Matrices Lie: an Introduction to Matrix Lie Groups and Matrix Lie Algebras

Total Page:16

File Type:pdf, Size:1020Kb

Matrices Lie: an Introduction to Matrix Lie Groups and Matrix Lie Algebras Matrices Lie: An introduction to matrix Lie groups and matrix Lie algebras By Max Lloyd A Journal submitted in partial fulfillment of the requirements for graduation in Mathematics. Abstract: This paper is an introduction to Lie theory and matrix Lie groups. In working with familiar transformations on real, complex and quaternion vector spaces this paper will define many well studied matrix Lie groups and their associated Lie algebras. In doing so it will introduce the types of vectors being transformed, types of transformations, what groups of these transformations look like, tangent spaces of specific groups and the structure of their Lie algebras. Whitman College 2015 1 Contents 1 Acknowledgments 3 2 Introduction 3 3 Types of Numbers and Their Representations 3 3.1 Real (R)................................4 3.2 Complex (C).............................4 3.3 Quaternion (H)............................5 4 Transformations and General Geometric Groups 8 4.1 Linear Transformations . .8 4.2 Geometric Matrix Groups . .9 4.3 Defining SO(2)............................9 5 Conditions for Matrix Elements of General Geometric Groups 11 5.1 SO(n) and O(n)........................... 11 5.2 U(n) and SU(n)........................... 14 5.3 Sp(n)................................. 16 6 Tangent Spaces and Lie Algebras 18 6.1 Introductions . 18 6.1.1 Tangent Space of SO(2) . 18 6.1.2 Formal Definition of the Tangent Space . 18 6.1.3 Tangent space of Sp(1) and introduction to Lie Algebras . 19 6.2 Tangent Vectors of O(n), U(n) and Sp(n)............. 21 6.3 Tangent Space and Lie algebra of SO(n).............. 22 6.4 Tangent Space and Lie algebras of U(n), SU(n) and Sp(n)... 24 6.5 Dimensions of Tangent Spaces . 26 6.6 Non-Geometric Lie Goups and Their Lie Algebras . 28 6.6.1 GL(n; C) and gl(n; C).................... 28 6.6.2 SL(n; C) and sl(n; C).................... 28 7 Lie Algebra Structure 29 7.1 Algebra Topics . 29 7.2 Normal Subgroups, Ideals and Simplicity . 29 7.3 Homomorphisms . 31 7.4 Non-simple Lie Algebras . 32 7.4.1 gl(n; C)............................ 32 7.4.2 so(4).............................. 33 7.4.3 Constructing gl(n; C) From Simple Algebras . 33 2 1 Acknowledgments A special thank you to Barry Balof, Moira Gresham and Patrick Keef for provid- ing a guiding hand throughout the project, Alex Porter for editing my papers and John Stillwell, whose book Naive Lie Theory is the basis of this paper. Without your support and instruction this would not have been possible. 2 Introduction Lie theory was developed by mathematician Sophus Lie in the late 19th century. In essence it rests on the theory of continuous groups or groups with a continuous operation. In this paper we specifically discuss groups of matrices corresponding to linear transformations on different spaces. In order to do this we will utilize the conventions and structure presented in [1]. In general Lie theory is strongly rooted in topology and the group structure of smooth differentiable manifolds. This, however, is beyond the scope of this paper. Since we only aim to introduce the fundamental concepts of Lie theory we choose to narrow our focus onto matrix Lie groups or Lie groups whose elements are all matrices. What makes a group \Lie" is that it has an associated vector algebra or Lie algebra. This algebra can be found by exploiting the continuous nature of a Lie group and bestowing upon it the structure of a Lie Bracket. This algebra can be far easier to work in so operations can be made here before moving back to the group through a process called exponentiation. Though we do not talk explicitly about exponentiation the purpose of this paper is to get the reader to become antiquated with what a matrix Lie group is and how it generates an algebra. To help the reader understand this process the paper will focus specifically on the general geometric groups which are groups of matrices corresponding to rotations and isometries of real, complex and quaternion vector spaces. This is done by slowly constructing the definitions of each group before finding their Lie algebras. Specifically, in section 3 we will introduce what real, complex and quaternion elements look like and learn how we represent them. In section 4 we will explicitly define the types of transformations we are interested in and the conditions for matrices in each geometric group. In section 5 we will define the actual elements in each general geometric group. In section 6 we will use the explicit elements in each geometric group to define their Lie algebra and in section 7 we will dive into the structure of each Lie algebra. 