INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENTOMOLOGIA – PPG/ENT

SISTEMÁTICA DAS VESPAS PARASITOIDES DO GÊNERO Callihormius ASHMEAD (: : ) E GÊNEROS FILOGENETICAMENTE RELACIONADOS

SIAN DE SOUZA GADELHA

Manaus, Amazonas, Março , 2019

SIAN DE SOUZA GADELHA

SISTEMÁTICA DAS VESPAS PARASITOIDES DO GÊNERO Callihormius ASHMEAD (HYMENOPTERA: BRACONIDAE: DORYCTINAE) E GÊNEROS FILOGENETICAMENTE RELACIONADOS

Orientador: Marcio Luiz de Oliveira (INPA) Co-Orientador: Alejandro Zaldívar-Riverón (Universidad Nacional Autónoma de México– Cidade do México, México)

Tese apresentada ao Instituto Nacional de Pesquisas da Amazônia como parte dos requisitos para obtenção do título de Doutor em Ciências Biológicas, área de concentração em Entomologia.

Manaus, Amazonas, Março, 2019 III

SIAN DE SOUZA GADELHA

SISTEMÁTICA DAS VESPAS PARASITOIDES DO GÊNERO Callihormius ASHMEAD (HYMENOPTERA: BRACONIDAE: DORYCTINAE) E GÊNEROS FILOGENETICAMENTE RELACIONADOS

Relação da Banca Avaliadora

Dra. Vera Margarete Scarpassa Instituto Nacional de Pesquisas da Amazônia

Dr. Danilo Pacheco Cordeiro Instituto Nacional de Pesquisas da Amazônia

Dra. Rosaly Ale-Rocha Instituto Nacional de Pesquisas da Amazônia

Dra. Jeane Marcelle Cavalcante do Nascimento Instituto Nacional de Pesquisas da Amazônia

Dra. Itanna Oliveira Fernandes Instituto Nacional de Pesquisas da Amazônia

Manaus, Amazonas, Março, 2019 IV

Sinopse:

Foi realizada uma revisão taxonômica dos gêneros Callihormius e Aphelopsia, um estudo taxonômico de Platydoryctes, e um estudo filogenético com base em dados moleculares para Callihormius e outros gêneros filogeneticamente próximos. Quatro novos gêneros foram propostos, além de um gênero revalidado, e 14 espécies novas foram descritas.

Palavras-chave: Ichneumonoidea, Aphelopsia, Platydoryctes, Panama.

V

AGRADECIMENTOS

Ao Instituto Nacional de Pesquisas da Amazônia (INPA) e ao curso de Pós-Graduação em Entomologia, pela infraestrutura fornecida para a realização deste projeto de doutorado. Ao Instituto de Biología da Universidad Nacional Autónoma de Mexico (IB UNAM) pela infraestrutura e oportunidade de estagiar junto ao meu co-orientador. Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), pela bolsa concedida. Ao meu orientador Marcio Luiz de Oliveira pela orientação ao longo de todo o trabalho. Ao meu co-orientador Alejandro Zaldívar-Riverón, não só pela orientação, suporte e conhecimento compartilhado, mas por ter me recebido em sua casa durante os estágios que fiz no México, e por ter se tornado um grande amigo acima de tudo. Aos curadores (Dr. Robert Kula, Dr. Scott R. Shaw and Dr. Marcelo Teixeira Tavares) e técnicos (Cristina Mayorga e Guillermina Ortega) que foram de grande ajuda no processo de empréstimo do material utilizado neste trabalho. Agradeço imensamente a toda a minha família que sempre me apoiou nessa difícil caminhada, em especial aos meus pais José Carlos e Ângela, além de minha irmã Seiara Meri. Aos amigos que conheci no INPA, desde os colegas de turma, aos colegas de Laboratório, agradeço não só pelos momentos de descontração, mas também pelas inúmeras discussões sobre nossos trabalhos, sempre muito produtivas. E por fim, agradeço a todos que direta ou indiretamente contribuíram com essa jornada que me propus a enfrentar em 2012, quando me mudei para Manaus para iniciar o mestrado, e que agora chega ao fim com esta tese de doutorado.

