Matrices Lie: an Introduction to Matrix Lie Groups and Matrix Lie Algebras
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Affine Springer Fibers and Affine Deligne-Lusztig Varieties
Affine Springer Fibers and Affine Deligne-Lusztig Varieties Ulrich G¨ortz Abstract. We give a survey on the notion of affine Grassmannian, on affine Springer fibers and the purity conjecture of Goresky, Kottwitz, and MacPher- son, and on affine Deligne-Lusztig varieties and results about their dimensions in the hyperspecial and Iwahori cases. Mathematics Subject Classification (2000). 22E67; 20G25; 14G35. Keywords. Affine Grassmannian; affine Springer fibers; affine Deligne-Lusztig varieties. 1. Introduction These notes are based on the lectures I gave at the Workshop on Affine Flag Man- ifolds and Principal Bundles which took place in Berlin in September 2008. There are three chapters, corresponding to the main topics of the course. The first one is the construction of the affine Grassmannian and the affine flag variety, which are the ambient spaces of the varieties considered afterwards. In the following chapter we look at affine Springer fibers. They were first investigated in 1988 by Kazhdan and Lusztig [41], and played a prominent role in the recent work about the “fun- damental lemma”, culminating in the proof of the latter by Ngˆo. See Section 3.8. Finally, we study affine Deligne-Lusztig varieties, a “σ-linear variant” of affine Springer fibers over fields of positive characteristic, σ denoting the Frobenius au- tomorphism. The term “affine Deligne-Lusztig variety” was coined by Rapoport who first considered the variety structure on these sets. The sets themselves appear implicitly already much earlier in the study of twisted orbital integrals. We remark that the term “affine” in both cases is not related to the varieties in question being affine, but rather refers to the fact that these are notions defined in the context of an affine root system. -
Dynamics for Discrete Subgroups of Sl 2(C)
DYNAMICS FOR DISCRETE SUBGROUPS OF SL2(C) HEE OH Dedicated to Gregory Margulis with affection and admiration Abstract. Margulis wrote in the preface of his book Discrete subgroups of semisimple Lie groups [30]: \A number of important topics have been omitted. The most significant of these is the theory of Kleinian groups and Thurston's theory of 3-dimensional manifolds: these two theories can be united under the common title Theory of discrete subgroups of SL2(C)". In this article, we will discuss a few recent advances regarding this missing topic from his book, which were influenced by his earlier works. Contents 1. Introduction 1 2. Kleinian groups 2 3. Mixing and classification of N-orbit closures 10 4. Almost all results on orbit closures 13 5. Unipotent blowup and renormalizations 18 6. Interior frames and boundary frames 25 7. Rigid acylindrical groups and circular slices of Λ 27 8. Geometrically finite acylindrical hyperbolic 3-manifolds 32 9. Unipotent flows in higher dimensional hyperbolic manifolds 35 References 44 1. Introduction A discrete subgroup of PSL2(C) is called a Kleinian group. In this article, we discuss dynamics of unipotent flows on the homogeneous space Γn PSL2(C) for a Kleinian group Γ which is not necessarily a lattice of PSL2(C). Unlike the lattice case, the geometry and topology of the associated hyperbolic 3-manifold M = ΓnH3 influence both topological and measure theoretic rigidity properties of unipotent flows. Around 1984-6, Margulis settled the Oppenheim conjecture by proving that every bounded SO(2; 1)-orbit in the space SL3(Z)n SL3(R) is compact ([28], [27]). -
Field Theory 1. Introduction to Quantum Field Theory (A Primer for a Basic Education)