3 Types of Numbers and Their Representations To begin we will discuss and use of specific numbers and their representations. Specifically we will examine the reals (R), complexes (C) and quaternions (H). Usually when one thinks about something real or complex they imagine a num- ber like 2 or 3 + 4i. This, however, is just a representation of an element in either set. For the purposes of this paper we will define each element of our three sets using a point in a real vector field and choose to express it as either 3 a number or a matrix. In this way we say that a real number characterizes a one dimensional point, a complex number characterizes an ordered pair, and a quaternion characterizes an ordered quadruple. The explicit form of for each is outlined in the table in Figure 1. Each number will now be discussed in greater detail. 3.1 Real (R) We should be familiar with the real numbers. Let's start with some real number a. This characterizes a point that is at the location a on a number line and can be represented as either the number a or the 1 × 1 matrix [a]. The difference between these two representations is trivial. Clearly all algebraic operations behave exactly the same between the numerical and matrix representations. The only other operation worth note is that det([a]) = a which the distance from a to the origin. 3.2 Complex (C) Now consider some complex number z = a + ib. This characterizes the ordered pair (a; b) 2 R2 and can be represented as the 2 × 2 real matrix a −b Z = : b a We want to explore this matrix a bit farther. Notice that we can decompose z into a −b 1 0 0 −1 Z = = a + b : b a 0 1 1 0 From now on we will call any n × n identity matrix unity and denote it 1. Now let us explore the second matrix in the term a bit further. Notice that 2 0 −1 −1 0 = = −1: 1 0 0 −1 This means that 0 −1 p = -1 1 0 Type Characterizes As a Number As a Matrix \Real" (R) (a) 2 R a [a] a −b \Complex" ( ) (a; b) 2 2 a + bi C R b a a + bi −c − di \Quaternion" ( ) (a; b; c; d) 2 4 a + bi + cj + dk H R c − di a − bi Figure 1: Numerical and matrix representations of reals, complexes and quater- nions 4 and therefore behaves just likep the imaginary number i. Thus, we can rewrite our matrix form as Z = a1 + b -1 which looks strikingly similar to our numer- ical form for a complex number. This offers a linear algebra explanation as a rationale behind the behavior of complex numbers. Now we want to explore the matrix form a bit further. First notice that a −b 2 2 det(Z) = = a + b b a which is the distance between (a; b) and the origin. Now lets explore some more properties of the matrix form. a −b c −d Let Z = and Z = be two complex number in matrix 1 b a 2 c d from. First notice that a −b c −d ac − bd −(ad + bc) Z Z = = = Z Z 1 2 b a d c ad + dc ac − bd 2 1 which is the matrix form of the complex number ad − dc + i(ac − bd) = (a + bi)(c + di): This is an expected result and shows that multiplication between representations is isomorphic which includes the abelian nature of complex multiplication. For the remainder of the paper we will definep the conjugate of any complex numberp z = a + ib as z = a − ib and Z = a1 − b -1 for any complex Z = a1 + b -1 in matrix form. 3.3 Quaternion (H) To begin our discussion of quaternions first examine some complex number z. Notice that we associate it with the ordered pair (a; b) 2 R2 and number a + ib under the condition that i2 = −1. We can do the same for ordered quadruples. Start with the ordered quadruple (a; b; c; d) 2 R4 we can now associate it with the quaternion q = a + bi + cj + dk: under the condition that i2 = j2 = k2 = -1, ij = −ji = k, ki = −ik = j and jk = −kj = i. Or more succinctly ijk = i2 = j2 = k2 = −1: This is the numerical representation of a quaternion. We will call the ladder equation the Hamilton Relation. A note on quaternions is that they are non- commutative; that is for any two quaternions q1 and q2 it is not usually the case that q1q2 = q2q1. This is a critical feature of quaternions and is what sets them apart from most other types of numbers. 5 Now let us discuss the matrix form of a quaternion. Any quaternion q = a + bi + cj + dk has the matrix form a + id −b − ic α −β q = = b − ic a − id β∗ α∗ if we let α = a + id and β = b + ic.
