Common Carp (Cyprinus Carpio) ERSS
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Status of the Endangered Freshwater Fishes in China and the Analysis of the Endangered Causes Institute of Hydrobiology
The status of the endangered freshwater fishes in China and The analysis of the endangered causes HE Shunping, CIIEN Yiyu Institute of Hydrobiology, CAS, Wuhan, ITubei Province, 430072 Abstract More than 800 species of freshwater fishes are precious biological resources in inland water system of China. Among them, there are a great number of endemic and precious group, and a lot of monotypic genera and species. Recently, owing to the synthetic effects of the natural and human-beings, many of these fishes gradually became endangered. The preliminary statistic result indicates that 92 species are endangered fishes and account for 10% of the total freshwater fishes in China. For the purpose of protection of the biodiversity of fishes, it is necessary to analyse these causes which have led the fishes to become endangered. This report could be used as a scientific reference for researching and saving the endemic precious freshwater fishes in China. Key words Endangered freshwater fishes, Endangered causes, China In the process of the evolution of living things, along with the origin of life, the extinction of life also existed. In the long_ life history, the speciation and the extinction of living things often keep a relative balance. As time goes on, especially after by the impact of human beings activity of production and life, the pattern of the biodiversity were changed or damaged, more or less. At last, in the modern society, human beings activity not only accelerate the progress of society and the development of economy, but also, as a special species, become the source of disturbing_ to other species. -
Phylogeny Classification Additional Readings Clupeomorpha and Ostariophysi
Teleostei - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/teleostei/680400 (http://www.accessscience.com/) Article by: Boschung, Herbert Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama. Gardiner, Brian Linnean Society of London, Burlington House, Piccadilly, London, United Kingdom. Publication year: 2014 DOI: http://dx.doi.org/10.1036/1097-8542.680400 (http://dx.doi.org/10.1036/1097-8542.680400) Content Morphology Euteleostei Bibliography Phylogeny Classification Additional Readings Clupeomorpha and Ostariophysi The most recent group of actinopterygians (rayfin fishes), first appearing in the Upper Triassic (Fig. 1). About 26,840 species are contained within the Teleostei, accounting for more than half of all living vertebrates and over 96% of all living fishes. Teleosts comprise 517 families, of which 69 are extinct, leaving 448 extant families; of these, about 43% have no fossil record. See also: Actinopterygii (/content/actinopterygii/009100); Osteichthyes (/content/osteichthyes/478500) Fig. 1 Cladogram showing the relationships of the extant teleosts with the other extant actinopterygians. (J. S. Nelson, Fishes of the World, 4th ed., Wiley, New York, 2006) 1 of 9 10/7/2015 1:07 PM Teleostei - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/teleostei/680400 Morphology Much of the evidence for teleost monophyly (evolving from a common ancestral form) and relationships comes from the caudal skeleton and concomitant acquisition of a homocercal tail (upper and lower lobes of the caudal fin are symmetrical). This type of tail primitively results from an ontogenetic fusion of centra (bodies of vertebrae) and the possession of paired bracing bones located bilaterally along the dorsal region of the caudal skeleton, derived ontogenetically from the neural arches (uroneurals) of the ural (tail) centra. -
Page 1 F Fish Pathology, 46 (3), 87–90, 2011. 9 © 2011 the Japanese
