Material on Algebraic and Lie Groups

Total Page:16

File Type:pdf, Size:1020Kb

Material on Algebraic and Lie Groups 2 Lie groups and algebraic groups. 2.1 Basic Definitions. In this subsection we will introduce the class of groups to be studied. We first recall that a Lie group is a group that is also a differentiable manifold 1 and multiplication (x, y xy) and inverse (x x ) are C1 maps. An algebraic group is a group7! that is also an algebraic7! variety such that multi- plication and inverse are morphisms. Before we can introduce our main characters we first consider GL(n, C) as an affi ne algebraic group. Here Mn(C) denotes the space of n n matrices and GL(n, C) = g Mn(C) det(g) =) . Now Mn(C) is given the structure nf2 2 j 6 g of affi ne space C with the coordinates xij for X = [xij] . This implies that GL(n, C) is Z-open and as a variety is isomorphic with the affi ne variety 1 Mn(C) det . This implies that (GL(n, C)) = C[xij, det ]. f g O Lemma 1 If G is an algebraic group over an algebraically closed field, F , then every point in G is smooth. Proof. Let Lg : G G be given by Lgx = gx. Then Lg is an isomorphism ! 1 1 of G as an algebraic variety (Lg = Lg ). Since isomorphisms preserve the set of smooth points we see that if x G is smooth so is every element of Gx = G. 2 Proposition 2 If G is an algebraic group over an algebraically closed field F then the Z-connected components Proof. Theorem 18 in section 1.2.6 implies that every element of G is con- tained in a unique irreducible component. Theorem 3 A closed subgroup of GL(n, C) is a Lie group. This theorem is a special case of the fact that a closed subgroup of a Lie group is a Lie group. We should also explain what “is” means in these contexts. The result needed is Theorem 4 Let G and H be Lie groups then a continuous homomorphism f : G H is C1. ! 1 This implies that there is only one Lie group structure associated with the structure of G as a topological group. If G is a closed subgroup of GL(n, C) then we define the Lie algebra of G to be tX Lie(G) = X Mn(C) e G for all t R . f 2 j 2 2 g Some explanations are in order. First we define X, Y = trXY and X = h i k k X, X We use this to define the metric topology on Mn(C). We note that XYh i X Y so if we set kp k ≤ k k k k 1 Xm eX = m! m=0 X then this series converges absolutely and uniformly in compacta. In particular the implies that X eX ! defines a C1 map of Mn(C) to GL(n, C) in fact real (even complex) analytic. We also note that if X < 1 then the series k k 1 Xm log(I X) = m m=1 X converges absolutely and uniformly on compacta. This says that if > 0 is so small that if X < then I eX < 1 we have log(eX ) = log(I (I eX )) = X. k k Proposition 5 Let G be a closed subgroup of GL(n, C) then Lie(G) is an R- subspace of Mn(C)such that if X, Y Lie(G), XY YX = [X, Y ] Lie(G). 2 2 Proof. We have sX tY sX+tY + st [X,Y ]+O(( t + s )3) e e = e 2 j j j j . To to sketch a proof this we take s and t so small that I esX etY < 1. Expand the series log(I (I esX etY )) ignoring terms that areO(( t + s )3). j j j j (c.f. [GW], ???). For details. We now prove the Lemma. We note that for fixed t t X t Y m t(X+Y )+O( 1 ) (e m e m ) = e m . 2 Taking the limit as m shows that Lie(G) is a subspace. Also for fixed t ! 1 t X t Y t X t Y m2 t2[X,Y ]+O( 1 ) (e m e m e m e m ) = e m . Thus et2[X,Y ] G. Take inverses to get negative multiples of [X, Y ]. 2 Theorem 6 The Lie algebra of a linear algebraic group,G GL(n, C), is a complex subspace of Mn(C) . Furthermore Lie(G) = TI (G)in the sense of algebraic geometry. 