Strategies for Adaption to Sea Level Rise

Total Page:16

File Type:pdf, Size:1020Kb

Strategies for Adaption to Sea Level Rise Strategies for Adaptation to Sea Level Rise By J. Dronkers, J. T. E. Gilbert, L.W. Butler, J.J. Carey, J. Campbell, E. James , C. McKenzie, R. Misdorp, N. Quin, K.L. Ries, P.C. Schroder, J.R. Spradley, J.G. Titus, L. Vallianos, and J. von Dadelszen Coastal Zone Management Subgroup Intergovernmental Panel on Climate Change 1990 The following document can be cited as: J. Dronkers, J. T. E. Gilbert, L.W. Butler, J.J. Carey, J. Campbell, E. James , C. McKenzie, R. Misdorp, N. Quin, K.L. Ries, P.C. Schroder, J.R. Spradley, J.G. Titus, L. Vallianos, and J. von Dadelszen. 1990. STRATEGIES FOR ADAPTION TO SEA LEVEL RISE. Report of the IPCC Coastal Zone Management Subgroup: Intergovernmental Panel on Climate Change. Geneva: Intergovernmental Panel on Climate Change. The primary referring page for this document is http://papers.risingsea.net/IPCC-1990-Strategies-for-Adaption-to-Sea-Level-Rise.html Report Of The Coastal Management Subgroup STRATEGIES FOR ADAPTION TO SEA LEVEL RISE Adaptive responses: Intergovernmental Panel On Climate Change Response Strategies Working Group November, 1990 Report Of The Coastal Zone Management Subgroup STRATEGIES FOR ADAPTION TO SEA LEVEL RISE Intergovernmental Panel On Climate Change Response Strategies Working Group November, 1990 TABLE OF CONTENTS PREFACE (Chairmen) i ORGANIZATION OF THE CZM-WORK ii EXECUTIVE SUMMARY: CZMS iv CZM CHAIRMEN'S PROPOSALS FOR FUTURE ACTIVITIES viii 1. INTRODUCTION 1 2. ADAPTIVE RESPONSES 6 3. ENVIRONMENTAL IMPLICATIONS OF ADAPTIVE RESPONSES 9 4. ECONOMIC IMPLICATIONS 13 5. SOCIAL AND CULTURAL IMPLICATIONS 17 6. LEGAL AND INSTITUTIONAL IMPLICATIONS 19 7. PRIORITIES FOR ADAPTIVE RESPONSES 21 REFERENCES AND ENDNOTES 24 APPENDICES: A. EXECUTIVE SUMMARY: POLICYMAKERS RSWG 27 B. COMPENDIUM OF INFORMATION ON TECHNIQUES AND PRACTICES IN ADAPTIVE COASTAL STRATEGIES 35 C. LAWS AND POLICIES FOR COASTAL MANAGEMENT OF SOUTH PACIFIC COASTAL AND ISLAND STATES 61 D. A WORLD-WIDE COST ESTIMATE OF BASIC COASTAL PROTECTION MEASURES 67 E. ADAPTIVE OPTIONS IDENTIFIED BY CZM WORKSHOP PARTICIPANTS DURING A BRAINSTORMING SESSION 127 Acronyms: IPCC = Intergovernmental Panel on Climate Change RSWG = Response Strategies Working Group CZMS = Coastal Zone Management Subgroup Originally published November 1990 by the Intergovernmental Panel on Climate Change, Response Strategies Working Group PREFACE This report represents the first survey on a global scale climate forcing by 2030, sea level rise is predicted to of adaptive options for coastal areas in response to a accelerate during the next century. Therefore, possible acceleration of sea level rise and the preparation for adaption is required. implications of these options. The report provides general information on options for a range of coastal May we take this opportunity to express the hope that areas which cover large continental states to small this publication will be used as a guide in the coastal islands. development of comprehensive plans for management of the coastal areas. We wish to thank the core group Many hundreds of millions of people live in the and chapter authors and all those who have made this world's coastal areas, where they enjoy the richness effort possible. and beauty of the sea. The sea provides resources, links coastal cities and provides opportunities for The Chairmen of the IPCC-Coastal Zone Management trade. Subgroup On the other hand, the sea often threatens the J. Gilbert P. Vellinga inhabitants of the coastal areas, demanding its toll in New Zealand the Netherlands human and natural resources. Heavy storms, hurricanes, tsunamis and typhoons can batter the coastal areas, causing disaster and distress. It was common concern of the impacts of an acceleration in sea level rise which brought together delegates from some 70 countries in two workshops, where they shared their experiences in the vast range of coastal problems. During the plenary sessions and especially during the "small group" discussions, expert knowledge from across the globe was exchanged, potential impacts of an acceleration in sea level rise were assessed and possible response alternatives were discussed. These efforts provided the basis for this report. The authors are very much indebted to the workshop participants for the many valuable contributions and to the reviewers of this report. Additional work is required, however in order to provide