魚病研究 Fish Pathology, 46 (3), 87–90, 2011. 9 © 2011 The Japanese Society of Fish Pathology Blood Fluke Infection of Cage 2 to 10 months (average of 6 months) fed with highly fat content fish, mainly chub mackerel Scomber japonicus, R eared Atlantic Bluefin Tuna A tla n tic mackerel S c o mber scombru s , European pil- Thunnus thynnus in chard C lupea pilchartus and round sardinella S a rd in e lla aurita. After this period, tunas are sacrificed in the Wes t Mediterranean floating cages a n d immediately commercialized fresh or frozen. R ocio Ruiz de Ybañez1, José Peñalver2, Among pathological problems reported in reared C arlos Martínez-Carrasco1, Laura del Río1, tuna, a blood fluke Cardicola forsteri (Digenea: 2 1 Aporocotylidae), has been pointed out as a significant Emilio María Dolores , Eduardo Berriatua risk of tuna health1). Initially identified in the Australian 1 and Pilar Muñoz * population of farmed southern BFT Thunnus maccoyii 2), this blood fluke was later reported in Atlantic BFT3–5), 1 Animal Health Department, University of Murcia, being the only one aporocotylid repo rte d s o fa r in th is Murcia 30100, Spain 2 species. Aporocotylids are parasites of marine and Livestock and Fishery Departmen t, Murcia 6) fre s h wate r fis h . Most species are located in the R egional Gov e rn men t, Murcia 30201, heart, bulbus arteriosus, ventral aorta or branchial ves- S p a in sels, although the cephalic or dorsal vessels are not uncommon habitats7). Once established, adult flukes (Recieved November 24, 2010) lay eggs whic h tra v e l to th e g ills where they lodge. -
The Evolution of the Placenta Drives a Shift in Sexual Selection in Livebearing Fish
LETTER doi:10.1038/nature13451 The evolution of the placenta drives a shift in sexual selection in livebearing fish B. J. A. Pollux1,2, R. W. Meredith1,3, M. S. Springer1, T. Garland1 & D. N. Reznick1 The evolution of the placenta from a non-placental ancestor causes a species produce large, ‘costly’ (that is, fully provisioned) eggs5,6, gaining shift of maternal investment from pre- to post-fertilization, creating most reproductive benefits by carefully selecting suitable mates based a venue for parent–offspring conflicts during pregnancy1–4. Theory on phenotype or behaviour2. These females, however, run the risk of mat- predicts that the rise of these conflicts should drive a shift from a ing with genetically inferior (for example, closely related or dishonestly reliance on pre-copulatory female mate choice to polyandry in conjunc- signalling) males, because genetically incompatible males are generally tion with post-zygotic mechanisms of sexual selection2. This hypoth- not discernable at the phenotypic level10. Placental females may reduce esis has not yet been empirically tested. Here we apply comparative these risks by producing tiny, inexpensive eggs and creating large mixed- methods to test a key prediction of this hypothesis, which is that the paternity litters by mating with multiple males. They may then rely on evolution of placentation is associated with reduced pre-copulatory the expression of the paternal genomes to induce differential patterns of female mate choice. We exploit a unique quality of the livebearing fish post-zygotic maternal investment among the embryos and, in extreme family Poeciliidae: placentas have repeatedly evolved or been lost, cases, divert resources from genetically defective (incompatible) to viable creating diversity among closely related lineages in the presence or embryos1–4,6,11. -
FIELD GUIDE to WARMWATER FISH DISEASES in CENTRAL and EASTERN EUROPE, the CAUCASUS and CENTRAL ASIA Cover Photographs: Courtesy of Kálmán Molnár and Csaba Székely
SEC/C1182 (En) FAO Fisheries and Aquaculture Circular I SSN 2070-6065 FIELD GUIDE TO WARMWATER FISH DISEASES IN CENTRAL AND EASTERN EUROPE, THE CAUCASUS AND CENTRAL ASIA Cover photographs: Courtesy of Kálmán Molnár and Csaba Székely. FAO Fisheries and Aquaculture Circular No. 1182 SEC/C1182 (En) FIELD GUIDE TO WARMWATER FISH DISEASES IN CENTRAL AND EASTERN EUROPE, THE CAUCASUS AND CENTRAL ASIA By Kálmán Molnár1, Csaba Székely1 and Mária Láng2 1Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary 2 National Food Chain Safety Office – Veterinary Diagnostic Directorate, Budapest, Hungary FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Ankara, 2019 Required citation: Molnár, K., Székely, C. and Láng, M. 2019. Field guide to the control of warmwater fish diseases in Central and Eastern Europe, the Caucasus and Central Asia. FAO Fisheries and Aquaculture Circular No.1182. Ankara, FAO. 124 pp. Licence: CC BY-NC-SA 3.0 IGO The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. -