Field Theory 1. Introduction to Quantum Field Theory (A Primer for a Basic Education) Roberto Soldati February 23, 2019 Contents 0.1 Prologue ............................ 4 1 Basics in Group Theory 8 1.1 Groups and Group Representations . 8 1.1.1 Definitions ....................... 8 1.1.2 Theorems ........................ 12 1.1.3 Direct Products of Group Representations . 14 1.2 Continuous Groups and Lie Groups . 16 1.2.1 The Continuous Groups . 16 1.2.2 The Lie Groups .................... 18 1.2.3 An Example : the Rotations Group . 19 1.2.4 The Infinitesimal Operators . 21 1.2.5 Lie Algebra ....................... 23 1.2.6 The Exponential Representation . 24 1.2.7 The Special Unitary Groups . 27 1.3 The Non-Homogeneous Lorentz Group . 34 1.3.1 The Lorentz Group . 34 1.3.2 Semi-Simple Groups . 43 1.3.3 The Poincar´eGroup . 49 2 The Action Functional 57 2.1 The Classical Relativistic Wave Fields . 57 2.1.1 Field Variations .................... 58 2.1.2 The Scalar and Vector Fields . 62 2.1.3 The Spinor Fields ................... 65 2.2 The Action Principle ................... 76 2.3 The N¨otherTheorem ................... 79 2.3.1 Problems ........................ 87 1 3 The Scalar Field 94 3.1 General Features ...................... 94 3.2 Normal Modes Expansion . 101 3.3 Klein-Gordon Quantum Field . 106 3.4 The Fock Space .......................112 3.4.1 The Many-Particle States . 112 3.4.2 The Lorentz Covariance Properties . 116 3.5 Special Distributions . 129 3.5.1 Euclidean Formulation . 133 3.6 Problems ............................137 4 The Spinor Field 151 4.1 The Dirac Equation . -
Low-Dimensional Representations of Matrix Groups and Group Actions on CAT (0) Spaces and Manifolds
Low-dimensional representations of matrix groups and group actions on CAT(0) spaces and manifolds Shengkui Ye National University of Singapore January 8, 2018 Abstract We study low-dimensional representations of matrix groups over gen- eral rings, by considering group actions on CAT(0) spaces, spheres and acyclic manifolds. 1 Introduction Low-dimensional representations are studied by many authors, such as Gural- nick and Tiep [24] (for matrix groups over fields), Potapchik and Rapinchuk [30] (for automorphism group of free group), Dokovi´cand Platonov [18] (for Aut(F2)), Weinberger [35] (for SLn(Z)) and so on. In this article, we study low-dimensional representations of matrix groups over general rings. Let R be an associative ring with identity and En(R) (n ≥ 3) the group generated by ele- mentary matrices (cf. Section 3.1). As motivation, we can consider the following problem. Problem 1. For n ≥ 3, is there any nontrivial group homomorphism En(R) → En−1(R)? arXiv:1207.6747v1 [math.GT] 29 Jul 2012 Although this is a purely algebraic problem, in general it seems hard to give an answer in an algebraic way. In this article, we try to answer Prob- lem 1 negatively from the point of view of geometric group theory. The idea is to find a good geometric object on which En−1(R) acts naturally and non- trivially while En(R) can only act in a special way. We study matrix group actions on CAT(0) spaces, spheres and acyclic manifolds. We prove that for low-dimensional CAT(0) spaces, a matrix group action always has a global fixed point (cf. -
The General Linear Group
18.704 Gabe Cunningham 2/18/05 [email protected] The General Linear Group Definition: Let F be a field. Then the general linear group GLn(F ) is the group of invert- ible n × n matrices with entries in F under matrix multiplication. It is easy to see that GLn(F ) is, in fact, a group: matrix multiplication is associative; the identity element is In, the n × n matrix with 1’s along the main diagonal and 0’s everywhere else; and the matrices are invertible by choice. It’s not immediately clear whether GLn(F ) has infinitely many elements when F does. However, such is the case. Let a ∈ F , a 6= 0. −1 Then a · In is an invertible n × n matrix with inverse a · In. In fact, the set of all such × matrices forms a subgroup of GLn(F ) that is isomorphic to F = F \{0}. It is clear that if F is a finite field, then GLn(F ) has only finitely many elements. An interesting question to ask is how many elements it has. Before addressing that question fully, let’s look at some examples. ∼ × Example 1: Let n = 1. Then GLn(Fq) = Fq , which has q − 1 elements. a b Example 2: Let n = 2; let M = ( c d ). Then for M to be invertible, it is necessary and sufficient that ad 6= bc. If a, b, c, and d are all nonzero, then we can fix a, b, and c arbitrarily, and d can be anything but a−1bc. This gives us (q − 1)3(q − 2) matrices. -