more specific technical information, as requested by workshop participants, to assist developing countries in assessing their vulnerability to sea level rise and in managing their coastal areas to reduce their vulnerability. Included in the report is a proposal to provide that assistance to developing countries. It is important that coastal states begin preparations for adaptation to sea level rise, because there are opportunities to avoid adverse impacts by acting now. Moreover, even with adoption of strategies to stabilize i Report of the Coastal Zone Management Subgroup Strategies for Adaption to Sea Level Rise ORGANIZATION OF THE CZM-WORK financial implications. In 1988, the World Meteorological Organization and The first workshop was held in Miami, Florida, in the the United Nations Environment Programme jointly United States in November 1989 and the second in established the Intergovernmental Panel on Climate Perth, Australia, in February 1990. Representatives Change (IPCC) under the chairmanship of Professor from about 70 countries participated in the workshops B. Bolin of Sweden. The Panel established three (including 50 developing countries). Both workshops working groups: identified adaptive options and listed tasks deserving priority attention. The Science Working Group (chaired by the UK) to assess the available scientific The participants at the Miami Workshop listed the information on climate change. following tasks: The Impacts Working Group (chaired by the identify coastal areas, populations and USSR) to assess the environmental and socio- resources at risk economic impacts of climate change. develop global and regional research and The Response Strategies Working Group monitoring systems (RSWG) (chaired by the USA) to formulate develop public awareness of risks to coastal response strategies. resources encourage integrated coastal area and The RSWG established four Subgroups to carry out a resource management work plan for formulating response strategies. Two of avoid further stress on coastal areas the Subgroups examined options to limit global collect and disseminate relevant data climate change (Energy and Industry and Agriculture provide technical and financial assistance for and Forestry); two examined adaptive options (Coastal research and management of coastal areas and Zone Management and Resource Use Management). resources in developing countries In addition, the RSWG examined Educational, use country-specific studies to evaluate Technical, Economic, Financial and Legal available adaptive options implications of all the response strategies. The adopt a framework convention on climate executive summary of the Policymakers Summary change to facilitate cooperative efforts to limit Report of the RSWG is provided in Appendix A. This and/or adapt to climate change. executive summary is based on the findings of the IPCC Science and Impact Working Groups and sets The participants at the Perth Workshop listed the out the strategy measures for limitation and adaptation following tasks: for both the shorter and longer terms. improve knowledge and understanding of physical processes involved in climate change The Coastal Zone Management Subgroup (CZMS) develop global, regional and national (chaired by New Zealand and The Netherlands) in monitoring systems May 1989, received the following task: identify coastal areas and islands at risk "To provide information and recommendations to develop education, training and technology national and international policy centres, enabling transfer mechanisms to increase awareness decision making on: encourage and assist development of national, (a) coastal zone management strategies for regional and international response strategies the next 10-20 years; and, and coastal zone management plans (b) long term policies dealing with limitation pursue risk reducing strategies on a national and/or adaptation with respect to climate level change/sea level rise". develop techniques for mitigation through cost effective approaches for adaptation The CZMS adopted a work plan which included two take into consideration vulnerability, different workshops to generate information on available needs and capacities of countries in financing adaptive response options and their environmental, produce guidelines for selection of adaptive economic, social, cultural, legal, institutional and options for sustainable management of the ii Originally published November 1990 by the Intergovernmental Panel on Climate Change, Response Strategies Working Group coastal zone Coast, Jamaica, Japan, Kenya, Kiribati, Liberia, establish or strengthen within the United Maldives, Mauritius, Mexico, Micronesia Fed.St, The Nations existing mechanisms for information Netherlands, New Caledonia, New Zealand, Nigeria, dissemination Pakistan, Papua New Guinea, Philippines, Poland, recognize the need for international Portugal, Senegal, Seychelles, South Korea, Spain, Sri mobilization of funds to be allocated to Lanka, St. Pierre & Miq., St. Vincent & Gr., Thailand, countries impacted by climate change Tonga, Trinidad & Tobago, Tunesia, Turkey, Tuvalu, United Kingdom, USA, USSR,