Body Shape Change in Common Carp, Cyprinus Carpio Var. Sazan (Teleostei: Cyprinidae), During Early Development Using Geometric Morphometric Method
Iran. J. Ichthyol. (September 2016), 3(3): 210–217 Received: May 7, 2016 © 2016 Iranian Society of Ichthyology Accepted: August 30, 2016 P-ISSN: 2383-1561; E-ISSN: 2383-0964 doi: 10.7508/iji.2016.02.015 http://www.ijichthyol.org Body shape change in Common carp, Cyprinus carpio var. Sazan (Teleostei: Cyprinidae), during early development using geometric morphometric method Fatemeh MOSHAYEDI1, Soheil EAGDERI*1, Masoud IRI2 1Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, P.O. Box 4111, Iran. 2Fisheries Department, Agricultural and Natural Resources Faculty, Gonbad kavoos University, Gonbad kavoos, Iran. * . Email: [email protected] Abstract: This research was conducted to study the body shape changes in common carp, Cyprinus carpio var. Sazan during early developmental stages using landmark- based geometric morphometric method. For this purpose, a total number of 210 larvae from hatching time till 55 days post hatching (dph) were sampled. For extracting body shape data, the right side of specimens was photographed and nine landmark-points were defined and digitized on 2D pictures using tpsDig2 software. After GPA, the landmark data were analyzed using Relative Warp analysis, regression of shape on total length and cluster analysis. The results showed that change of body shape in common carp during early development includes (1) increase in the head depth, and trunk length from hatching up to 8 dph, (2) increase in the body depth, and the head and tail lengths from 8-20 dph, and (3) increase in the head length and depth from 20-55 dph. The cluster analysis was revealed that larval stages can be divided into four phases, including eleuthero-embryonic, larva, younger juvenile and juvenile. -
1 the Origin of Domesticated Breeds of Common Carp
HYDROBIOLOGIE ET AQUACULTURE genetics and breeding of common carp VALENTIN S. KIRPITCHNIKOV revised by R. Billard, J. Repérant, J.P. Rio and R. Ward INSTITUT NATIONAL DE LA RECHERCHE AGRONOMIQUE 147, rue de l'Université, 75338 Paris Cedex 07 HYDROBIOLOGIE ET AQUACULTURE Déjà parus dans la même collection : Le Brochet : Aquaculture of Cyprinids gestion dans le milieu naturel Evry (France), 2-5 septembre 1985 et élevage R. Billard, J. Marcel, éd. Grignon (France), 9-10 septembre 1982 1986, 502 p. R. Billard, éd. La truite. Biologie et élevage 1983, 374 p. J.L. Bagliniere, G. Maisse, éd. 1991, 303 p. L'Aquaculture du Bar et des Sparidés Les carpes. Sète (France), 15-16-17 mars 1983 Biologie et élevage G. Barnabe et R. Billard, éd. R. Billard, coord. 1984, 542 p. 1995, 388 p. Poissons de Guyane Caractérisation et essais Guide écologique de l'Approuague et de de restauration d'un écosystème la réserve des Nouragues dégradé : le lac de Nantua Boujard T., Pascal M.. Meunier J.F., J. Feuillade, éd. Le Bail P.Y, Galle J. 1985, 168 p. 1997, 262 p. Valentin S. KIRPITCHNIKOV (f) institute of Cytology Academy of Sciences of Russia Tikhoretsky Avenue 4 Leningrad 194064, Russia revised by R. BILLARD J.P. RIO Muséum National d'Histoire Naturelle Hôpital de La Salpêtrière Ichtyologie Générale et Appliquée INSERM U 106 43 rue Cuvier 47 bd de l'Hôpital 75231 Paris cedex 05 75651 Paris cedex 13 R. WARD J. REPERANT Neurogénétique Muséum National d'Histoire Naturelle Université du Québec Laboratoire d'Anatomie Comparée CP 500, Trois-Rivières 55 rue Buffon, 75005 Paris Québec, Canada G9A 5H7 ©INRA, Paris 1999 - ISBN : 2-7380-0869-0 - ISSN : 0763-1707 ©Le code de la propriété intellectuelle du 1er juillet 1992 interdit la photocopie à usage collectif sans autor- isation des ayants-droits. -
Carp, Bighead (Hypophthalmichthys Nobilis)