1 X 1 Ad(g)X G acts on Lie(G) via Ad(g)X = gXg , We note that ge g = e so 1 gLie(G)g = Lie(G) for g G. We also note that if X, Y Mn(C) then 2 2 d tX tX tX e Y e = Ad(e )[X, Y ]. dt Then is d Ad(etX ) = Ad(etX )ad(X) dt with ad(X)Y = [X, Y ]. This implies that as an endomorphism of Mn(C) Ad(etX ) = etad(X). If X g the ad(X)g g so these formulas are true for 2 any closed subgroup of GL(n, C). 2.1.1 Some remarks about compact groups. Let K GL(n, C) be a compact subgroup. Then K is closed and hence a Lie group. We will denote by K the left invariant, positive normalized measure on K(Haar measure). We recall what this means. We define a (complex) measure on K to be a continuous linear map, , of C(K) (continuous func- tions from K to C) to C where C(K) is endowed with the uniform topology. That is, we set f = maxx K f(x) and a linear map : C(K) C is a measure if therek existsk a constant2 j suchj that ! (f) C f , f C(K). j j ≤ k k 2 We say that is positive if (f) 0 if f(K) [0, ). We say that it is normalized if it is positive and (1)≥ = 1 (1 the constant 1 function taking the 1 value 1). Finally, if k K we define Lkf(x) = f(k x) for k, x K and 2 2 f C(K). Then Lk : C(K) C)(K). Left invariant means that Lk = . One2 proves that a normalized! invariant measure on K is unique and that it is given by integration of a differential form. For our purposes we will only need the following property (and its proof) that follows from the fact that it is given by the integration against a differential form. 3 Theorem 7 Let V be a finite dimensional vector space over C. Let : K GL(V ) be a continuous homomorphism. Then there exists a Hermitian inner! product, (..., ...), on V such that ((k)v, (k)w) = (v, w) for v, w V and k K. 2 2 Proof. Let ..., ... be an inner product on V (e.g. choose a basis and use h i 1 1 the standard inner product). Define (z, w) = K (k (k) z, (k) w ). Then one checks that this form is Hermitian, and positive! h definite since thei measure is positive. We also note that if u K then K 2 1 1 ((u)z, (u)w) = (k (k) (u)z, (k) (u)w ) = K ! 1 1 1 1 1 1 k(k (u k) z, (u k) w ) = K (k (k) z, ( k) w ). ! ! Let W be the orthogonal complement of V with respect to (..., ...) and let P be the projection onto V corresponding to the decomposition Cm = V W. Theorem 8 Let K be a compact subgroup of GL(n, C) and let G be the Zariski closure of K in GL(n, C) then K is a maximal compact subgroup of G. Proof. Let U be a compact subgroup of G containing K. Suppose that K = U we show that this leads to a contradiction. Then if u U K then Ku6 K = . Since both sets are compact there exists a continuous2 function, \ ; f, on U such that f K = 1 and f Ku = 0. The Stone-Weierstrass theorem j j 1 implies that there is C[xij] such that f(x) (x) < 4 for x U. Thus (ku) < 1 and (k)2> 3 for all k Kj . Let (X)j = (k 2 (kX)). j j 4 j j 4 2 K ! Then is a polynomial on Mn(C) (expand in monomials and note that we are just integrating coeffi cients). We note that (ku) 1 and (k) 3 j j ≤ 4 j j ≥ 4 for all k K. On the other hand, if Y Mn(C) then then the function 2 2 X (XY ) is a polynomial on Mn(C) thus in (GL(n, C)) and it takes the constant! value (Y ) on K. Thus since G is theO Z-closure of K we see that (gY ) = (Y ) for all g G hence for all g U. But then (x) = (I) for all u U. This is a contradiction2 since (I)2 3 and (u) = 0. 2 j j ≥ 4 j j 2.2 Symmetric Subgroups. 2.2.1 Definition. We will take as the main examples over C the Z-closed subgroups, G, of GL(n, C) that have the additional property: if g G then g G (here, as 2 2 4 usual, [gij] = [gji]). We will call such a group symmetric. Let U(n) denote the group of all g GL(n, C) such that gg = I. Then U(n) is a compact Lie group (in fact2 every row of g G is an element of the 2n 1 sphere so the group is topologically a closed2 subset of a product of n spheres).