VI

RESUMO

Doryctinae é um dos grupos com maior diversidade de espécies dentro de Braconidae e ao mesmo tempo, apresenta uma grande variação morfológica intraespecífica. Essa variação tem dificultado o estabelecimento das definições de gêneros e espécies dentro da subfamília. Um exemplo disso está em Callihormius Ashmead, um gênero pouco conhecido com dez espécies válidas anteriormente a este trabalho, e que atualmente, tem seus limites sobrepostos a outros dois gêneros, Aphelopsia Marsh e Platydoryctes Barbalho & Penteado-Dias que possuíam duas e três espécies válidas, respectivamente. No intuito de melhorar a definição destes gêneros, o presente trabalho revisou a taxonomia destes grupos com o apoio de uma análise filogenética molecular que pela primeira vez focou nos grupos em questão. Após uma primeira revisão taxonômica de Callihormius, realizada em um trabalho já publicado, e com o intuito de melhor compreender a definição utilizada na literatura, foi possível redescrever algumas espécies descritas e descrever novas espécies que seriam utilizadas na análise filogenética. Uma análise Bayesiana utilizando cinco marcadores moleculares, dois mitocondriais e três nucleares, foi realizada para tentar recuperar a monofilia dos gêneros abordados anteriormente. Esta análise demonstrou a fragilidade da definição utilizada para Callihormius na literatura recuperando o gênero como um grupo polifilético. Com isso, novos conjuntos de caracteres a serem utilizados não só para a definição deste gênero, mas também para Platydoryctes foram propostos. Em seguida, tendo como base os resultados da filogenia, foi realizada uma revisão do gênero Aphelopsia e também uma atualização taxonômica de Callihormius, apresentando uma nova diagnose, novas espécies para o gênero, e cinco novos gêneros derivados de espécies anteriormente classificadas como Callihormius. Um estudo taxonômico de Platydoryctes também é realizado, apresentando uma nova definição para o mesmo, além da descrição de quatro novas espécies. Desta forma, ao final das mudanças taxonômicas que se fizeram necessárias, Callihormius passou a ter nove espécies válidas e Aphelopsia e Platydoryctes passaram a ter três e oito espécies válidas, respectivamente.

VII

ABSTRACT

Doryctinae is a highly species diverse group within Braconidae and at the same time presents a great intraspecific morphological variation. This variation has made it difficult to establish the definitions of genera and species within the subfamily. An example is Callihormius Ashmead, a little-known genus with ten valid species previously to this work, and which currently has its limits overlapping with other two genera, Aphelopsia Marsh and Platydoryctes Barbalho & Penteado-Dias that had two and three valid species, respectively. In order to improve the definition of these genera, the present work reviewed the of these groups with the support of a molecular phylogenetic analysis that for the first time focused on these genera. After a first taxonomic review of Callihormius, carried out in an already published work, in order to better understand the definition used in the literature, it was possible to redescribe some species and describe new ones that would be used in the phylogenetic analysis. A Bayesian analysis using five molecular markers, two mitochondrial and three nuclear, was performed to try to recover the monophyly of the above genera. This analysis demonstrated the fragility of the Callihormius definition used in the literature recovering the genus as a polyphyletic group. Therefore, new sets of characters to be used not only for the definition of this genus, but also for Platydoryctes were proposed. Then, based on the results of the phylogeny, a review of the genus Aphelopsia and a taxonomic update on Callihormius was carried out, presenting a new diagnosis, three new species for the genus, and five new genera derived from species previously classified as Callihormius. A taxonomic study of Platydoryctes was also performed, with a new definition for it and the description of four new species. Thus, at the end of the taxonomic changes that became necessary, Callihormius happened to have nine valid species and Aphelopsia and Platydoryctes happened to have three and eight valid species, respectively.

VIII

SUMÁRIO 1. Introdução geral ...... 13 1.1 Himenópteros Parasitoides ...... 13 1.2 Braconidae ...... 13 1.3 Doryctinae ...... 14 1.4 Callihormius Ashmead, 1900 ...... 16

2. Objetivos ...... 18 2.1 Objetivo Geral ...... 18 2.2 Objetivos Específicos ...... 18

Capítulo I ...... 19 Introduction ...... 22 Material and methods ...... 23 Taxon sampling...... 23 DNA extraction, amplified markers and alignment ...... 24 Species delimitation ...... 24 Phylogenetic Analysis ...... 25 Alternative Topology test ...... 25 Divergence times ...... 26

