + of SO1;3(R), denoted SO1;3(R). The kernel is {±Ig. Therefore, we obtain an isomorphism + PSL2(C) = SL2(C)= ± I ' SO1;3(R): This is one of a family of isomorphisms of Lie groups called exceptional iso- morphisms. In Section 1.3, we give the spin homomorphism explicitly, al- though these formulae are unenlightening by themselves. In Section 1.4 we describe O1;3(R) in greater detail as the group of Lorentz transformations. This document describes this homomorphism from three distinct per- spectives. The first is very concrete, and constructs, using the language of Minkowski space, Lorentz transformations and Hermitian matrices, an ex- 4 plicit action of SL2(C) on R preserving Q (Section 1.5).
    [Show full text]
  • Group Properties and Group Isomorphism
    GROUP PROPERTIES AND GROUP ISOMORPHISM Evelyn. M. Manalo Mathematics Honors Thesis University of California, San Diego May 25, 2001 Faculty Mentor: Professor John Wavrik Department of Mathematics GROUP PROPERTIES AND GROUP ISOMORPHISM I n t r o d u c t i o n T H E I M P O R T A N C E O F G R O U P T H E O R Y is relevant to every branch of Mathematics where symmetry is studied. Every symmetrical object is associated with a group. It is in this association why groups arise in many different areas like in Quantum Mechanics, in Crystallography, in Biology, and even in Computer Science. There is no such easy definition of symmetry among mathematical objects without leading its way to the theory of groups. In this paper we present the first stages of constructing a systematic method for classifying groups of small orders. Classifying groups usually arise when trying to distinguish the number of non-isomorphic groups of order n. This paper arose from an attempt to find a formula or an algorithm for classifying groups given invariants that can be readily determined without any other known assumptions about the group. This formula is very useful if we want to know if two groups are isomorphic. Mathematical objects are considered to be essentially the same, from the point of view of their algebraic properties, when they are isomorphic. When two groups Γ and Γ’ have exactly the same group-theoretic structure then we say that Γ is isomorphic to Γ’ or vice versa.
    [Show full text]
  • The Classical Matrix Groups 1 Groups
    The Classical Matrix Groups CDs 270, Spring 2010/2011 The notes provide a brief review of matrix groups. The primary goal is to motivate the lan- guage and symbols used to represent rotations (SO(2) and SO(3)) and spatial displacements (SE(2) and SE(3)). 1 Groups A group, G, is a mathematical structure with the following characteristics and properties: i. the group consists of a set of elements {gj} which can be indexed. The indices j may form a finite, countably infinite, or continous (uncountably infinite) set. ii. An associative binary group operation, denoted by 0 ∗0 , termed the group product. The product of two group elements is also a group element: ∀ gi, gj ∈ G gi ∗ gj = gk, where gk ∈ G. iii. A unique group identify element, e, with the property that: e ∗ gj = gj for all gj ∈ G. −1 iv. For every gj ∈ G, there must exist an inverse element, gj , such that −1 gj ∗ gj = e. Simple examples of groups include the integers, Z, with addition as the group operation, and the real numbers mod zero, R − {0}, with multiplication as the group operation. 1.1 The General Linear Group, GL(N) The set of all N × N invertible matrices with the group operation of matrix multiplication forms the General Linear Group of dimension N. This group is denoted by the symbol GL(N), or GL(N, K) where K is a field, such as R, C, etc. Generally, we will only consider the cases where K = R or K = C, which are respectively denoted by GL(N, R) and GL(N, C).