Recommended publications
  • Affine Springer Fibers and Affine Deligne-Lusztig Varieties
    Affine Springer Fibers and Affine Deligne-Lusztig Varieties Ulrich G¨ortz Abstract. We give a survey on the notion of affine Grassmannian, on affine Springer fibers and the purity conjecture of Goresky, Kottwitz, and MacPher- son, and on affine Deligne-Lusztig varieties and results about their dimensions in the hyperspecial and Iwahori cases. Mathematics Subject Classification (2000). 22E67; 20G25; 14G35. Keywords. Affine Grassmannian; affine Springer fibers; affine Deligne-Lusztig varieties. 1. Introduction These notes are based on the lectures I gave at the Workshop on Affine Flag Man- ifolds and Principal Bundles which took place in Berlin in September 2008. There are three chapters, corresponding to the main topics of the course. The first one is the construction of the affine Grassmannian and the affine flag variety, which are the ambient spaces of the varieties considered afterwards. In the following chapter we look at affine Springer fibers. They were first investigated in 1988 by Kazhdan and Lusztig [41], and played a prominent role in the recent work about the “fun- damental lemma”, culminating in the proof of the latter by Ngˆo. See Section 3.8. Finally, we study affine Deligne-Lusztig varieties, a “σ-linear variant” of affine Springer fibers over fields of positive characteristic, σ denoting the Frobenius au- tomorphism. The term “affine Deligne-Lusztig variety” was coined by Rapoport who first considered the variety structure on these sets. The sets themselves appear implicitly already much earlier in the study of twisted orbital integrals. We remark that the term “affine” in both cases is not related to the varieties in question being affine, but rather refers to the fact that these are notions defined in the context of an affine root system.
    [Show full text]
  • Dynamics for Discrete Subgroups of Sl 2(C)
    DYNAMICS FOR DISCRETE SUBGROUPS OF SL2(C) HEE OH Dedicated to Gregory Margulis with affection and admiration Abstract. Margulis wrote in the preface of his book Discrete subgroups of semisimple Lie groups [30]: \A number of important topics have been omitted. The most significant of these is the theory of Kleinian groups and Thurston's theory of 3-dimensional manifolds: these two theories can be united under the common title Theory of discrete subgroups of SL2(C)". In this article, we will discuss a few recent advances regarding this missing topic from his book, which were influenced by his earlier works. Contents 1. Introduction 1 2. Kleinian groups 2 3. Mixing and classification of N-orbit closures 10 4. Almost all results on orbit closures 13 5. Unipotent blowup and renormalizations 18 6. Interior frames and boundary frames 25 7. Rigid acylindrical groups and circular slices of Λ 27 8. Geometrically finite acylindrical hyperbolic 3-manifolds 32 9. Unipotent flows in higher dimensional hyperbolic manifolds 35 References 44 1. Introduction A discrete subgroup of PSL2(C) is called a Kleinian group. In this article, we discuss dynamics of unipotent flows on the homogeneous space Γn PSL2(C) for a Kleinian group Γ which is not necessarily a lattice of PSL2(C). Unlike the lattice case, the geometry and topology of the associated hyperbolic 3-manifold M = ΓnH3 influence both topological and measure theoretic rigidity properties of unipotent flows. Around 1984-6, Margulis settled the Oppenheim conjecture by proving that every bounded SO(2; 1)-orbit in the space SL3(Z)n SL3(R) is compact ([28], [27]).