Results ...... 26 Species delimitation ...... 26 Phylogenetic Analysis ...... 27 Divergence times ...... 28

Discussion ...... 28 Phylogenetic relationships among genera ...... 28 Taxonomic inferences ...... 29 Divergence time inferences ...... 32

Acknowledgements ...... 33 References...... 34 Figures ...... 40 List of Supplementary material ...... 45

Capítulo II ...... 73 Introduction ...... 75 Material and methods ...... 76 Results and discussion ...... 77 Taxonomy ...... 77 Aphelopsia Marsh, 1993 ...... 77 Aphelopsia annulicornis Marsh, 1993 ...... 78 Aphelopsia striata Braet & Barbalho, 2003 ...... 80 Aphelopsia uraricoerense Gadelha & Zaldívar-Riverón n. sp...... 81 Callihormius Ashmead, 1900 ...... 83 Callihormius arepa Gadelha & Zaldívar-Riverón n. sp...... 86 Callihormius jalapeno Gadelha & Zaldívar-Riverón n. sp...... 88 Callihormius antennisparvis Gadelha & Zaldívar-Riverón n. sp...... 91 Dmitriohormius Belokobylskij, Zaldívar-Riverón & Coronado-Blanco, 2014 n. stat. . 93 IX

Dmitriohormius kasparyani (Belokobylskij, Zaldívar-Riverón & Coronado-Blanco, 2014) n. comb...... 95 Dmitriohormius stigmatus (Marsh, 1966) n. comb...... 95 Macrometasoma Gadelha & Zaldívar-Riverón n. gen...... 96 Macrometasoma shawi (Marsh, 2002) n. comb...... 97 Caputlenis Gadelha & Zaldívar-Riverón n. gen...... 100 Caputlenis capixaba Gadelha & Zaldívar-Riverón n. sp...... 102 Caputlenis franciscomartoi (Gadelha & Zaldívar-Riverón, 2018) n. comb...... 104 Platyhormius Gadelha & Zaldívar-Riverón n. gen...... 105 Platyhormius palagannensis (Gadelha & Zaldívar-Riverón, 2018) n. comb...... 106 Platyhormius tayronensis (Gadelha & Zaldívar-Riverón, 2018) n. comb...... 107 Caputrugosus Gadelha & Zaldívar-Riverón n. gen...... 107 Caputrugosus glebecafejedi Gadelha & Zaldívar-Riverón n. sp...... 108 Acknowledgements ...... 111 References...... 112 Figures ...... 116

Capítulo III ...... 124 Introduction ...... 126 Material and methods ...... 127 Results and discussion ...... 128 Taxonomy ...... 128 Platydoryctes Barbalho & Penteado-Dias, 2000 ...... 128 Platydoryctes birria Gadelha & Zaldívar-Riverón n. sp...... 129 Platydoryctes patacones Gadelha & Zaldívar-Riverón n. sp...... 132 Platydoryctes rapadura Gadelha & Zaldívar-Riverón n. sp...... 136 Platydoryctes vianai Gadelha & Martínez n. sp...... 138 Acknowledgements ...... 141 References...... 142 Figures ...... 144

SÍNTESE ...... 149 REFERÊNCIAS BIBLIOGRÁFICAS ...... 150 ANEXOS ...... 159

X

LISTA DE FIGURAS

Introdução Geral Figura 1. Asas de Ichneumonidae (A) e Braconidae (B), com destaque para algumas autapomorfias de Braconidae ...... 14