Recommended publications
  • Lasting Coastal Hazards from Past Greenhouse Gas Emissions COMMENTARY Tony E
    COMMENTARY Lasting coastal hazards from past greenhouse gas emissions COMMENTARY Tony E. Wonga,1 The emission of greenhouse gases into Earth’satmo- 100% sphereisaby-productofmodernmarvelssuchasthe Extremely likely by 2073−2138 production of vast amounts of energy, heating and 80% cooling inhospitable environments to be amenable to human existence, and traveling great distances 60% Likely by 2064−2105 faster than our saddle-sore ancestors ever dreamed possible. However, these luxuries come at a price: 40% climate changes in the form of severe droughts, ex- Probability treme precipitation and temperatures, increased fre- 20% quency of flooding in coastal cities, global warming, RCP2.6 and sea-level rise (1, 2). Rising seas pose a severe risk RCP8.5 0% to coastal areas across the globe, with billions of 2020 2040 2060 2080 2100 2120 2140 US dollars in assets at risk and about 10% of the ’ Year when 50-cm sea-level rise world s population living within 10 m of sea level threshold is exceeded (3–5). The price of our emissions is not felt immedi- ately throughout the entire climate system, however, Fig. 1. Cumulative probability of exceeding 50 cm of sea-level rise by year (relative to the global mean sea because processes such as ice sheet melt and the level from 1986 to 2005). The yellow box denotes the expansion of warming ocean water act over the range of years after which exceedance is likely [≥66% course of centuries. Thus, even if all greenhouse probability (12)], where the left boundary follows a gas emissions immediately ceased, our past emis- business-as-usual emissions scenario (RCP8.5, red line) sions have already “locked in” some amount of con- and the right boundary follows a low-emissions scenario (RCP2.6, blue line).
    [Show full text]
  • Management of Coastal Erosion by Creating Large-Scale and Small-Scale Sediment Cells
    COASTAL EROSION CONTROL BASED ON THE CONCEPT OF SEDIMENT CELLS by L. C. van Rijn, www.leovanrijn-sediment.com, March 2013 1. Introduction Nearly all coastal states have to deal with the problem of coastal erosion. Coastal erosion and accretion has always existed and these processes have contributed to the shaping of the present coastlines. However, coastal erosion now is largely intensified due to human activities. Presently, the total coastal area (including houses and buildings) lost in Europe due to marine erosion is estimated to be about 15 km2 per year. The annual cost of mitigation measures is estimated to be about 3 billion euros per year (EUROSION Study, European Commission, 2004), which is not acceptable. Although engineering projects are aimed at solving the erosion problems, it has long been known that these projects can also contribute to creating problems at other nearby locations (side effects). Dramatic examples of side effects are presented by Douglas et al. (The amount of sand removed from America’s beaches by engineering works, Coastal Sediments, 2003), who state that about 1 billion m3 (109 m3) of sand are removed from the beaches of America by engineering works during the past century. The EUROSION study (2004) recommends to deal with coastal erosion by restoring the overall sediment balance on the scale of coastal cells, which are defined as coastal compartments containing the complete cycle of erosion, deposition, sediment sources and sinks and the transport paths involved. Each cell should have sufficient sediment reservoirs (sources of sediment) in the form of buffer zones between the land and the sea and sediment stocks in the nearshore and offshore coastal zones to compensate by natural or artificial processes (nourishment) for sea level rise effects and human-induced erosional effects leading to an overall favourable sediment status.