    [Show full text]
  • Field Theory 1. Introduction to Quantum Field Theory (A Primer for a Basic Education)
    Field Theory 1. Introduction to Quantum Field Theory (A Primer for a Basic Education) Roberto Soldati February 23, 2019 Contents 0.1 Prologue ............................ 4 1 Basics in Group Theory 8 1.1 Groups and Group Representations . 8 1.1.1 Definitions ....................... 8 1.1.2 Theorems ........................ 12 1.1.3 Direct Products of Group Representations . 14 1.2 Continuous Groups and Lie Groups . 16 1.2.1 The Continuous Groups . 16 1.2.2 The Lie Groups .................... 18 1.2.3 An Example : the Rotations Group . 19 1.2.4 The Infinitesimal Operators . 21 1.2.5 Lie Algebra ....................... 23 1.2.6 The Exponential Representation . 24 1.2.7 The Special Unitary Groups . 27 1.3 The Non-Homogeneous Lorentz Group . 34 1.3.1 The Lorentz Group . 34 1.3.2 Semi-Simple Groups . 43 1.3.3 The Poincar´eGroup . 49 2 The Action Functional 57 2.1 The Classical Relativistic Wave Fields . 57 2.1.1 Field Variations .................... 58 2.1.2 The Scalar and Vector Fields . 62 2.1.3 The Spinor Fields ................... 65 2.2 The Action Principle ................... 76 2.3 The N¨otherTheorem ................... 79 2.3.1 Problems ........................ 87 1 3 The Scalar Field 94 3.1 General Features ...................... 94 3.2 Normal Modes Expansion . 101 3.3 Klein-Gordon Quantum Field . 106 3.4 The Fock Space .......................112 3.4.1 The Many-Particle States . 112 3.4.2 The Lorentz Covariance Properties . 116 3.5 Special Distributions . 129 3.5.1 Euclidean Formulation . 133 3.6 Problems ............................137 4 The Spinor Field 151 4.1 The Dirac Equation .
    [Show full text]
  • Low-Dimensional Representations of Matrix Groups and Group Actions on CAT (0) Spaces and Manifolds
    Low-dimensional representations of matrix groups and group actions on CAT(0) spaces and manifolds Shengkui Ye National University of Singapore January 8, 2018 Abstract We study low-dimensional representations of matrix groups over gen- eral rings, by considering group actions on CAT(0) spaces, spheres and acyclic manifolds. 1 Introduction Low-dimensional representations are studied by many authors, such as Gural- nick and Tiep [24] (for matrix groups over fields), Potapchik and Rapinchuk [30] (for automorphism group of free group), Dokovi´cand Platonov [18] (for Aut(F2)), Weinberger [35] (for SLn(Z)) and so on. In this article, we study low-dimensional representations of matrix groups over general rings. Let R be an associative ring with identity and En(R) (n ≥ 3) the group generated by ele- mentary matrices (cf. Section 3.1). As motivation, we can consider the following problem. Problem 1. For n ≥ 3, is there any nontrivial group homomorphism En(R) → En−1(R)? arXiv:1207.6747v1 [math.GT] 29 Jul 2012 Although this is a purely algebraic problem, in general it seems hard to give an answer in an algebraic way. In this article, we try to answer Prob- lem 1 negatively from the point of view of geometric group theory. The idea is to find a good geometric object on which En−1(R) acts naturally and non- trivially while En(R) can only act in a special way. We study matrix group actions on CAT(0) spaces, spheres and acyclic manifolds. We prove that for low-dimensional CAT(0) spaces, a matrix group action always has a global fixed point (cf.