Capitulo I FIGURE 1. Different forms of Callihormius and other morphologically close genera. (A) Aphelopsia annulicornis (Holotype); (B) Callihormius janzeni (Paratype); (C) Callihormius shawi (Holotype); (D) Leluthia astigma CNIN3085; (E) Platidoryctes sp. 13 CNIN3289; (F) Platydoryctes sp. 5 CNIN2241...... 40 FIGURE 2. Bayesian phylogram derived from the 28S + COI + Cytb + ef-1-a + wg concatenated matrix. Black circles near clades represent posterior probabilities ≥ 0.95; Images from top to bottom: Platydoryctes sp.13, H. onkoterebrus, Iare sp.1 CNIN3275, A. annulicornis, Callihormius sp.1 CNIN2243, Stenocorse sp., L. astigma CNIN3085; Abbreviations: Argentina (ARG), Australia (AUS), Brazil (BRA), Chile (CHI), Colombia (COL), Costa Rica (COR), Dominican Republic (DOR), French Guiana (FGU), Mexico (MEX), Nicaragua (NIC), Spain (SPA), Venezuela (VEN)...... 42 FIGURE 3. Ultrametric tree derived from BEAST using the complete dataset, showing divergence time estimates including 95% confidence intervals. Clustered internal nodes represent clades obtained with BPP values over 0.95 on the Bayesian analysis; Abbreviations: Pliocene (P), Quaternary (Q), Argentina (ARG), Australia (AUS), Brazil (BRA), Chile (CHI), Colombia (COL), Costa Rica (COR), Dominican Republic (DOR), French Guiana (FGU), Mexico (MEX), Nicaragua (NIC), Spain (SPA), Venezuela (VEN)...... 44 FIGURE 4. Supplementary material 4. Neighbor joining phenogram obtained from the uncorrected COI distances for the Callihormius species and other related genera used in the present work...... 63

Capitulo II FIGURE 1. Aphelopsia annulicornis Marsh (holotype) A. lateral habitus, B. lateral head, mesosoma and metasoma, C. dorsal head, mesosoma and metasoma. Photos by Kula and Kweskin...... 116 FIGURE 2. Aphelopsia uraricoerense Gadelha & Zaldívar-Riverón n. sp. (holotype) A. lateral habitus, B. dorsal head and mesoscutum, C. dorsal metasoma, D. dorsal fore wing, E. lateral mesosoma, F. dorsolateral propodeum...... 117 FIGURE 3. Callihormius arepa Gadelha & Zaldívar-Riverón n. sp. (holotype) A. lateral habitus, B. dorsal head and mesonotum, C. lateral mesosoma, D. dorsal metasoma, E. dorsal fore wing, F. dorsal propodeum...... 118 FIGURE 4. Callihormius jalapeno Gadelha & Zaldívar-Riverón n. sp. (holotype) A. lateral habitus, B. dorsal mesonotum, C. lateral mesosoma, D. dorsal metasoma, E. ventral fore wing, F. dorsal head...... 119 FIGURE 5. Callihormius antennisparvis Gadelha & Zaldívar-Riverón, sp. nov. (holotype) A. lateral habitus, B. dorsal head and mesonotum, C. lateral head and mesosoma, D. dorsolateral propodeum, E. ventral fore wing, F. dorsal metasoma...... 120 FIGURE 6. Macrometasoma shawi (Marsh, 2002) n. comb. (holotype) A. lateral habitus, B. dorsal mesonotum, C. dorsal and ventral wings, D. lateral mesosoma, E. dorsolateral metasoma, F. dorsolateral mesosoma. Male (Paratype) G. lateral habitus, H. dorsal mesocutum and pronotum, I. dorsolateram metasoma...... 121 XI

FIGURE 7. Caputlenis capixaba Gadelha & Zaldívar-Riverón n. sp. (holotype) A. lateral habitus, B. dorsal head and mesonotum, C. lateral mesosoma, D. dorsolateral propodeum, E. dorsal fore wing, F. dorsal metasoma...... 122 FIGURE 8. Caputrugosus glebecafejedi Gadelha & Zaldívar-Riverón n. sp. (holotype) A. lateral habitus, B. dorsal head and pronotum, C. lateral mesosoma, D. dorsal mesosoma, E. dorsal fore wing, F. dorsal metasoma...... 123

Capítulo III FIGURE 1. Platydoryctes birria Gadelha & Zaldívar-Riverón n. sp. (holotype) A. lateral habitus, B. dorsal head and mesonotum, C. dorsolateral propodeum, D. lateral mesosoma, E. dorsolateral metasoma, F. fore wing...... 144 FIGURE 2. Platydoryctes patacones Gadelha & Zaldívar-Riverón n. sp. (holotype) A. lateral habitus, B. dorsal head and mesonotum, C. lateral mesosoma, D. Dorsal propodeum, E. wings, F. dorsal metasoma...... 145 FIGURE 3. Platydoryctes patacones Gadelha & Zaldívar-Riverón n. sp. (male paratype) A. lateral habitus, B. dorsal metasoma, C. dorsal propodeum, D. lateral mesosoma, E. dorsal head and mesonotum, F. wings...... 146 FIGURE 4. Platydoryctes rapadura Gadelha & Zaldívar-Riveron n. sp. (holotype) A. lateral habitus, B. dorsal metasoma, C. dorsal head, D. dorsal mesonotum, E. dorsal propodeum, F. fore wing...... 147 FIGURE 5. Platydoryctes vianai Gadelha & Zaldívar-Riverón n. sp. (holotype) A. lateral habitus, B. dorsal head and pronotum, C. lateral head and mesosoma, D. dorsal mesonotum, E. wings, F. dorsal metasoma, G. dorsal propodeum and first metasomal tergite...... 148