Recommended publications
  • Arxiv:1906.01274V1 [Math.NT] 4 Jun 2019 Rpsto .] Aqe Ishmefas Rvdsoepofi I Yale 1.4.1]
    CHOW’S THEOREM FOR SEMI-ABELIAN VARIETIES AND BOUNDS FOR SPLITTING FIELDS OF ALGEBRAIC TORI CHIA-FU YU Abstract. A theorem of Chow concerns homomorphisms of two abelian vari- eties under a primary field extension base change. In this paper we generalize Chow’s theorem to semi-abelian varieties. This contributes to different proofs of a well-known result that every algebraic torus splits over a finite separable field extension. We also obtain the best bound for the degrees of splitting fields of tori. 1. Introduction Let k be a field, k¯ an algebraic closure of k, and ks the separable closure of k in k¯. A connected algebraic k-group T is an algebraic torus if there is a k¯-isomorphism d T ⊗k k¯ ≃ (Gm) ⊗k k of algebraic groups for some integer d ≥ 0. We say T splits d over a field extension K of k if there is a K-isomorphism T ⊗k K ≃ (Gm) ⊗k K. This paper is motivated from the following fundamental result. Theorem 1.1. Any algebraic k-torus T splits over ks. In other words, T splits over a finite separable field extension of k. This theorem is well known and it is stated and proved in the literature several times. Surprisingly, different authors choose their favorite proofs which are all quite different. As far as we know, the first proof is given by Takashi Ono [40, Proposition 1.2.1]. Armand Borel gives a different proof in his book Linear Algebraic Groups; see [3, Proposition 8.11]. In the second edition of his book Linear Algebraic Groups [49], T.A.
    [Show full text]
  • Algebraic Tori As Degenerations of Abelian Varieties
    Mathematika 64 (2018) 303–329 c 2018 University College London doi:10.1112/S0025579317000420 ALGEBRAIC TORI AS DEGENERATIONS OF ABELIAN VARIETIES KAI-WEN LAN AND JUNECUE SUH Abstract. We first show that every algebraic torus over any field, not necessarily split, can be realized as the special fiber of a semi-abelian scheme whose generic fiber is an absolutely simple abelian variety. Then we investigate which algebraic tori can be thus obtained, when we require the generic fiber of the semi-abelian scheme to carry non-trivial endomorphism structures. Contents 1 Introduction 303 2 One-dimensional case 305 3 Descent data for tori 307 4 Theory of degeneration 308 5 Conditions for degenerations 310 6 Proof of main theorem 316 7 Non-trivial endomorphisms 319 Acknowledgements 329 References 329 §1. Introduction. We start with a well-known example, the Dwork family of elliptic curves X 3 C Y 3 C Z 3 − 3t XY Z D 0 1 t over the projective line PQ over Q, where is the affine coordinate, with the identity section given by the point at infinity TX V Y V ZUDT1 V −1 V 0U. It also doubles as the modular curve of level 3. It has bad, semistable reduction at t D 1 and the third roots of unity. The corresponding Neron´ model has the split torus as the identity component of the fiber at t D 1 (because the equation becomes XYZ D 0), but at t D 1 we get a non-split torus T that sits in the short exact sequence / / p Norm / / ; 1 T ResQ.