    [Show full text]
  • The General Linear Group
    18.704 Gabe Cunningham 2/18/05 [email protected] The General Linear Group Definition: Let F be a field. Then the general linear group GLn(F ) is the group of invert- ible n × n matrices with entries in F under matrix multiplication. It is easy to see that GLn(F ) is, in fact, a group: matrix multiplication is associative; the identity element is In, the n × n matrix with 1’s along the main diagonal and 0’s everywhere else; and the matrices are invertible by choice. It’s not immediately clear whether GLn(F ) has infinitely many elements when F does. However, such is the case. Let a ∈ F , a 6= 0. −1 Then a · In is an invertible n × n matrix with inverse a · In. In fact, the set of all such × matrices forms a subgroup of GLn(F ) that is isomorphic to F = F \{0}. It is clear that if F is a finite field, then GLn(F ) has only finitely many elements. An interesting question to ask is how many elements it has. Before addressing that question fully, let’s look at some examples. ∼ × Example 1: Let n = 1. Then GLn(Fq) = Fq , which has q − 1 elements. a b Example 2: Let n = 2; let M = ( c d ). Then for M to be invertible, it is necessary and sufficient that ad 6= bc. If a, b, c, and d are all nonzero, then we can fix a, b, and c arbitrarily, and d can be anything but a−1bc. This gives us (q − 1)3(q − 2) matrices.
    [Show full text]
  • Unitary Group - Wikipedia
    Unitary group - Wikipedia https://en.wikipedia.org/wiki/Unitary_group Unitary group In mathematics, the unitary group of degree n, denoted U( n), is the group of n × n unitary matrices, with the group operation of matrix multiplication. The unitary group is a subgroup of the general linear group GL( n, C). Hyperorthogonal group is an archaic name for the unitary group, especially over finite fields. For the group of unitary matrices with determinant 1, see Special unitary group. In the simple case n = 1, the group U(1) corresponds to the circle group, consisting of all complex numbers with absolute value 1 under multiplication. All the unitary groups contain copies of this group. The unitary group U( n) is a real Lie group of dimension n2. The Lie algebra of U( n) consists of n × n skew-Hermitian matrices, with the Lie bracket given by the commutator. The general unitary group (also called the group of unitary similitudes ) consists of all matrices A such that A∗A is a nonzero multiple of the identity matrix, and is just the product of the unitary group with the group of all positive multiples of the identity matrix. Contents Properties Topology Related groups 2-out-of-3 property Special unitary and projective unitary groups G-structure: almost Hermitian Generalizations Indefinite forms Finite fields Degree-2 separable algebras Algebraic groups Unitary group of a quadratic module Polynomial invariants Classifying space See also Notes References Properties Since the determinant of a unitary matrix is a complex number with norm 1, the determinant gives a group 1 of 7 2/23/2018, 10:13 AM Unitary group - Wikipedia https://en.wikipedia.org/wiki/Unitary_group homomorphism The kernel of this homomorphism is the set of unitary matrices with determinant 1.
    [Show full text]
  • Material on Algebraic and Lie Groups
    2 Lie groups and algebraic groups. 2.1 Basic Definitions. In this subsection we will introduce the class of groups to be studied. We first recall that a Lie group is a group that is also a differentiable manifold 1 and multiplication (x, y xy) and inverse (x x ) are C1 maps. An algebraic group is a group7! that is also an algebraic7! variety such that multi- plication and inverse are morphisms. Before we can introduce our main characters we first consider GL(n, C) as an affi ne algebraic group. Here Mn(C) denotes the space of n n matrices and GL(n, C) = g Mn(C) det(g) =) . Now Mn(C) is given the structure nf2 2 j 6 g of affi ne space C with the coordinates xij for X = [xij] . This implies that GL(n, C) is Z-open and as a variety is isomorphic with the affi ne variety 1 Mn(C) det . This implies that (GL(n, C)) = C[xij, det ]. f g O Lemma 1 If G is an algebraic group over an algebraically closed field, F , then every point in G is smooth. Proof. Let Lg : G G be given by Lgx = gx. Then Lg is an isomorphism ! 1 1 of G as an algebraic variety (Lg = Lg ). Since isomorphisms preserve the set of smooth points we see that if x G is smooth so is every element of Gx = G. 2 Proposition 2 If G is an algebraic group over an algebraically closed field F then the Z-connected components Proof.
