1 Classical Groups (Problems Sets 1 – 5)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
INTEGER POINTS and THEIR ORTHOGONAL LATTICES 2 to Remove the Congruence Condition
INTEGER POINTS ON SPHERES AND THEIR ORTHOGONAL LATTICES MENNY AKA, MANFRED EINSIEDLER, AND URI SHAPIRA (WITH AN APPENDIX BY RUIXIANG ZHANG) Abstract. Linnik proved in the late 1950’s the equidistribution of in- teger points on large spheres under a congruence condition. The congru- ence condition was lifted in 1988 by Duke (building on a break-through by Iwaniec) using completely different techniques. We conjecture that this equidistribution result also extends to the pairs consisting of a vector on the sphere and the shape of the lattice in its orthogonal complement. We use a joining result for higher rank diagonalizable actions to obtain this conjecture under an additional congruence condition. 1. Introduction A theorem of Legendre, whose complete proof was given by Gauss in [Gau86], asserts that an integer D can be written as a sum of three squares if and only if D is not of the form 4m(8k + 7) for some m, k N. Let D = D N : D 0, 4, 7 mod8 and Z3 be the set of primitive∈ vectors { ∈ 6≡ } prim in Z3. Legendre’s Theorem also implies that the set 2 def 3 2 S (D) = v Zprim : v 2 = D n ∈ k k o is non-empty if and only if D D. This important result has been refined in many ways. We are interested∈ in the refinement known as Linnik’s problem. Let S2 def= x R3 : x = 1 . For a subset S of rational odd primes we ∈ k k2 set 2 D(S)= D D : for all p S, D mod p F× . -
Field Theory 1. Introduction to Quantum Field Theory (A Primer for a Basic Education)
Field Theory 1. Introduction to Quantum Field Theory (A Primer for a Basic Education) Roberto Soldati February 23, 2019 Contents 0.1 Prologue ............................ 4 1 Basics in Group Theory 8 1.1 Groups and Group Representations . 8 1.1.1 Definitions ....................... 8 1.1.2 Theorems ........................ 12 1.1.3 Direct Products of Group Representations . 14 1.2 Continuous Groups and Lie Groups . 16 1.2.1 The Continuous Groups . 16 1.2.2 The Lie Groups .................... 18 1.2.3 An Example : the Rotations Group . 19 1.2.4 The Infinitesimal Operators . 21 1.2.5 Lie Algebra ....................... 23 1.2.6 The Exponential Representation . 24 1.2.7 The Special Unitary Groups . 27 1.3 The Non-Homogeneous Lorentz Group . 34 1.3.1 The Lorentz Group . 34 1.3.2 Semi-Simple Groups . 43 1.3.3 The Poincar´eGroup . 49 2 The Action Functional 57 2.1 The Classical Relativistic Wave Fields . 57 2.1.1 Field Variations .................... 58 2.1.2 The Scalar and Vector Fields . 62 2.1.3 The Spinor Fields ................... 65 2.2 The Action Principle ................... 76 2.3 The N¨otherTheorem ................... 79 2.3.1 Problems ........................ 87 1 3 The Scalar Field 94 3.1 General Features ...................... 94 3.2 Normal Modes Expansion . 101 3.3 Klein-Gordon Quantum Field . 106 3.4 The Fock Space .......................112 3.4.1 The Many-Particle States . 112 3.4.2 The Lorentz Covariance Properties . 116 3.5 Special Distributions . 129 3.5.1 Euclidean Formulation . 133 3.6 Problems ............................137 4 The Spinor Field 151 4.1 The Dirac Equation . -
Low-Dimensional Representations of Matrix Groups and Group Actions on CAT (0) Spaces and Manifolds
Low-dimensional representations of matrix groups and group actions on CAT(0) spaces and manifolds Shengkui Ye National University of Singapore January 8, 2018 Abstract We study low-dimensional representations of matrix groups over gen- eral rings, by considering group actions on CAT(0) spaces, spheres and acyclic manifolds. 1 Introduction Low-dimensional representations are studied by many authors, such as Gural- nick and Tiep [24] (for matrix groups over fields), Potapchik and Rapinchuk [30] (for automorphism group of free group), Dokovi´cand Platonov [18] (for Aut(F2)), Weinberger [35] (for SLn(Z)) and so on. In this article, we study low-dimensional representations of matrix groups over general rings. Let R be an associative ring with identity and En(R) (n ≥ 3) the group generated by ele- mentary matrices (cf. Section 3.1). As motivation, we can consider the following problem. Problem 1. For n ≥ 3, is there any nontrivial group homomorphism En(R) → En−1(R)? arXiv:1207.6747v1 [math.GT] 29 Jul 2012 Although this is a purely algebraic problem, in general it seems hard to give an answer in an algebraic way. In this article, we try to answer Prob- lem 1 negatively from the point of view of geometric group theory. The idea is to find a good geometric object on which En−1(R) acts naturally and non- trivially while En(R) can only act in a special way. We study matrix group actions on CAT(0) spaces, spheres and acyclic manifolds. We prove that for low-dimensional CAT(0) spaces, a matrix group action always has a global fixed point (cf. -