XII

REJEIÇÃO PARA FINS DE NOMENCLATURA ZOOLÓGICA

A exceção do capítulo I, que está devidamente publicado em revista científica de acordo com o que o Código Internacional de Nomenclatura Zoológica (CINZ) define como um trabalho publicado, todos os demais capítulos desta tese não devem ser considerados como uma publicação válida para fins de nomenclatura zoológica, uma vez que, são apresentados no formato de uma tese de doutorado. Este é o disclaim previsto no CINZ (edição 1999), capítulo três, artigos 8.2 e 8.3.

13

1. Introdução geral

1.1 Himenópteros Parasitoides

Os parasitoides podem ser definidos como insetos cujas larvas se desenvolvem no corpo de outros artrópodes, usualmente insetos, ou em uma massa única ou gregária de hospedeiros, como ootecas ou massas de larvas galhadoras, acarretando a morte do hospedeiro no final do seu desenvolvimento (Godfray, 1994). Os parasitoides se diferenciam dos parasitas, principalmente por levarem seu hospedeiro à morte, fato que não costuma ocorrer com o hospedeiro dos parasitas. O hábito parasitoide pode ser encontrado em vários grupos de insetos como Diptera, Coleoptera, Lepidoptera e Neuroptera (Godfray, 1994). Contudo, a maior parte ocorre dentro de Hymenoptera, que sozinha compreende cerca de 75% das espécies de insetos parasitoides existentes (Belshaw et al., 2003). Do ponto de vista ecológico, as vespas parasitoides são importantes pelos efeitos regulatórios que possuem sobre a população de insetos herbívoros (Matthews, 1974). E este aspecto também as torna importantes para a economia, uma vez que, são uma peça importante para a realização do controle biológico em sistemas agrícolas e constituem uma opção mais econômica de controle de pragas em relação a utilização de agroquímicos (Gonzáles e Ruíz, 2000; Hanson e Gauld, 2006). Parra (2002) cita que dentre os himenópteros parasitoides, uma das famílias mais frequentemente utilizadas em controle biológico é Braconidae, mas em contrapartida, Gonzáles e Ruíz (2000) destacam a falta de estudos sobre a sistemática e biologia deste grupo, as quais são informações importantes para a implementação de programas de controle biológico.

1.2 Braconidae

Dentre as 22 superfamílias de Hymenoptera (Melo et al., 2012) se destaca Ichneumonoidea que é dividida em duas famílias, Ichneumonidae e Braconidae, que são as maiores da ordem, e quase sempre facilmente distinguíveis pela presença (Ichneumonidae) e ausência (Braconidae) da veia 2m-cu nas asas anteriores (Melo et al., 2012) (Fig. 1). A família Braconidae possui cerca de 19.500 espécies divididas em 46 subfamílias em todo o mundo (YU et al., 2012), das quais, 34 ocorrem no Novo Mundo (Wharton et al., 1997). Segundo Sharkey e Wahl (1992), a monofilia de Braconidae é suportada por quatro autapomorfias: a fusão do segundo e terceiro tergo metassomal; a perda do hâmulo basal funcional na veia C das asas posteriores; perda de uma ponta independente da veia C das asas posteriores, na porção basal ao encontro da veia R ou R1 com a margem anterior das asas 14

posteriores (Fig. 1); e o deslocamento da veia 1r-m para separação das veias R1 e RS ou para a parte basal a essa separação (Fig. 1).

A B

2 m-cu 2 m-cu ausente

Ponta da veia C Separação Separação da R1 e RS da R1 e RS 1r-m 1r-m

Figura 1. Asas de Ichneumonidae (A) e Braconidae (B), com destaque para algumas autapomorfias de Braconidae.