    [Show full text]
  • Mathematics for Humanists
    Mathematics for Humanists Mathematics for Humanists Herbert Gintis xxxxxxxxx xxxxxxxxxx Press xxxxxxxxx and xxxxxx Copyright c 2021 by ... Published by ... All Rights Reserved Library of Congress Cataloging-in-Publication Data Gintis, Herbert Mathematics for Humanists/ Herbert Gintis p. cm. Includes bibliographical references and index. ISBN ...(hardcover: alk. paper) HB... xxxxxxxxxx British Library Cataloging-in-Publication Data is available The publisher would like to acknowledge the author of this volume for providing the camera-ready copy from which this book was printed This book has been composed in Times and Mathtime by the author Printed on acid-free paper. Printed in the United States of America 10987654321 This book is dedicated to my mathematics teachers: Pincus Shub, Walter Gottschalk, Abram Besikovitch, and Oskar Zariski Contents Preface xii 1 ReadingMath 1 1.1 Reading Math 1 2 The LanguageofLogic 2 2.1 TheLanguageofLogic 2 2.2 FormalPropositionalLogic 4 2.3 Truth Tables 5 2.4 ExercisesinPropositionalLogic 7 2.5 Predicate Logic 8 2.6 ProvingPropositionsinPredicateLogic 9 2.7 ThePerilsofLogic 10 3 Sets 11 3.1 Set Theory 11 3.2 PropertiesandPredicates 12 3.3 OperationsonSets 14 3.4 Russell’s Paradox 15 3.5 Ordered Pairs 17 3.6 MathematicalInduction 18 3.7 SetProducts 19 3.8 RelationsandFunctions 20 3.9 PropertiesofRelations 21 3.10 Injections,Surjections,andBijections 22 3.11 CountingandCardinality 23 3.12 The Cantor-Bernstein Theorem 24 3.13 InequalityinCardinalNumbers 25 3.14 Power Sets 26 3.15 TheFoundationsofMathematics
    [Show full text]
  • Special Unitary Group - Wikipedia
    Special unitary group - Wikipedia https://en.wikipedia.org/wiki/Special_unitary_group Special unitary group In mathematics, the special unitary group of degree n, denoted SU( n), is the Lie group of n×n unitary matrices with determinant 1. (More general unitary matrices may have complex determinants with absolute value 1, rather than real 1 in the special case.) The group operation is matrix multiplication. The special unitary group is a subgroup of the unitary group U( n), consisting of all n×n unitary matrices. As a compact classical group, U( n) is the group that preserves the standard inner product on Cn.[nb 1] It is itself a subgroup of the general linear group, SU( n) ⊂ U( n) ⊂ GL( n, C). The SU( n) groups find wide application in the Standard Model of particle physics, especially SU(2) in the electroweak interaction and SU(3) in quantum chromodynamics.[1] The simplest case, SU(1) , is the trivial group, having only a single element. The group SU(2) is isomorphic to the group of quaternions of norm 1, and is thus diffeomorphic to the 3-sphere. Since unit quaternions can be used to represent rotations in 3-dimensional space (up to sign), there is a surjective homomorphism from SU(2) to the rotation group SO(3) whose kernel is {+ I, − I}. [nb 2] SU(2) is also identical to one of the symmetry groups of spinors, Spin(3), that enables a spinor presentation of rotations. Contents Properties Lie algebra Fundamental representation Adjoint representation The group SU(2) Diffeomorphism with S 3 Isomorphism with unit quaternions Lie Algebra The group SU(3) Topology Representation theory Lie algebra Lie algebra structure Generalized special unitary group Example Important subgroups See also 1 of 10 2/22/2018, 8:54 PM Special unitary group - Wikipedia https://en.wikipedia.org/wiki/Special_unitary_group Remarks Notes References Properties The special unitary group SU( n) is a real Lie group (though not a complex Lie group).
    [Show full text]
  • 1 Classical Groups (Problems Sets 1 – 5)
    1 Classical Groups (Problems Sets 1 { 5) De¯nitions. A nonempty set G together with an operation ¤ is a group provided ² The set is closed under the operation. That is, if g and h belong to the set G, then so does g ¤ h. ² The operation is associative. That is, if g; h and k are any elements of G, then g ¤ (h ¤ k) = (g ¤ h) ¤ k. ² There is an element e of G which is an identity for the operation. That is, if g is any element of G, then g ¤ e = e ¤ g = g. ² Every element of G has an inverse in G. That is, if g is in G then there is an element of G denoted g¡1 so that g ¤ g¡1 = g¡1 ¤ g = e. The group G is abelian if g ¤ h = h ¤ g for all g; h 2 G. A nonempty subset H ⊆ G is a subgroup of the group G if H is itself a group with the same operation ¤ as G. That is, H is a subgroup provided ² H is closed under the operation. ² H contains the identity e. ² Every element of H has an inverse in H. 1.1 Groups of symmetries. Symmetries are invertible functions from some set to itself preserving some feature of the set (shape, distance, interval, :::). A set of symmetries of a set can form a group using the operation composition of functions. If f and g are functions from a set X to itself, then the composition of f and g is denoted f ± g, and it is de¯ned by (f ± g)(x) = f(g(x)) for x in X.
    [Show full text]