    [Show full text]
  • Modules and Lie Semialgebras Over Semirings with a Negation Map 3
    MODULES AND LIE SEMIALGEBRAS OVER SEMIRINGS WITH A NEGATION MAP GUY BLACHAR Abstract. In this article, we present the basic definitions of modules and Lie semialgebras over semirings with a negation map. Our main example of a semiring with a negation map is ELT algebras, and some of the results in this article are formulated and proved only in the ELT theory. When dealing with modules, we focus on linearly independent sets and spanning sets. We define a notion of lifting a module with a negation map, similarly to the tropicalization process, and use it to prove several theorems about semirings with a negation map which possess a lift. In the context of Lie semialgebras over semirings with a negation map, we first give basic definitions, and provide parallel constructions to the classical Lie algebras. We prove an ELT version of Cartan’s criterion for semisimplicity, and provide a counterexample for the naive version of the PBW Theorem. Contents Page 0. Introduction 2 0.1. Semirings with a Negation Map 2 0.2. Modules Over Semirings with a Negation Map 3 0.3. Supertropical Algebras 4 0.4. Exploded Layered Tropical Algebras 4 1. Modules over Semirings with a Negation Map 5 1.1. The Surpassing Relation for Modules 6 1.2. Basic Definitions for Modules 7 1.3. -morphisms 9 1.4. Lifting a Module Over a Semiring with a Negation Map 10 1.5. Linearly Independent Sets 13 1.6. d-bases and s-bases 14 1.7. Free Modules over Semirings with a Negation Map 18 2.
    [Show full text]
  • Arxiv:2008.02889V1 [Math.QA]
    NONCOMMUTATIVE NETWORKS ON A CYLINDER S. ARTHAMONOV, N. OVENHOUSE, AND M. SHAPIRO Abstract. In this paper a double quasi Poisson bracket in the sense of Van den Bergh is constructed on the space of noncommutative weights of arcs of a directed graph embedded in a disk or cylinder Σ, which gives rise to the quasi Poisson bracket of G.Massuyeau and V.Turaev on the group algebra kπ1(Σ,p) of the fundamental group of a surface based at p ∈ ∂Σ. This bracket also induces a noncommutative Goldman Poisson bracket on the cyclic space C♮, which is a k-linear space of unbased loops. We show that the induced double quasi Poisson bracket between boundary measurements can be described via noncommutative r-matrix formalism. This gives a more conceptual proof of the result of [Ove20] that traces of powers of Lax operator form an infinite collection of noncommutative Hamiltonians in involution with respect to noncommutative Goldman bracket on C♮. 1. Introduction The current manuscript is obtained as a continuation of papers [Ove20, FK09, DF15, BR11] where the authors develop noncommutative generalizations of discrete completely integrable dynamical systems and [BR18] where a large class of noncommutative cluster algebras was constructed. Cluster algebras were introduced in [FZ02] by S.Fomin and A.Zelevisnky in an effort to describe the (dual) canonical basis of universal enveloping algebra U(b), where b is a Borel subalgebra of a simple complex Lie algebra g. Cluster algebras are commutative rings of a special type, equipped with a distinguished set of generators (cluster variables) subdivided into overlapping subsets (clusters) of the same cardinality subject to certain polynomial relations (cluster transformations).
    [Show full text]
  • Using March Madness in the First Linear Algebra Course
    Using March Madness in the first Linear Algebra course Steve Hilbert Ithaca College [email protected] Background • National meetings • Tim Chartier • 1 hr talk and special session on rankings • Try something new Why use this application? • This is an example that many students are aware of and some are interested in. • Interests a different subgroup of the class than usual applications • Interests other students (the class can talk about this with their non math friends) • A problem that students have “intuition” about that can be translated into Mathematical ideas • Outside grading system and enforcer of deadlines (Brackets “lock” at set time.) How it fits into Linear Algebra • Lots of “examples” of ranking in linear algebra texts but not many are realistic to students. • This was a good way to introduce and work with matrix algebra. • Using matrix algebra you can easily scale up to work with relatively large systems. Filling out your bracket • You have to pick a winner for each game • You can do this any way you want • Some people use their “ knowledge” • I know Duke is better than Florida, or Syracuse lost a lot of games at the end of the season so they will probably lose early in the tournament • Some people pick their favorite schools, others like the mascots, the uniforms, the team tattoos… Why rank teams? • If two teams are going to play a game ,the team with the higher rank (#1 is higher than #2) should win. • If there are a limited number of openings in a tournament, teams with higher rankings should be chosen over teams with lower rankings.