    [Show full text]
  • Managing the Risks: International Level and 7 Integration Across Scales
    Managing the Risks: International Level and 7 Integration across Scales Coordinating Lead Authors: Ian Burton (Canada), O. Pauline Dube (Botswana) Lead Authors: Diarmid Campbell-Lendrum (Switzerland), Ian Davis (UK), Richard J.T. Klein (Sweden), Joanne Linnerooth-Bayer (USA), Apurva Sanghi (USA), Ferenc Toth (Austria) Review Editors: Joy Jacqueline Pereira (Malaysia), Linda Sygna (Norway) Contributing Authors: Neil Adger (UK), Thea Dickinson (Canada), Kris Ebi (USA), Md. Tarik ul Islam (Canada / Bangladesh), Clarisse Kehler Siebert (Sweden) This chapter should be cited as: Burton, I., O.P. Dube, D. Campbell-Lendrum, I. Davis, R.J.T. Klein, J. Linnerooth-Bayer, A. Sanghi, and F. Toth, 2012: Managing the risks: international level and integration across scales. In: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation [Field, C.B., V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, K.J. Mach, G.-K. Plattner, S.K. Allen, M. Tignor, and P.M. Midgley (eds.)]. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, UK, and New York, NY, USA, pp. 393-435. 393 Managing the Risks: International Level and Integration across Scales Chapter 7 Table of Contents Executive Summary .................................................................................................................................396 7.1. The International Level of Risk Management..........................................................................398
    [Show full text]
  • Projected Sea Level Rise and Its Impact on Barrier Islands Along the East Coast, USA Cara Johnson Gettysburg College
    Student Publications Student Scholarship Spring 2019 Life without the Beach: Projected Sea Level Rise and its Impact on Barrier Islands Along the East Coast, USA Cara Johnson Gettysburg College Gabrielle N. Kase Gettysburg College Samantha B. Pfeffer Gettysburg College Follow this and additional works at: https://cupola.gettysburg.edu/student_scholarship Part of the Environmental Indicators and Impact Assessment Commons, and the Water Resource Management Commons Share feedback about the accessibility of this item. Johnson, Cara; Kase, Gabrielle N.; and Pfeffer, Samantha B., "Life without the Beach: Projected Sea Level Rise and its Impact on Barrier Islands Along the East Coast, USA" (2019). Student Publications. 707. https://cupola.gettysburg.edu/student_scholarship/707 This is the author's version of the work. This publication appears in Gettysburg College's institutional repository by permission of the copyright owner for personal use, not for redistribution. Cupola permanent link: https://cupola.gettysburg.edu/student_scholarship/ 707 This open access student research paper is brought to you by The uC pola: Scholarship at Gettysburg College. It has been accepted for inclusion by an authorized administrator of The uC pola. For more information, please contact [email protected]. Life without the Beach: Projected Sea Level Rise and its Impact on Barrier Islands Along the East Coast, USA Abstract As climate change is becoming a global issue, the impact of sea level rise is increasingly becoming a threat to humans, wildlife, infrastructure, and ecosystems. To evaluate the effects of sea level rise on barrier islands and coastal regions, we studied future projections of sea level rise at Ocean City and Assateague Island, Maryland.
    [Show full text]
  • Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future
    Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future As more and more states are incorporating projections of sea-level rise into coastal planning efforts, the states of California, Oregon, and Washington asked the National Research Council to project sea-level rise along their coasts for the years 2030, 2050, and 2100, taking into account the many factors that affect sea-level rise on a local scale. The projections show a sharp distinction at Cape Mendocino in northern California. South of that point, sea-level rise is expected to be very close to global projections; north of that point, sea-level rise is projected to be less than global projections because seismic strain is pushing the land upward. ny significant sea-level In compliance with a rise will pose enor- 2008 executive order, mous risks to the California state agencies have A been incorporating projec- valuable infrastructure, devel- opment, and wetlands that line tions of sea-level rise into much of the 1,600 mile shore- their coastal planning. This line of California, Oregon, and study provides the first Washington. For example, in comprehensive regional San Francisco Bay, two inter- projections of the changes in national airports, the ports of sea level expected in San Francisco and Oakland, a California, Oregon, and naval air station, freeways, Washington. housing developments, and sports stadiums have been Global Sea-Level Rise built on fill that raised the land Following a few thousand level only a few feet above the years of relative stability, highest tides. The San Francisco International Airport (center) global sea level has been Sea-level change is linked and surrounding areas will begin to flood with as rising since the late 19th or to changes in the Earth’s little as 40 cm (16 inches) of sea-level rise, a early 20th century, when climate.