    [Show full text]
  • Algebraic Tori: a Computational Approach
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 8-8-2017 12:00 AM Algebraic Tori: A Computational Approach Armin Jamshidpey The University of Western Ontario Supervisor Prof. Nicole Lemire The University of Western Ontario Joint Supervisor Prof. Eric Schost The University of Western Ontario Graduate Program in Mathematics A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Armin Jamshidpey 2017 Follow this and additional works at: https://ir.lib.uwo.ca/etd Recommended Citation Jamshidpey, Armin, "Algebraic Tori: A Computational Approach" (2017). Electronic Thesis and Dissertation Repository. 4692. https://ir.lib.uwo.ca/etd/4692 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract The rationality problem for algebraic tori is well known. It is known that any algebraic torus is unirational over its field of definition. The first purpose of this work is to solve rational- ity problem for 5 dimensional stably rational algebraic tori with an indecomposable character lattice. In order to do so, we have studied the associated character lattices of the mentioned algebraic tori. For each character lattice L, either we see the lattice as an associated lattice to a root system (of which rationality of its corresponding algebraic torus is known) or we find a reduced component of L so that we can relate rationality of the associated algebraic torus to lower dimensions.
    [Show full text]
  • Matrix Lie Groups
    Maths Seminar 2007 MATRIX LIE GROUPS Claudiu C Remsing Dept of Mathematics (Pure and Applied) Rhodes University Grahamstown 6140 26 September 2007 RhodesUniv CCR 0 Maths Seminar 2007 TALK OUTLINE 1. What is a matrix Lie group ? 2. Matrices revisited. 3. Examples of matrix Lie groups. 4. Matrix Lie algebras. 5. A glimpse at elementary Lie theory. 6. Life beyond elementary Lie theory. RhodesUniv CCR 1 Maths Seminar 2007 1. What is a matrix Lie group ? Matrix Lie groups are groups of invertible • matrices that have desirable geometric features. So matrix Lie groups are simultaneously algebraic and geometric objects. Matrix Lie groups naturally arise in • – geometry (classical, algebraic, differential) – complex analyis – differential equations – Fourier analysis – algebra (group theory, ring theory) – number theory – combinatorics. RhodesUniv CCR 2 Maths Seminar 2007 Matrix Lie groups are encountered in many • applications in – physics (geometric mechanics, quantum con- trol) – engineering (motion control, robotics) – computational chemistry (molecular mo- tion) – computer science (computer animation, computer vision, quantum computation). “It turns out that matrix [Lie] groups • pop up in virtually any investigation of objects with symmetries, such as molecules in chemistry, particles in physics, and projective spaces in geometry”. (K. Tapp, 2005) RhodesUniv CCR 3 Maths Seminar 2007 EXAMPLE 1 : The Euclidean group E (2). • E (2) = F : R2 R2 F is an isometry . → | n o The vector space R2 is equipped with the standard Euclidean structure (the “dot product”) x y = x y + x y (x, y R2), • 1 1 2 2 ∈ hence with the Euclidean distance d (x, y) = (y x) (y x) (x, y R2).
    [Show full text]
  • LECTURE 12: LIE GROUPS and THEIR LIE ALGEBRAS 1. Lie
    LECTURE 12: LIE GROUPS AND THEIR LIE ALGEBRAS 1. Lie groups Definition 1.1. A Lie group G is a smooth manifold equipped with a group structure so that the group multiplication µ : G × G ! G; (g1; g2) 7! g1 · g2 is a smooth map. Example. Here are some basic examples: • Rn, considered as a group under addition. • R∗ = R − f0g, considered as a group under multiplication. • S1, Considered as a group under multiplication. • Linear Lie groups GL(n; R), SL(n; R), O(n) etc. • If M and N are Lie groups, so is their product M × N. Remarks. (1) (Hilbert's 5th problem, [Gleason and Montgomery-Zippin, 1950's]) Any topological group whose underlying space is a topological manifold is a Lie group. (2) Not every smooth manifold admits a Lie group structure. For example, the only spheres that admit a Lie group structure are S0, S1 and S3; among all the compact 2 dimensional surfaces the only one that admits a Lie group structure is T 2 = S1 × S1. (3) Here are two simple topological constraints for a manifold to be a Lie group: • If G is a Lie group, then TG is a trivial bundle. n { Proof: We identify TeG = R . The vector bundle isomorphism is given by φ : G × TeG ! T G; φ(x; ξ) = (x; dLx(ξ)) • If G is a Lie group, then π1(G) is an abelian group. { Proof: Suppose α1, α2 2 π1(G). Define α : [0; 1] × [0; 1] ! G by α(t1; t2) = α1(t1) · α2(t2). Then along the bottom edge followed by the right edge we have the composition α1 ◦ α2, where ◦ is the product of loops in the fundamental group, while along the left edge followed by the top edge we get α2 ◦ α1.