    [Show full text]
  • ADELIC VERSION of MARGULIS ARITHMETICITY THEOREM Hee Oh 1. Introduction Let R Denote the Set of All Prime Numbers Including
    ADELIC VERSION OF MARGULIS ARITHMETICITY THEOREM Hee Oh Abstract. In this paper, we generalize Margulis’s S-arithmeticity theorem to the case when S can be taken as an infinite set of primes. Let R be the set of all primes including infinite one ∞ and set Q∞ = R. Let S be any subset of R. For each p ∈ S, let Gp be a connected semisimple adjoint Qp-group without any Qp-anisotropic factors and Dp ⊂ Gp(Qp) be a compact open subgroup for almost all finite prime p ∈ S. Let (GS , Dp) denote the restricted topological product of Gp(Qp)’s, p ∈ S with respect to Dp’s. Note that if S is finite, (GS , Dp) = Qp∈S Gp(Qp). We show that if Pp∈S rank Qp (Gp) ≥ 2, any irreducible lattice in (GS , Dp) is a rational lattice. We also present a criterion on the collections Gp and Dp for (GS , Dp) to admit an irreducible lattice. In addition, we describe discrete subgroups of (GA, Dp) generated by lattices in a pair of opposite horospherical subgroups. 1. Introduction Let R denote the set of all prime numbers including the infinite prime ∞ and Rf the set of finite prime numbers, i.e., Rf = R−{∞}. We set Q∞ = R. For each p ∈ R, let Gp be a non-trivial connected semisimple algebraic Qp-group and for each p ∈ Rf , let Dp be a compact open subgroup of Gp(Qp). The adele group of Gp, p ∈ R with respect to Dp, p ∈ Rf is defined to be the restricted topological product of the groups Gp(Qp) with respect to the distinguished subgroups Dp.
    [Show full text]
  • Matrix Lie Groups
    Maths Seminar 2007 MATRIX LIE GROUPS Claudiu C Remsing Dept of Mathematics (Pure and Applied) Rhodes University Grahamstown 6140 26 September 2007 RhodesUniv CCR 0 Maths Seminar 2007 TALK OUTLINE 1. What is a matrix Lie group ? 2. Matrices revisited. 3. Examples of matrix Lie groups. 4. Matrix Lie algebras. 5. A glimpse at elementary Lie theory. 6. Life beyond elementary Lie theory. RhodesUniv CCR 1 Maths Seminar 2007 1. What is a matrix Lie group ? Matrix Lie groups are groups of invertible • matrices that have desirable geometric features. So matrix Lie groups are simultaneously algebraic and geometric objects. Matrix Lie groups naturally arise in • – geometry (classical, algebraic, differential) – complex analyis – differential equations – Fourier analysis – algebra (group theory, ring theory) – number theory – combinatorics. RhodesUniv CCR 2 Maths Seminar 2007 Matrix Lie groups are encountered in many • applications in – physics (geometric mechanics, quantum con- trol) – engineering (motion control, robotics) – computational chemistry (molecular mo- tion) – computer science (computer animation, computer vision, quantum computation). “It turns out that matrix [Lie] groups • pop up in virtually any investigation of objects with symmetries, such as molecules in chemistry, particles in physics, and projective spaces in geometry”. (K. Tapp, 2005) RhodesUniv CCR 3 Maths Seminar 2007 EXAMPLE 1 : The Euclidean group E (2). • E (2) = F : R2 R2 F is an isometry . → | n o The vector space R2 is equipped with the standard Euclidean structure (the “dot product”) x y = x y + x y (x, y R2), • 1 1 2 2 ∈ hence with the Euclidean distance d (x, y) = (y x) (y x) (x, y R2).
    [Show full text]