Unitary Group - Wikipedia
Unitary group - Wikipedia https://en.wikipedia.org/wiki/Unitary_group Unitary group In mathematics, the unitary group of degree n, denoted U( n), is the group of n × n unitary matrices, with the group operation of matrix multiplication. The unitary group is a subgroup of the general linear group GL( n, C). Hyperorthogonal group is an archaic name for the unitary group, especially over finite fields. For the group of unitary matrices with determinant 1, see Special unitary group. In the simple case n = 1, the group U(1) corresponds to the circle group, consisting of all complex numbers with absolute value 1 under multiplication. All the unitary groups contain copies of this group. The unitary group U( n) is a real Lie group of dimension n2. The Lie algebra of U( n) consists of n × n skew-Hermitian matrices, with the Lie bracket given by the commutator. The general unitary group (also called the group of unitary similitudes ) consists of all matrices A such that A∗A is a nonzero multiple of the identity matrix, and is just the product of the unitary group with the group of all positive multiples of the identity matrix. Contents Properties Topology Related groups 2-out-of-3 property Special unitary and projective unitary groups G-structure: almost Hermitian Generalizations Indefinite forms Finite fields Degree-2 separable algebras Algebraic groups Unitary group of a quadratic module Polynomial invariants Classifying space See also Notes References Properties Since the determinant of a unitary matrix is a complex number with norm 1, the determinant gives a group 1 of 7 2/23/2018, 10:13 AM Unitary group - Wikipedia https://en.wikipedia.org/wiki/Unitary_group homomorphism The kernel of this homomorphism is the set of unitary matrices with determinant 1. -
Material on Algebraic and Lie Groups
2 Lie groups and algebraic groups. 2.1 Basic Definitions. In this subsection we will introduce the class of groups to be studied. We first recall that a Lie group is a group that is also a differentiable manifold 1 and multiplication (x, y xy) and inverse (x x ) are C1 maps. An algebraic group is a group7! that is also an algebraic7! variety such that multi- plication and inverse are morphisms. Before we can introduce our main characters we first consider GL(n, C) as an affi ne algebraic group. Here Mn(C) denotes the space of n n matrices and GL(n, C) = g Mn(C) det(g) =) . Now Mn(C) is given the structure nf2 2 j 6 g of affi ne space C with the coordinates xij for X = [xij] . This implies that GL(n, C) is Z-open and as a variety is isomorphic with the affi ne variety 1 Mn(C) det . This implies that (GL(n, C)) = C[xij, det ]. f g O Lemma 1 If G is an algebraic group over an algebraically closed field, F , then every point in G is smooth. Proof. Let Lg : G G be given by Lgx = gx. Then Lg is an isomorphism ! 1 1 of G as an algebraic variety (Lg = Lg ). Since isomorphisms preserve the set of smooth points we see that if x G is smooth so is every element of Gx = G. 2 Proposition 2 If G is an algebraic group over an algebraically closed field F then the Z-connected components Proof. -
Modules and Lie Semialgebras Over Semirings with a Negation Map 3