The General Linear Group
18.704 Gabe Cunningham 2/18/05 [email protected] The General Linear Group Definition: Let F be a field. Then the general linear group GLn(F ) is the group of invert- ible n × n matrices with entries in F under matrix multiplication. It is easy to see that GLn(F ) is, in fact, a group: matrix multiplication is associative; the identity element is In, the n × n matrix with 1’s along the main diagonal and 0’s everywhere else; and the matrices are invertible by choice. It’s not immediately clear whether GLn(F ) has infinitely many elements when F does. However, such is the case. Let a ∈ F , a 6= 0. −1 Then a · In is an invertible n × n matrix with inverse a · In. In fact, the set of all such × matrices forms a subgroup of GLn(F ) that is isomorphic to F = F \{0}. It is clear that if F is a finite field, then GLn(F ) has only finitely many elements. An interesting question to ask is how many elements it has. Before addressing that question fully, let’s look at some examples. ∼ × Example 1: Let n = 1. Then GLn(Fq) = Fq , which has q − 1 elements. a b Example 2: Let n = 2; let M = ( c d ). Then for M to be invertible, it is necessary and sufficient that ad 6= bc. If a, b, c, and d are all nonzero, then we can fix a, b, and c arbitrarily, and d can be anything but a−1bc. This gives us (q − 1)3(q − 2) matrices. -
Unitary Group - Wikipedia
Unitary group - Wikipedia https://en.wikipedia.org/wiki/Unitary_group Unitary group In mathematics, the unitary group of degree n, denoted U( n), is the group of n × n unitary matrices, with the group operation of matrix multiplication. The unitary group is a subgroup of the general linear group GL( n, C). Hyperorthogonal group is an archaic name for the unitary group, especially over finite fields. For the group of unitary matrices with determinant 1, see Special unitary group. In the simple case n = 1, the group U(1) corresponds to the circle group, consisting of all complex numbers with absolute value 1 under multiplication. All the unitary groups contain copies of this group. The unitary group U( n) is a real Lie group of dimension n2. The Lie algebra of U( n) consists of n × n skew-Hermitian matrices, with the Lie bracket given by the commutator. The general unitary group (also called the group of unitary similitudes ) consists of all matrices A such that A∗A is a nonzero multiple of the identity matrix, and is just the product of the unitary group with the group of all positive multiples of the identity matrix. Contents Properties Topology Related groups 2-out-of-3 property Special unitary and projective unitary groups G-structure: almost Hermitian Generalizations Indefinite forms Finite fields Degree-2 separable algebras Algebraic groups Unitary group of a quadratic module Polynomial invariants Classifying space See also Notes References Properties Since the determinant of a unitary matrix is a complex number with norm 1, the determinant gives a group 1 of 7 2/23/2018, 10:13 AM Unitary group - Wikipedia https://en.wikipedia.org/wiki/Unitary_group homomorphism The kernel of this homomorphism is the set of unitary matrices with determinant 1. -
Matrix Lie Groups
Maths Seminar 2007 MATRIX LIE GROUPS Claudiu C Remsing Dept of Mathematics (Pure and Applied) Rhodes University Grahamstown 6140 26 September 2007 RhodesUniv CCR 0 Maths Seminar 2007 TALK OUTLINE 1. What is a matrix Lie group ? 2. Matrices revisited. 3. Examples of matrix Lie groups. 4. Matrix Lie algebras. 5. A glimpse at elementary Lie theory. 6. Life beyond elementary Lie theory. RhodesUniv CCR 1 Maths Seminar 2007 1. What is a matrix Lie group ? Matrix Lie groups are groups of invertible • matrices that have desirable geometric features. So matrix Lie groups are simultaneously algebraic and geometric objects. Matrix Lie groups naturally arise in • – geometry (classical, algebraic, differential) – complex analyis – differential equations – Fourier analysis – algebra (group theory, ring theory) – number theory – combinatorics. RhodesUniv CCR 2 Maths Seminar 2007 Matrix Lie groups are encountered in many • applications in – physics (geometric mechanics, quantum con- trol) – engineering (motion control, robotics) – computational chemistry (molecular mo- tion) – computer science (computer animation, computer vision, quantum computation). “It turns out that matrix [Lie] groups • pop up in virtually any investigation of objects with symmetries, such as molecules in chemistry, particles in physics, and projective spaces in geometry”. (K. Tapp, 2005) RhodesUniv CCR 3 Maths Seminar 2007 EXAMPLE 1 : The Euclidean group E (2). • E (2) = F : R2 R2 F is an isometry . → | n o The vector space R2 is equipped with the standard Euclidean structure (the “dot product”) x y = x y + x y (x, y R2), • 1 1 2 2 ∈ hence with the Euclidean distance d (x, y) = (y x) (y x) (x, y R2). -