    [Show full text]
  • Lie Group and Geometry on the Lie Group SL2(R)
    INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR Lie group and Geometry on the Lie Group SL2(R) PROJECT REPORT – SEMESTER IV MOUSUMI MALICK 2-YEARS MSc(2011-2012) Guided by –Prof.DEBAPRIYA BISWAS Lie group and Geometry on the Lie Group SL2(R) CERTIFICATE This is to certify that the project entitled “Lie group and Geometry on the Lie group SL2(R)” being submitted by Mousumi Malick Roll no.-10MA40017, Department of Mathematics is a survey of some beautiful results in Lie groups and its geometry and this has been carried out under my supervision. Dr. Debapriya Biswas Department of Mathematics Date- Indian Institute of Technology Khargpur 1 Lie group and Geometry on the Lie Group SL2(R) ACKNOWLEDGEMENT I wish to express my gratitude to Dr. Debapriya Biswas for her help and guidance in preparing this project. Thanks are also due to the other professor of this department for their constant encouragement. Date- place-IIT Kharagpur Mousumi Malick 2 Lie group and Geometry on the Lie Group SL2(R) CONTENTS 1.Introduction ................................................................................................... 4 2.Definition of general linear group: ............................................................... 5 3.Definition of a general Lie group:................................................................... 5 4.Definition of group action: ............................................................................. 5 5. Definition of orbit under a group action: ...................................................... 5 6.1.The general linear
    [Show full text]
  • Underlying Varieties and Group Structures 3
    UNDERLYING VARIETIES AND GROUP STRUCTURES VLADIMIR L. POPOV Abstract. Starting with exploration of the possibility to present the underlying variety of an affine algebraic group in the form of a product of some algebraic varieties, we then explore the naturally arising problem as to what extent the group variety of an algebraic group determines its group structure. 1. Introduction. This paper arose from a short preprint [16] and is its extensive extension. As starting point of [14] served the question of B. Kunyavsky [10] about the validity of the statement, which is for- mulated below as Corollary of Theorem 1. This statement concerns the possibility to present the underlying variety of a connected reductive algebraic group in the form of a product of some special algebraic va- rieties. Sections 2, 3 make up the content of [16], where the possibility of such presentations is explored. For some of them, in Theorem 1 is proved their existence, and in Theorems 2–5, on the contrary, their non-existence. Theorem 1 shows that there are non-isomorphic reductive groups whose underlying varieties are isomorphic. In Sections 4–10, we explore the problem, naturally arising in connection with this, as to what ex- tent the underlying variety of an algebraic group determines its group structure. In Theorems 6–8, it is shown that some group properties (dimension of unipotent radical, reductivity, solvability, unipotency, arXiv:2105.12861v1 [math.AG] 26 May 2021 toroidality in the sense of Rosenlicht) are equivalent to certain geomet- ric properties of the underlying group variety. Theorem 8 generalizes to solvable groups M.