    [Show full text]
  • 1 the Influence of Groyne Fields and Other Hard Defences on the Shoreline Configuration
    1 The Influence of Groyne Fields and Other Hard Defences on the Shoreline Configuration 2 of Soft Cliff Coastlines 3 4 Sally Brown1*, Max Barton1, Robert J Nicholls1 5 6 1. Faculty of Engineering and the Environment, University of Southampton, 7 University Road, Highfield, Southampton, UK. S017 1BJ. 8 9 * Sally Brown ([email protected], Telephone: +44(0)2380 594796). 10 11 Abstract: Building defences, such as groynes, on eroding soft cliff coastlines alters the 12 sediment budget, changing the shoreline configuration adjacent to defences. On the 13 down-drift side, the coastline is set-back. This is often believed to be caused by increased 14 erosion via the ‘terminal groyne effect’, resulting in rapid land loss. This paper examines 15 whether the terminal groyne effect always occurs down-drift post defence construction 16 (i.e. whether or not the retreat rate increases down-drift) through case study analysis. 17 18 Nine cases were analysed at Holderness and Christchurch Bay, England. Seven out of 19 nine sites experienced an increase in down-drift retreat rates. For the two remaining sites, 20 retreat rates remained constant after construction, probably as a sediment deficit already 21 existed prior to construction or as sediment movement was restricted further down-drift. 22 For these two sites, a set-back still evolved, leading to the erroneous perception that a 23 terminal groyne effect had developed. Additionally, seven of the nine sites developed a 24 set back up-drift of the initial groyne, leading to the defended sections of coast acting as 1 25 a hard headland, inhabiting long-shore drift.
    [Show full text]
  • Extinction Is Inevitable in the Globalized World
    Extinction is inevitable in the globalized world Aishwarya Maheshwari1 1Banda University of Agriculture and Technology July 23, 2020 Abstract No abstract - Extinction is a natural process and every species on this planet has an expiration date except Homo sapiens because we are extending our expiry at the cost of other species (Brook and Alroy 2017, Pimm et al. 2014, Ceballos et al. 2015). In contrast, biodiversity loss is not natural but a global issue and it is not caused by the globalization, but as a result of human activities at the global level (Pimm et al. 2014, Ceballos et al. 2015). Eventually, severe biodiversity losses lead to anthropogenic die-off and extinction of naturally occurring species (Pimm et al. 2014, Ceballos et al. 2015, DeVos et al. 2014). The previous, current and future extinction rates have been estimated using a variety of measures and their estimation methodologies vary (to be between 100 to 10,000 times higher than the natural extinction rate) but they clearly demonstrate that current extinction rates are far above than the \background" rates (Brook and Alroy 2017, Pimm et al. 2014, Ceballos et al. 2015, DeVos et al. 2014, Lamkin and Miller 2016). Aggravatedly, population declines and extirpations are appearing to be more graving than species extinction and negative cascading consequences on ecosystem services (Ceballosa et al. 2020). Substantial information is available on over-exploitation of natural resources by humans in the globalization perspective (Ceballosa et al. 2020, Millennium Ecosystem Assessment, 2005, Groom et al. 2006, Ehrnfeld 2003) and we have lost an estimated US$ 4-20 trillion per year in ecosystem services owing to land-cover change and US$ 6-11 trillion per year from land degradation during 1997 to 2011 (OECD 2019).