The Classical Groups and Domains 1. the Disk, Upper Half-Plane, SL 2(R
(June 8, 2018) The Classical Groups and Domains Paul Garrett [email protected] http:=/www.math.umn.edu/egarrett/ The complex unit disk D = fz 2 C : jzj < 1g has four families of generalizations to bounded open subsets in Cn with groups acting transitively upon them. Such domains, defined more precisely below, are bounded symmetric domains. First, we recall some standard facts about the unit disk, the upper half-plane, the ambient complex projective line, and corresponding groups acting by linear fractional (M¨obius)transformations. Happily, many of the higher- dimensional bounded symmetric domains behave in a manner that is a simple extension of this simplest case. 1. The disk, upper half-plane, SL2(R), and U(1; 1) 2. Classical groups over C and over R 3. The four families of self-adjoint cones 4. The four families of classical domains 5. Harish-Chandra's and Borel's realization of domains 1. The disk, upper half-plane, SL2(R), and U(1; 1) The group a b GL ( ) = f : a; b; c; d 2 ; ad − bc 6= 0g 2 C c d C acts on the extended complex plane C [ 1 by linear fractional transformations a b az + b (z) = c d cz + d with the traditional natural convention about arithmetic with 1. But we can be more precise, in a form helpful for higher-dimensional cases: introduce homogeneous coordinates for the complex projective line P1, by defining P1 to be a set of cosets u 1 = f : not both u; v are 0g= × = 2 − f0g = × P v C C C where C× acts by scalar multiplication. -
Lie Group and Geometry on the Lie Group SL2(R)
INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR Lie group and Geometry on the Lie Group SL2(R) PROJECT REPORT – SEMESTER IV MOUSUMI MALICK 2-YEARS MSc(2011-2012) Guided by –Prof.DEBAPRIYA BISWAS Lie group and Geometry on the Lie Group SL2(R) CERTIFICATE This is to certify that the project entitled “Lie group and Geometry on the Lie group SL2(R)” being submitted by Mousumi Malick Roll no.-10MA40017, Department of Mathematics is a survey of some beautiful results in Lie groups and its geometry and this has been carried out under my supervision. Dr. Debapriya Biswas Department of Mathematics Date- Indian Institute of Technology Khargpur 1 Lie group and Geometry on the Lie Group SL2(R) ACKNOWLEDGEMENT I wish to express my gratitude to Dr. Debapriya Biswas for her help and guidance in preparing this project. Thanks are also due to the other professor of this department for their constant encouragement. Date- place-IIT Kharagpur Mousumi Malick 2 Lie group and Geometry on the Lie Group SL2(R) CONTENTS 1.Introduction ................................................................................................... 4 2.Definition of general linear group: ............................................................... 5 3.Definition of a general Lie group:................................................................... 5 4.Definition of group action: ............................................................................. 5 5. Definition of orbit under a group action: ...................................................... 5 6.1.The general linear -
GEOMETRY and GROUPS These Notes Are to Remind You of The
GEOMETRY AND GROUPS These notes are to remind you of the results from earlier courses that we will need at some point in this course. The exercises are entirely optional, although they will all be useful later in the course. Asterisks indicate that they are harder. 0.1 Metric Spaces (Metric and Topological Spaces) A metric on a set X is a map d : X × X → [0, ∞) that satisfies: (a) d(x, y) > 0 with equality if and only if x = y; (b) Symmetry: d(x, y) = d(y, x) for all x, y ∈ X; (c) Triangle Rule: d(x, y) + d(y, z) > d(x, z) for all x, y, z ∈ X. A set X with a metric d is called a metric space. For example, the Euclidean metric on RN is given by d(x, y) = ||x − y|| where v u N ! u X 2 ||a|| = t |an| n=1 is the norm of a vector a. This metric makes RN into a metric space and any subset of it is also a metric space. A sequence in X is a map N → X; n 7→ xn. We often denote this sequence by (xn). This sequence converges to a limit ` ∈ X when d(xn, `) → 0 as n → ∞ . A subsequence of the sequence (xn) is given by taking only some of the terms in the sequence. So, a subsequence of the sequence (xn) is given by n 7→ xk(n) where k : N → N is a strictly increasing function. A metric space X is (sequentially) compact if every sequence from X has a subsequence that converges to a point of X. -