    [Show full text]
  • Matrix Lie Groups and Their Lie Algebras
    Matrix Lie groups and their Lie algebras Alen Alexanderian∗ Abstract We discuss matrix Lie groups and their corresponding Lie algebras. Some common examples are provided for purpose of illustration. 1 Introduction The goal of these brief note is to provide a quick introduction to matrix Lie groups which are a special class of abstract Lie groups. Study of matrix Lie groups is a fruitful endeavor which allows one an entry to theory of Lie groups without requiring knowl- edge of differential topology. After all, most interesting Lie groups turn out to be matrix groups anyway. An abstract Lie group is defined to be a group which is also a smooth manifold, where the group operations of multiplication and inversion are also smooth. We provide a much simple definition for a matrix Lie group in Section 4. Showing that a matrix Lie group is in fact a Lie group is discussed in standard texts such as [2]. We also discuss Lie algebras [1], and the computation of the Lie algebra of a Lie group in Section 5. We will compute the Lie algebras of several well known Lie groups in that section for the purpose of illustration. 2 Notation Let V be a vector space. We denote by gl(V) the space of all linear transformations on V. If V is a finite-dimensional vector space we may put an arbitrary basis on V and identify elements of gl(V) with their matrix representation. The following define various classes of matrices on Rn: ∗The University of Texas at Austin, USA. E-mail: [email protected] Last revised: July 12, 2013 Matrix Lie groups gl(n) : the space of n
    [Show full text]
  • 1:34 Pm April 11, 2013 Red.Tex
    1:34 p.m. April 11, 2013 Red.tex The structure of reductive groups Bill Casselman University of British Columbia, Vancouver [email protected] An algebraic group defined over F is an algebraic variety G with group operations specified in algebraic terms. For example, the group GLn is the subvariety of (n + 1) × (n + 1) matrices A 0 0 a with determinant det(A) a = 1. The matrix entries are well behaved functions on the group, here for 1 example a = det− (A). The formulas for matrix multiplication are certainly algebraic, and the inverse of a matrix A is its transpose adjoint times the inverse of its determinant, which are both algebraic. Formally, this means that we are given (a) an F •rational multiplication map G × G −→ G; (b) an F •rational inverse map G −→ G; (c) an identity element—i.e. an F •rational point of G. I’ll look only at affine algebraic groups (as opposed, say, to elliptic curves, which are projective varieties). In this case, the variety G is completely characterized by its affine ring AF [G], and the data above are respectively equivalent to the specification of (a’) an F •homomorphism AF [G] −→ AF [G] ⊗F AF [G]; (b’) an F •involution AF [G] −→ AF [G]; (c’) a distinguished homomorphism AF [G] −→ F . The first map expresses a coordinate in the product in terms of the coordinates of its terms. For example, in the case of GLn it takes xik −→ xij ⊗ xjk . j In addition, these data are subject to the group axioms. I’ll not say anything about the general theory of such groups, but I should say that in practice the specification of an algebraic group is often indirect—as a subgroup or quotient, say, of another simpler one.
    [Show full text]
  • What Does a Lie Algebra Know About a Lie Group?
    WHAT DOES A LIE ALGEBRA KNOW ABOUT A LIE GROUP? HOLLY MANDEL Abstract. We define Lie groups and Lie algebras and show how invariant vector fields on a Lie group form a Lie algebra. We prove that this corre- spondence respects natural maps and discuss conditions under which it is a bijection. Finally, we introduce the exponential map and use it to write the Lie group operation as a function on its Lie algebra. Contents 1. Introduction 1 2. Lie Groups and Lie Algebras 2 3. Invariant Vector Fields 3 4. Induced Homomorphisms 5 5. A General Exponential Map 8 6. The Campbell-Baker-Hausdorff Formula 9 Acknowledgments 10 References 10 1. Introduction Lie groups provide a mathematical description of many naturally-occuring sym- metries. Though they take a variety of shapes, Lie groups are closely linked to linear objects called Lie algebras. In fact, there is a direct correspondence between these two concepts: simply-connected Lie groups are isomorphic exactly when their Lie algebras are isomorphic, and every finite-dimensional real or complex Lie algebra occurs as the Lie algebra of a simply-connected Lie group. To put it another way, a simply-connected Lie group is completely characterized by the small collection n2(n−1) of scalars that determine its Lie bracket, no more than 2 numbers for an n-dimensional Lie group. In this paper, we introduce the basic Lie group-Lie algebra correspondence. We first define the concepts of a Lie group and a Lie algebra and demonstrate how a certain set of functions on a Lie group has a natural Lie algebra structure.