1.3 Doryctinae

Dentre as subfamílias mais diversas de Braconidae está Doryctinae, a qual é composta basicamente por parasitoides que, em geral, são idiobiontes (não permitem que o hospedeiro continue a se desenvolver após a oviposição) e ectoparasitoides de larvas de besouros brocadores (Wharton et al., 1997; Marsh, 2002). Contudo, algumas espécies atacam larvas de lepidópteros e himenópteros sínfitos, também brocadores (Wharton et al., 1997), além de Embioptera (Shaw e Edgerly, 1985) e até mesmo cupins (Isoptera) (Belokobylskij, 2002). Alguns poucos membros de Doryctinae são fitófagos (Belokobylskij, 2002), e são conhecidos por serem, em sua maioria, indutores de galhas em vegetais, estruturas que a larva do parasitoide utilizará como abrigo e alimentação até o término do seu desenvolvimento (Zaldívar-Riverón et al., 2014). Doryctinae está presente em todos os continentes (Belokobylskij et al., 2004), possuindo a maior riqueza de espécies nos trópicos do Novo Mundo (Hanson e Gauld, 1995). Atualmente, no mundo, existem cerca de 1.700 espécies distribuídas em 205 gêneros válidos (YU et al., 2012; Braet, 2016). Porém, Wharton et al. (1997), Marsh (2002) e Braet et al. (2003) preveem um aumento significativo no número de gêneros, à medida que mais estudos forem feitos nas regiões tropicais. Um dos principais problemas na taxonomia da subfamília é o alto número de caracteres morfológicos homoplásticos, os quais têm dificultado, principalmente, o estabelecimento de tribos em Doryctinae (Belokobylskij et al., 2004; Zaldívar-Riverón et al., 2007; 2008). Estes caracteres levam a agrupamentos de gêneros ou espécies que não necessariamente compartilham de uma mesma história evolutiva, formando assim, grupos parafiléticos. Em 15 contrapartida a esta problemática, a utilização de dados moleculares tem sido cada vez mais utilizada como uma ferramenta complementar aos dados morfológicos. Alguns estudos acerca da filogenia de Doryctinae já foram feitos (Belokobylskij et al., 2004; Zaldívar-Riverón et al., 2006; 2007; 2008). Zaldívar-Riverón et al. (2007) encontraram evidências filogenéticas que demonstram uma proximidade evolutiva entre gêneros que estão associados a galhas (e.g. Allorhogas, Labania, Monitoriella, Percnobracon, Psenobolus), os quais constituem um mesmo clado em sua análise, apesar de possuírem caracteres morfológicos muito diferentes entre si. No ano seguinte, Zaldívar-Riverón et al. (2008) sugerem que Doryctinae seja parafilético, devido a quatro gêneros (Doryctes Haliday, Ontsira Cameron, Neurocrassus Snoflák e Stephanospathius Belokobylskij) que ficaram posicionados fora do clado principal da subfamília. No entanto, estes gêneros possuem pelo menos algumas das características diagnósticas que têm sido propostas para a subfamília, que são: uma fileira de espinhos na tíbia anterior; a inserção separada de dois ductos de veneno secundários no ducto primário; o ápice do ovipositor muito esclerozado; um nódulo duplo na valva superior e uma serrilha modificada na parte inferior da valva do ovipositor. Além disso, o fato de a subfamília ser fracamente suportada nas topologias resultantes fez com que Zaldivar-Riverón et al. (2008) não alterassem a composição da subfamília, mantendo estes quatro gêneros dentro da mesma. Um dos objetivos deste trablho era analisar as relações internas de Doryctinae na tentativa de reestruturar a confusa classificação das tribos da subfamília. E mesmo não sendo possível propor uma nova classificação, devido à presença de muitas relações fracamente suportadas na sua topologia, a utilização de dados moleculares e morfológicos permitiu a Zaldivar-Riverón et al. (2008) confirmar a validade de algumas tribos como Ecphylini, Siragrini e Holcobraconini, e também reposicionar melhor alguns gêneros. Além de auxiliar em estudos acerca das relações internas da subfamília, a utilização de dados moleculares também tem sido de grande importância para a descrição e delimitação de novos gêneros e espécies em Doryctinae (Ceccarelli et al., 2012; Braet et al., 2012; López- Estrada et al., 2012; Nunes et al., 2012; Zaldívar-Riverón et al., 2012, 2013; Ceccarelli & Zaldívar-Riveron 2013; Belokobylskij et al., 2014; Zaldívar-Riverón et al., 2014; Gadelha et al., 2016; Samacá-Sáenz et al., 2016). Um dos gêneros que ainda não foi estudado sobre este aspecto é Callihormius Ashmead, um grupo relativamente pequeno, porém com limites fracamente estabelecidos, podendo muitas vezes ser confundido com gêneros morfologicamente próximos como Aphelopsia Marsh e Platydoryctes Barbalho & Penteado- Dias.