10 Group Theory
10 Group theory 10.1 What is a group? A group G is a set of elements f, g, h, ... and an operation called multipli- cation such that for all elements f,g, and h in the group G: 1. The product fg is in the group G (closure); 2. f(gh)=(fg)h (associativity); 3. there is an identity element e in the group G such that ge = eg = g; 1 1 1 4. every g in G has an inverse g− in G such that gg− = g− g = e. Physical transformations naturally form groups. The elements of a group might be all physical transformations on a given set of objects that leave invariant a chosen property of the set of objects. For instance, the objects might be the points (x, y) in a plane. The chosen property could be their distances x2 + y2 from the origin. The physical transformations that leave unchanged these distances are the rotations about the origin p x cos ✓ sin ✓ x 0 = . (10.1) y sin ✓ cos ✓ y ✓ 0◆ ✓− ◆✓ ◆ These rotations form the special orthogonal group in 2 dimensions, SO(2). More generally, suppose the transformations T,T0,T00,... change a set of objects in ways that leave invariant a chosen property property of the objects. Suppose the product T 0 T of the transformations T and T 0 represents the action of T followed by the action of T 0 on the objects. Since both T and T 0 leave the chosen property unchanged, so will their product T 0 T . Thus the closure condition is satisfied. -
Bott Periodicity for the Unitary Group
Bott Periodicity for the Unitary Group Carlos Salinas March 7, 2018 Abstract We will present a condensed proof of the Bott Periodicity Theorem for the unitary group U following John Milnor’s classic Morse Theory. There are many documents on the internet which already purport to do this (and do so very well in my estimation), but I nevertheless will attempt to give a summary of the result. Contents 1 The Basics 2 2 Fiber Bundles 3 2.1 First fiber bundle . .4 2.2 Second Fiber Bundle . .5 2.3 Third Fiber Bundle . .5 2.4 Fourth Fiber Bundle . .5 3 Proof of the Periodicity Theorem 6 3.1 The first equivalence . .7 3.2 The second equality . .8 4 The Homotopy Groups of U 8 1 The Basics The original proof of the Periodicity Theorem relies on a deep result of Marston Morse’s calculus of variations, the (Morse) Index Theorem. The proof of this theorem, however, goes beyond the scope of this document, the reader is welcome to read the relevant section from Milnor or indeed Morse’s own paper titled The Index Theorem in the Calculus of Variations. Perhaps the first thing we should set about doing is introducing the main character of our story; this will be the unitary group. The unitary group of degree n (here denoted U(n)) is the set of all unitary matrices; that is, the set of all A ∈ GL(n, C) such that AA∗ = I where A∗ is the conjugate of the transpose of A (conjugate transpose for short). -
Extending Symmetries of the Standard Model Towards Grand Unification
Master research Extending Symmetries of the Standard Model towards Grand Unification Anno Touwen Supervisor prof. dr. Dani¨el Boer August 3, 2018 Abstract In this master thesis the spacetime, global and gauge symmetries of the Standard Model are reviewed. These symmetries are used as a basis for finding possible extensions of this successful model, such as the two Higgs doublet model and Left-Right model. Methods of finding subgroups and the slitting up of representations are discussed based on Dynkin diagrams. These methods are applied to analyse the subgroups of the exceptional group E6 as candidates for Grand Unified 3 Theory groups. In this study SU(5), SO(10) and SU(3) and SU(4)×SU(2)×SU(2) are most important. A phenomenological comparison between these models is given focussed on the different types of leptoquarks that could be responsible for the not yet observed proton decay. Contents 1 Introduction 3 2 Symmetry groups and Gauge theories 5 2.1 Group theory . .5 2.2 Unitary and Special Unitary groups . .8 2.3 Orthogonal and Special Orthogonal groups . 10 2.4 Gauge theories and fields . 11 2.5 Spacetime symmetries . 13 2.6 C, P and T transformations . 14 3 The Standard Model 16 3.1 The Electroweak interaction . 16 3.2 The Strong interaction . 19 3.3 Fermion content . 19 3.4 Eigenstates and the CKM-matrix . 22 3.5 Global symmetries . 23 4 Beyond the Standard Model 28 4.1 Two Higgs doublet model . 28 4.2 Left-Right models . 34 5 A further study of Lie Groups and Algebras 37 5.1 Root systems .