    [Show full text]
  • Lectures on Lie Groups Over Local Fields
    Lectures on Lie Groups over Local Fields Helge Gl¨ockner1 Abstract The goal of these notes is to provide an introduction to p-adic Lie groups and Lie groups over fields of Laurent series, with an emphasis on the dynamics of automorphisms and the specialization of Willis’ theory to this setting. In particular, we shall discuss the scale, tidy subgroups and contraction groups for automorphisms of Lie groups over local fields. Special attention is paid to the case of Lie groups over local fields of positive characteristic. Classification: Primary 22E20; Secondary 22D05, 22E35, 26E30, 37D10. Key words: Lie group, local field, ultrametric field, totally disconnected group, locally profinite group, Willis theory, tidy subgroup, contraction group, scale, Levi factor, invariant manifold, stable manifold, positive characteristic. Introduction Lie groups over local fields (notably p-adic Lie groups) are among those totally disconnected, locally compact groups which are both well accessible and arise frequently. For example, p-adic Lie groups play an important role in the theory of pro-p-groups (i.e., projective limits of finite p-groups), where they are called “analytic pro-p-groups.” In ground-breaking work in the 1960s, Michel Lazard obtained deep insights into the structure of analytic pro-p-groups and characterized them within the class of pro-p-groups [32] arXiv:0804.2234v5 [math.GR] 28 Dec 2016 (see [10] and [11] for later developments). It is possible to study Lie groups over local fields from various points of view and on various levels, taking more and more structure into account. At the most basic level, they can be considered as mere topological groups.
    [Show full text]
  • GVF NOTES/ ITAฯ BEN YAACOV, E.H. Contents 1. Continuous Logic 2 1.1
    GVF NOTES/ ITAÏ BEN YAACOV, E.H. Contents 1. Continuous logic 2 1.1. Ultraproducts 2 1.2. Formulas 2 2. Measure theory 3 2.7. Positive linear functionals 5 3. Valued fields 6 3.1. Generically stable types 6 3.2. Comparison of V“ with V an 6 3.4. The linear part of a generically stable type 6 3.6. valuative volumes and mixed volumes 7 3.9. Minkowski’s mixed volumes 9 4. Multiply valued fields 10 4.6. Topology on V ALF 12 4.7. Admissible measures 12 4.11. Induced structure on a subfield 13 4.12. Renormalization 13 4.19. Proper subvarieties 15 4.21. Extending valuations on subrings 15 4.26. Symmetric extensions 17 4.29. Heights 18 4.34. A criterion for globalization 18 4.35. GVF’s as continuous logic structures 18 4.38. Archimedean valuations 19 5. Classical GVF structures. 21 6. Conjectures 22 a 7. Gm-fullness and the GVF structure on K . 23 7.1. Axiomatizability of Gm-fullness. 24 8. Adelic canonical amalgamation 25 9. One variable 32 10. 1-types of height zero 33 10.1. Local case 34 10.2. The purely non-archimedean case 34 References 39 Date: January 26, 2016. 1 2 GVF NOTES/ ITAÏ BEN YAACOV, E.H. 1. Continuous logic A language consists of function and relation symbols as usual. A structure is a set (or a family of sets in the many-sorted situation) with function symbols and terms treated as usual. But the interpretation of a relation symbol R(x1; : : : ; xn) n is a function A ! R.
    [Show full text]