Bighead Carp (Hypophthalmichthys nobilis) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, February 2011 Revised, June 2018 Web Version, 8/16/2018 Photo: A. Benson, USGS. Public domain. Available: https://nas.er.usgs.gov/queries/FactSheet.aspx?SpeciesID=551. (June 2018). 1 Native Range and Status in the United States Native Range From Jennings (1988): “The bighead carp is endemic to eastern China, […] in the lowland rivers of the north China plain and South China, including the Huai (Huai Ho), Yangtze, Pearl, West (Si Kiang), Han Chiang and Min rivers (Herre 1934; Mori 1936; Chang 1966; Chunsheng et al. 1980).” Status in the United States From Nico et al. (2018): “This species has been recorded from within, or along the borders of, at least 18 states. There is evidence of reproducing populations in the middle and lower Mississippi and Missouri rivers and the species is apparently firmly established in the states of Illinois and Missouri (Burr et al. 1996; Pflieger 1997). Pflieger (1997) received first evidence of natural reproduction, capture of young 1 bighead carp, in Missouri in 1989. Burr and Warren (1993) reported on the taking of a postlarval fish in southern Illinois in 1992. Subsequently, Burr et al. (1996) noted that bighead carp appeared to be using the lower reaches of the Big Muddy, Cache, and Kaskaskia rivers in Illinois as spawning areas. Tucker et al. (1996) also found young-of-the-year in their 1992 and 1994 collections in the Mississippi River of Illinois and Missouri. Douglas et al. (1996) collected more than 1600 larvae of this genus from a backwater outlet of the Black River in Louisiana in 1994. -
Bulletin of the United States Fish Commission Seattlenwf
FISHES OF THE ISLANDS OF LUZON AND PANAY. By DAVID STARR JORDAN and ALVIN SEALE. BUREAU OF FISHERIES DOCUMENT NO. 606. 1 Blank page retained for pagination FISHES OF THE ISLANDS OF LUZON AND PANAY. By DAVID STARR JORDAN AND ALVIN SEALE. In the summer of 1900, in connection with the investigations in Japan by Professors Jordan and Snyder, a very considerable collection of fishes was made atManila and Cavite, on the island of Luzon, and about iloilo, on the island of Panay, in the Philippine Islands, by Dr. George A. Lung, surgeon in the United States Navy. This collection is the property of Stanford University, but a series of specimens has been presented to the U. S. Bureau of Fisheries and to the U. S. National Museum. The specimens in question are in excellent condition, and the large number of species obtained shows the faithful work of Dr. Lung as collector. I . The following are the new species in the collection, with the numbers borne by the types and cotypes in the Stanford University and U. S. National museums. In cases where specimens are registered in both institutions the first number given is that of Stanford University, the second that of the National Museum. Where only one number is given, the Stanford University collection is referred to. Jenklnslella nectura (9984). CaUyodon elerre (9246). Gymnothorax philippinus (9215). Elates thompsoni (9247,53068). Doryichthys spaniaspis (9240). Rhinogobius lungi (9248,53069). Polydactylus zophomus (20113, 55598). Rhinogobius ocyurus (9249, 53070). Amia cavitensis (9241). Gobius panayensis (9250). Priopis Jungi (9242,53060). Creisson validus (9251). Scolopsis luzonia (9243). -
Pathogen Susceptibility of Silver Carp (Hypophthalmichthys Molitrix) and Bighead Carp (Hypophthalmichthys Nobilis) in the Wabash River Watershed
Pathogen Susceptibility of Silver Carp (Hypophthalmichthys molitrix) and Bighead Carp (Hypophthalmichthys nobilis) in the Wabash River Watershed FINAL REPORT Kensey Thurner PhD Student Maria S Sepúlveda, Reuben Goforth, Cecon Mahapatra Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907 Jon Amberg, US Geological Service, Upper Midwest Environmental Sciences Center, La Crosse, WI 54603 Eric Leis, US Fish and Widlife Service, La Crosse Fish Health Center, Onalaska, WI 54650 9/22/2014 Silver Carp (top) and Bighead Carp (bottom) caught in the Tippecanoe River, Photos by Alison Coulter Final Report 9/22/2014 - Page 2 Executive Summary The Pathogen Susceptibility of Silver Carp (Hypophthalmichthys molitrix) and Bighead Carp (Hypophthalmichthys nobilis) in the Wabash River Watershed project was undertaken to address the lack of available information regarding pathogens in the highly invasive Silver and Bighead Carps, collectively known as bigheaded carps. Very little is known about the prevalence and effects of parasites, bacteria and viruses on the health of invasive