    [Show full text]
  • Causes of Sea Level Rise
    FACT SHEET Causes of Sea OUR COASTAL COMMUNITIES AT RISK Level Rise What the Science Tells Us HIGHLIGHTS From the rocky shoreline of Maine to the busy trading port of New Orleans, from Roughly a third of the nation’s population historic Golden Gate Park in San Francisco to the golden sands of Miami Beach, lives in coastal counties. Several million our coasts are an integral part of American life. Where the sea meets land sit some of our most densely populated cities, most popular tourist destinations, bountiful of those live at elevations that could be fisheries, unique natural landscapes, strategic military bases, financial centers, and flooded by rising seas this century, scientific beaches and boardwalks where memories are created. Yet many of these iconic projections show. These cities and towns— places face a growing risk from sea level rise. home to tourist destinations, fisheries, Global sea level is rising—and at an accelerating rate—largely in response to natural landscapes, military bases, financial global warming. The global average rise has been about eight inches since the centers, and beaches and boardwalks— Industrial Revolution. However, many U.S. cities have seen much higher increases in sea level (NOAA 2012a; NOAA 2012b). Portions of the East and Gulf coasts face a growing risk from sea level rise. have faced some of the world’s fastest rates of sea level rise (NOAA 2012b). These trends have contributed to loss of life, billions of dollars in damage to coastal The choices we make today are critical property and infrastructure, massive taxpayer funding for recovery and rebuild- to protecting coastal communities.
    [Show full text]
  • Well Below 2 C: Mitigation Strategies for Avoiding Dangerous To
    PERSPECTIVE Well below 2 °C: Mitigation strategies for avoiding dangerous to catastrophic climate changes PERSPECTIVE Yangyang Xua,1 and Veerabhadran Ramanathanb,1 Edited by Susan Solomon, Massachusetts Institute of Technology, Cambridge, MA, and approved August 11, 2017 (received for review November 9, 2016) The historic Paris Agreement calls for limiting global temperature rise to “well below 2 °C.” Because of uncertainties in emission scenarios, climate, and carbon cycle feedback, we interpret the Paris Agree- ment in terms of three climate risk categories and bring in considerations of low-probability (5%) high- impact (LPHI) warming in addition to the central (∼50% probability) value. The current risk category of dangerous warming is extended to more categories, which are defined by us here as follows: >1.5 °C as dangerous; >3 °C as catastrophic; and >5 °C as unknown, implying beyond catastrophic, including existential threats. With unchecked emissions, the central warming can reach the dangerous level within three decades, with the LPHI warming becoming catastrophic by 2050. We outline a three- lever strategy to limit the central warming below the dangerous level and the LPHI below the cata- strophic level, both in the near term (<2050) and in the long term (2100): the carbon neutral (CN) lever to achieve zero net emissions of CO2, the super pollutant (SP) lever to mitigate short-lived climate pollutants, and the carbon extraction and sequestration (CES) lever to thin the atmospheric CO2 blan- ket. Pulling on both CN and SP levers and bending the emissions curve by 2020 can keep the central warming below dangerous levels. To limit the LPHI warming below dangerous levels, the CES lever must be pulled as well to extract as much as 1 trillion tons of CO2 before 2100 to both limit the preindustrial to 2100 cumulative net CO2 emissions to 2.2 trillion tons and bend the warming curve to a cooling trend.