MODULES AND LIE SEMIALGEBRAS OVER SEMIRINGS WITH A NEGATION MAP GUY BLACHAR Abstract. In this article, we present the basic definitions of modules and Lie semialgebras over semirings with a negation map. Our main example of a semiring with a negation map is ELT algebras, and some of the results in this article are formulated and proved only in the ELT theory. When dealing with modules, we focus on linearly independent sets and spanning sets. We define a notion of lifting a module with a negation map, similarly to the tropicalization process, and use it to prove several theorems about semirings with a negation map which possess a lift. In the context of Lie semialgebras over semirings with a negation map, we first give basic definitions, and provide parallel constructions to the classical Lie algebras. We prove an ELT version of Cartan’s criterion for semisimplicity, and provide a counterexample for the naive version of the PBW Theorem. Contents Page 0. Introduction 2 0.1. Semirings with a Negation Map 2 0.2. Modules Over Semirings with a Negation Map 3 0.3. Supertropical Algebras 4 0.4. Exploded Layered Tropical Algebras 4 1. Modules over Semirings with a Negation Map 5 1.1. The Surpassing Relation for Modules 6 1.2. Basic Definitions for Modules 7 1.3. -morphisms 9 1.4. Lifting a Module Over a Semiring with a Negation Map 10 1.5. Linearly Independent Sets 13 1.6. d-bases and s-bases 14 1.7. Free Modules over Semirings with a Negation Map 18 2. -
Arxiv:2008.02889V1 [Math.QA]
NONCOMMUTATIVE NETWORKS ON A CYLINDER S. ARTHAMONOV, N. OVENHOUSE, AND M. SHAPIRO Abstract. In this paper a double quasi Poisson bracket in the sense of Van den Bergh is constructed on the space of noncommutative weights of arcs of a directed graph embedded in a disk or cylinder Σ, which gives rise to the quasi Poisson bracket of G.Massuyeau and V.Turaev on the group algebra kπ1(Σ,p) of the fundamental group of a surface based at p ∈ ∂Σ. This bracket also induces a noncommutative Goldman Poisson bracket on the cyclic space C♮, which is a k-linear space of unbased loops. We show that the induced double quasi Poisson bracket between boundary measurements can be described via noncommutative r-matrix formalism. This gives a more conceptual proof of the result of [Ove20] that traces of powers of Lax operator form an infinite collection of noncommutative Hamiltonians in involution with respect to noncommutative Goldman bracket on C♮. 1. Introduction The current manuscript is obtained as a continuation of papers [Ove20, FK09, DF15, BR11] where the authors develop noncommutative generalizations of discrete completely integrable dynamical systems and [BR18] where a large class of noncommutative cluster algebras was constructed. Cluster algebras were introduced in [FZ02] by S.Fomin and A.Zelevisnky in an effort to describe the (dual) canonical basis of universal enveloping algebra U(b), where b is a Borel subalgebra of a simple complex Lie algebra g. Cluster algebras are commutative rings of a special type, equipped with a distinguished set of generators (cluster variables) subdivided into overlapping subsets (clusters) of the same cardinality subject to certain polynomial relations (cluster transformations). -
Using March Madness in the First Linear Algebra Course
Using March Madness in the first Linear Algebra course Steve Hilbert Ithaca College [email protected] Background • National meetings • Tim Chartier • 1 hr talk and special session on rankings • Try something new Why use this application? • This is an example that many students are aware of and some are interested in. • Interests a different subgroup of the class than usual applications • Interests other students (the class can talk about this with their non math friends) • A problem that students have “intuition” about that can be translated into Mathematical ideas • Outside grading system and enforcer of deadlines (Brackets “lock” at set time.) How it fits into Linear Algebra • Lots of “examples” of ranking in linear algebra texts but not many are realistic to students. • This was a good way to introduce and work with matrix algebra. • Using matrix algebra you can easily scale up to work