16

1.4 Callihormius Ashmead, 1900

Callihormius foi proposto por Ashmead (1900) sendo designada a espécie Pambolus bifasciatus Ashmead, 1892 como espécie-tipo. Posteriormente, Nettleton (1938) renomeou Heterospilus longicaudus Ashmead, 1894, como H. longicaudatus Nettleton, 1938, pois o nome proposto por Ashmead estava preocupado por H. longicaudus (Ashmead, 1893). Contudo, Shenefelt e Marsh (1976) observaram que H. longicaudatus Nettleton se tratava de uma espécie de Callihormius e fizeram a combinação C. longicaudatus (Nettleton, 1938). Marsh (1965) foi quem de fato fez a primeira descrição do gênero, o qual havia sido proposto por Ashmead (1900), apenas pela inserção do mesmo em uma chave. Ainda nesse trabalho, o autor realocou Callihormius da subfamília Spathiinae, onde ele foi descrito, para Doryctinae. Marsh (1966) fez a primeira revisão do gênero, utilizando espécies do Neártico, e descreveu Callihormius bajaensis Marsh, Callihormius stigmatus Marsh, Callihormius texanus Marsh e Callihormius werneri Marsh, aumentando para seis o número de espécies de Callihormius. Mais de 30 anos depois, em um trabalho sobre as espécies de Doryctinae da Costa Rica, Marsh (2002) descreveu Callihormius careosulcus Marsh, Callihormius janzeni Marsh e Callihormius shawi Marsh. Nesse mesmo trabalho, o autor ressaltou ainda a proximidade morfológica do gênero com outros dois: Aphelopsia Marsh, 1993, o qual difere de Callihormius principalmente pelo nível de esculturação do mesossoma e metassoma; Platydoryctes Barbalho & Penteado-Dias, 2000, que se diferencia principalmente pelo corpo achatado dorso ventralmente e pelo tamanho da placa esterno basal (Marsh, 2002). Sendo que este último gênero também possui uma descrição incompleta assim como a descrição de suas espécies. Contudo, o autor concluiu que seriam necessários mais estudos sobre estes gêneros para encontrar outros caracteres que auxiliassem no suporte ou não destes grupos. Mais recentemente, Belokobylskij et al. (2014) propuseram pela primeira vez um subgênero para Callihormius, para alocar uma nova espécie nomeada pelo autor como Callihormius (Dimitriohormius) kasparyani Belokobylskij, Zaldivar-Riveron & Coronaldo- Blanco. Além disso, os autores destacaram que em sua análise dos espécimes mexicanos e neotropicais, foi observado que o gênero é consideravelmente polimórfico, possuindo um alto nível de variação em seus caracteres morfológicos diagnósticos. Segundo eles, esse polimorfismo, juntamente com as observações, de proximidade morfológica, feitas anteriormente por Marsh (2002), indicariam que Aphelopsia seja um provável sinônimo de Callihormius. 17