bigheaded carp populations in the United States or the effects of bigheaded carps on the disease risk profile for sympatric, native fish of the U.S. The main objectives of this project were to conduct a systematic survey of parasites, bacteria and viruses of Asian carps and a representative number of native Indiana fish species in the upper and middle Wabash and the lower Tippecanoe Rivers, Indiana; to determine the susceptibility of Asian carps to a representative number of natural pathogens using in vitro approaches; and to involve anglers in the development of a cost effective state-wide surveillance program for documentation of viral diseases of fish. -
Biological Control of Invasive Fish and Aquatic Invertebrates: a Brief Review with Case Studies
Management of Biological Invasions (2019) Volume 10, Issue 2: 227–254 CORRECTED PROOF Review Biological control of invasive fish and aquatic invertebrates: a brief review with case studies Przemyslaw G. Bajer1,*, Ratna Ghosal1,+, Maciej Maselko2, Michael J. Smanski2, Joseph D. Lechelt1, Gretchen Hansen3 and Matthew S. Kornis4 1University of Minnesota, Minnesota Aquatic Invasive Species Research Center, Dept. of Fisheries, Wildlife, and Conservation Biology, 135 Skok Hall, 2003 Upper Buford Circle, St. Paul, MN 55108, USA 2University of Minnesota, Dept. of Biochemistry, Molecular Biology and Biophysics, 1479 Gortner Ave., Room 344, St. Paul MN 55108, USA 3Minnesota Department of Natural Resources, 500 Lafayette Road, St. Paul, MN 55155, USA 4U.S. Fish and Wildlife Service, Great Lakes Fish Tag and Recovery Laboratory, Green Bay Fish and Wildlife Conservation Office, 2661 Scott Tower Drive, New Franken, WI 54229, USA +Current Address: Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Gujarat 380009, India Author e-mails: [email protected] (PGB), [email protected] (RG), [email protected] (MM), [email protected] (MJS), [email protected] (JDL), [email protected] (GH), [email protected] (MSK) *Corresponding author Citation: Bajer PG, Ghosal R, Maselko M, Smanski MJ, Lechelt JD, Hansen G, Abstract Kornis MS (2019) Biological control of invasive fish and aquatic invertebrates: a We review various applications of biocontrol for invasive fish and aquatic brief review with case studies. invertebrates. We adopt a broader definition of biocontrol that includes traditional Management of Biological Invasions 10(2): methods like predation and physical removal (biocontrol by humans), and modern 227–254, https://doi.org/10.3391/mbi.2019. -
Full and FINAL MASTERS DISCERTATION
ASPECTS OF THE MORPHOLOGY AND ECOLOGY OF A DIPLOZOON SPECIES (MONOGENEA) FROM THE GILLS OF LABEO UMBRATUS IN THE VAAL DAM AND VAAL RIVER BARRAGE, GAUTENG, SOUTH AFRICA. LAURETTE SEDDON Supervisor: Prof. A. Avenant-Oldewage Dissertation submitted in partial fulfilment of the requirements for the degree Master of Science in Zoology in the Faculty of Science of the Rand Afrikaans University Johannesburg , May 2004 ABSTRACT To date, 4 diplozoidae parasites have been described form Africa. Two belonging to the genus Diplozoon, namely D. aegyptensis and D. ghanense from sites in Northern Africa. One belonging to the genus Neodiplozoon, namely Neodiplozoon polycotyleus . The fourth monogenean is the concern of this study which aimed to determine the exact classification of the monogenean found on the gills of Labeo umbratus in the Vaal Dam and Vaal River Barrage respectively. The study was conducted over a 13-month period, with field data collections occurring every two to three months from January 1999 to February 2000. Host fishes were collected with the aid of gill nets with mesh sizes of 90, 110 and 130mm respectively. In-field measurements were taken regarding the total length, fork length, position of parasites on the gill arches and the host gender. All parasites collected were fixed in steaming AFA and stored in 70% ethanol. Laboratory measurements of whole mounts were completed with the aid of light microscope and drawing tube attachment. Staining methods employed included Boraxcarmine-iodine, Mayer’s Hematoxylin and Horen’s Trichrome. Scanning electron microscopy was used to gather information regarding the external morphology of the parasites.