with relatively large systems. Filling out your bracket • You have to pick a winner for each game • You can do this any way you want • Some people use their “ knowledge” • I know Duke is better than Florida, or Syracuse lost a lot of games at the end of the season so they will probably lose early in the tournament • Some people pick their favorite schools, others like the mascots, the uniforms, the team tattoos… Why rank teams? • If two teams are going to play a game ,the team with the higher rank (#1 is higher than #2) should win. • If there are a limited number of openings in a tournament, teams with higher rankings should be chosen over teams with lower rankings. -
ADELIC VERSION of MARGULIS ARITHMETICITY THEOREM Hee Oh 1. Introduction Let R Denote the Set of All Prime Numbers Including
ADELIC VERSION OF MARGULIS ARITHMETICITY THEOREM Hee Oh Abstract. In this paper, we generalize Margulis’s S-arithmeticity theorem to the case when S can be taken as an infinite set of primes. Let R be the set of all primes including infinite one ∞ and set Q∞ = R. Let S be any subset of R. For each p ∈ S, let Gp be a connected semisimple adjoint Qp-group without any Qp-anisotropic factors and Dp ⊂ Gp(Qp) be a compact open subgroup for almost all finite prime p ∈ S. Let (GS , Dp) denote the restricted topological product of Gp(Qp)’s, p ∈ S with respect to Dp’s. Note that if S is finite, (GS , Dp) = Qp∈S Gp(Qp). We show that if Pp∈S rank Qp (Gp) ≥ 2, any irreducible lattice in (GS , Dp) is a rational lattice. We also present a criterion on the collections Gp and Dp for (GS , Dp) to admit an irreducible lattice. In addition, we describe discrete subgroups of (GA, Dp) generated by lattices in a pair of opposite horospherical subgroups. 1. Introduction Let R denote the set of all prime numbers including the infinite prime ∞ and Rf the set of finite prime numbers, i.e., Rf = R−{∞}. We set Q∞ = R. For each p ∈ R, let Gp be a non-trivial connected semisimple algebraic Qp-group and for each p ∈ Rf , let Dp be a compact open subgroup of Gp(Qp). The adele group of Gp, p ∈ R with respect to Dp, p ∈ Rf is defined to be the restricted topological product of the groups Gp(Qp) with respect to the distinguished subgroups Dp. -
Matrix Lie Groups
Maths Seminar 2007 MATRIX LIE GROUPS Claudiu C Remsing Dept of Mathematics (Pure and Applied) Rhodes University Grahamstown 6140 26 September 2007 RhodesUniv CCR 0 Maths Seminar 2007 TALK OUTLINE 1. What is a matrix Lie group ? 2. Matrices revisited. 3. Examples of matrix Lie groups. 4. Matrix Lie algebras. 5. A glimpse at elementary Lie theory. 6. Life beyond elementary Lie theory. RhodesUniv CCR 1 Maths Seminar 2007 1. What is a matrix Lie group ? Matrix Lie groups are groups of invertible • matrices that have desirable geometric features. So matrix Lie groups are simultaneously algebraic and geometric objects. Matrix Lie groups naturally arise in • – geometry (classical, algebraic, differential) – complex analyis – differential equations – Fourier analysis – algebra (group theory, ring theory) – number theory – combinatorics. RhodesUniv CCR 2 Maths Seminar 2007 Matrix Lie groups are encountered in many • applications in – physics (geometric mechanics, quantum con- trol) – engineering (motion control, robotics) – computational chemistry (molecular mo- tion) – computer science (computer animation, computer vision, quantum computation). “It turns out that matrix [Lie] groups • pop up in virtually any investigation of objects with symmetries, such as molecules in chemistry, particles in physics, and projective spaces in geometry”. (K. Tapp, 2005) RhodesUniv CCR 3 Maths Seminar 2007 EXAMPLE 1 : The Euclidean group E (2). • E (2) = F : R2 R2 F is an isometry . → | n o The vector space R2 is equipped with the standard Euclidean structure (the “dot product”) x y = x y + x y (x, y R2), • 1 1 2 2 ∈ hence with the Euclidean distance d (x, y) = (y x) (y x) (x, y R2).