    [Show full text]
  • Guidance for Flood Risk Analysis and Mapping
    Guidance for Flood Risk Analysis and Mapping Coastal Notations, Acronyms, and Glossary of Terms May 2016 Requirements for the Federal Emergency Management Agency (FEMA) Risk Mapping, Assessment, and Planning (Risk MAP) Program are specified separately by statute, regulation, or FEMA policy (primarily the Standards for Flood Risk Analysis and Mapping). This document provides guidance to support the requirements and recommends approaches for effective and efficient implementation. Alternate approaches that comply with all requirements are acceptable. For more information, please visit the FEMA Guidelines and Standards for Flood Risk Analysis and Mapping webpage (www.fema.gov/guidelines-and-standards-flood-risk-analysis-and- mapping). Copies of the Standards for Flood Risk Analysis and Mapping policy, related guidance, technical references, and other information about the guidelines and standards development process are all available here. You can also search directly by document title at www.fema.gov/library. Coastal Notation, Acronyms, and Glossary of Terms May 2016 Guidance Document 66 Page i Document History Affected Section or Date Description Subsection Initial version of new transformed guidance. The content was derived from the Guidelines and Specifications for Flood Hazard Mapping Partners, Procedure Memoranda, First Publication May 2016 and/or Operating Guidance documents. It has been reorganized and is being published separately from the standards. Coastal Notation, Acronyms, and Glossary of Terms May 2016 Guidance Document 66
    [Show full text]
  • OCEAN WARMING • the Ocean Absorbs Most of the Excess Heat from Greenhouse Gas Emissions, Leading to Rising Ocean Temperatures
    NOVEMBER 2017 OCEAN WARMING • The ocean absorbs most of the excess heat from greenhouse gas emissions, leading to rising ocean temperatures. • Increasing ocean temperatures affect marine species and ecosystems. Rising temperatures cause coral bleaching and the loss of breeding grounds for marine fishes and mammals. • Rising ocean temperatures also affect the benefits humans derive from the ocean – threatening food security, increasing the prevalence of diseases and causing more extreme weather events and the loss of coastal protection. • Achieving the mitigation targets set by the Paris Agreement on climate change and limiting the global average temperature increase to well below 2°C above pre-industrial levels is crucial to prevent the massive, irreversible impacts of ocean warming on marine ecosystems and their services. • Establishing marine protected areas and putting in place adaptive measures, such as precautionary catch limits to prevent overfishing, can protect ocean ecosystems and shield humans from the effects of ocean warming. The distribution of excess heat in the ocean is not What is the issue? uniform, with the greatest ocean warming occurring in The ocean absorbs vast quantities of heat as a result the Southern Hemisphere and contributing to the of increased concentrations of greenhouse gases in subsurface melting of Antarctic ice shelves. the atmosphere, mainly from fossil fuel consumption. The Fifth Assessment Report published by the Intergovernmental Panel on Climate Change (IPCC) in 2013 revealed that the ocean had absorbed more than 93% of the excess heat from greenhouse gas emissions since the 1970s. This is causing ocean temperatures to rise. Data from the US National Oceanic and Atmospheric Administration (NOAA) shows that the average global sea surface temperature – the temperature of the upper few metres of the ocean – has increased by approximately 0.13°C per decade over the past 100 years.
    [Show full text]
  • Water Stress and Human Migration: a Global, Georeferenced Review of Empirical Research
    11 11 11 Water stress and human migration: a global, georeferenced review of empirical research Water stress and human migration: a global, georeferenced review of empirical research review and human migration: a global, georeferenced stress Water Migration is a universal and common process and is linked to development in multiple ways. When mainstreamed in broader frameworks, especially in development planning, migration can benefit the communities at both origin and destination. Migrants can and do support their home communities through remittances as well as the knowledge and skills they acquire in the process while they can contribute to the host communities’ development. Yet, the poor and low-skilled face the biggest challenges and form the majority of those subject to migration that happen on involuntary and irregular basis. Access to water meanwhile, provides a basis for human Water stress and human migration: livelihoods. Culture, and progress studies have found that water stress undermines societies’ place-specific livelihood systems and strategies which, in turn, induces new patterns of human a global, georeferenced review migration. Water stress is a circumstance in which the demand for water is not met due to a decline in availability and/or quality and is often discussed in terms of water scarcity, of empirical research drought, long dry spells, irrigation water shortages, changing seasonality and weather extremes. The aim of this review is to synthesize knowledge on the impact of increasing water stress on human migration. ISBN 978-92-5-130426-6 ISSN 1729-0554 FAO 9 789251 304266 I8867EN/1/03.18 11 LAND AND 11 WATER Water stress and DISCUSSION PAPER 11 human migration: 11 Water stress and human migration: a global, a global, georeferenced georeferenced review review of empirical of empirical research Water stress and human migration: a global, georeferenced review of empirical research review and human migration: a global, georeferenced stress Water Migration is a universal and common process and is linked to research development in multiple ways.
    [Show full text]