Estudos filogenéticos específicos sobre Callihormius nunca foram feitos, porém o gênero aparece em alguns estudos de filogenia. Belokobylskij et al. (2004), estudando a filogenia de Doryctinae e a relação entre suas tribos, apenas com dados morfológicos, utilizaram somente a espécie-tipo do gênero (C. bifasciatus). Nesse trabalho não se pode observar dados conclusivos sobre o posicionamento de Callihormius, uma vez que, nas cinco topologias obtidas, resultantes de diferentes análises, o gênero surge em posicionamentos diferentes em três delas e nas duas restantes ele está em politomia com vários gêneros. Martínez et al. (2010), por sua vez, fizeram uma análise filogenética com dados moleculares para obter o posicionamento de Iare Barbalho & Penteado-Dias, dentro de Doryctinae, e obtiveram como grupo irmão deste gênero, um clado formado por Callihormius, Leluthia Cameron, Panama Marsh e Histeromeroides Marsh. Este clado também foi observado nos trabalhos de Zaldívar-Riverón et al. (2012, 2013). Apesar destes trabalhos fornecerem dados mais elucidantes sobre posicionamento de Callihormius, o qual foi fortemente sustentado como grupo irmão de Histeromeroides em Martínez et al. (2010), a utilização de apenas uma espécie do gênero, mais uma vez, deixa dúvidas em relação a este posicionamento, principalmente devido ao fato de que além das dez espécies reconhecidas até então, existem muitas espécies não descritas em Callihormius, e certamente, a utilização destas espécies poderia trazer dados muito mais concretos sobre o posicionamento do gênero dentro da subfamília. Até então, Callihormius possuía dois subgêneros e dez espécies, porém, sem uma definição clara do gênero, já que a identificação de espécimes com morfologia intermediária entre Callihormius e Platydoryctes ou Aphelopsia era difícil e confusa. Gadelha et al. (2018) (Anexo I) realizaram a revisão mais recente de Callihormius onde os autores além de redescreverem parte das espécies descritas por Marsh (1966), as quais possuíam descrições sucintas, também revisam a classificação de C. longicaudatus, que foi posta em “incertae sedis”. No mesmo trabalho, Gadelha et al. (2018) propõem uma definição mais clara sobre o que foi definido como Callihormius por Marsh (1965, 1966), baseados no material tipo e descrições originais observados, e descrevem ainda mais quatro espécies para o gênero: Callihormius circumlitoris Gadelha & Zaldívar-Riveron, Callihormius franciscomartoi Gadelha & Zaldívar-Riveron, Callihormius palagannensis Gadelha & Zaldívar-Riveron and Callihormius tayronensis Gadelha & Zaldívar-Riveron. Assim, atualmente o gênero possui 13 espécies validas e duas subfamílias. O presente trabalho tem como objetivo testar a definição de Callihormius, Aphelopsia e Platydoryctes em uma filogenia com dados moleculares. A qual também servirá de base para propor caracteres que serão utilizados para melhor definir os três gêneros em questão. 18

2. Objetivos 2.1 Objetivo Geral

• Revisar a taxonomia de Callihormius, Aphelopsia e Platydoryctes e testar a monofilia dos mesmos com base em dados moleculares.

2.2 Objetivos Específicos

• Redescrever espécies com descrições suscintas ou incompletas (Gadelha et al. 2018; Capítulo 2); • Testar a monofilia de Callihormius, Platydoryctes e Aphelopsia em relação a gêneros filogeneticamente próximos (Capítulo 1); • Redefinir os gêneros Callihormius, Aphelopsia e Platydoryctes (Capítulos 2 e 3); • Propor chaves de identificação para as espécies (Capítulos 2 e 3).

19

Capítulo I

Gadelha, S.S., Zaldívar-Riverón, A., Oliveira, M.L. (2019) Molecular phylogeny of the doryctine parasitoid wasp Callihormius (Hymenoptera: Braconidae) and related genera. Manuscrito formatado para Systematic Entomology.

20

Molecular phylogeny of the doryctine parasitoid wasp Callihormius (Hymenoptera: Braconidae) and related genera

Sian de Souza Gadelha¹, Alejandro Zaldívar-Riverón², Marcio Luiz de Oliveira³

1 Programa de Pós-Graduação em Entomologia do Instituto Nacional de Pesquisas da Amazônia – INPA. Av. André Araújo, 2.936 – Petrópolis – CEP 69.067–375 – Manaus – Amazonas Brazil. E-mail: [email protected] 2 Colección Nacional de Insectos, Instituto de Biología, Universidad Nacional Autónoma de México, 3er Circuito Exterior s/n, Cd. Universitaria, Copilco, Coyoacán, A. P. 70-233, C. P. 04510, Ciudad de México, México. Email: [email protected] ³ Coordenação de Biodiversidade e Programa de Pós-Graduação em Entomologia do Instituto Nacional de Pesquisas da Amazônia – INPA. Av. André Araújo, 2.936 – Petrópolis – CEP 69.067–375 – Manaus –Amazonas Brazil. E-mail: [email protected]

21

Abstract

Doryctinae is a highly specious group of Braconidae with diverse habits and consequently heterogeneous external morphology. This extensive intraspecific morphological variation within the subfamily, however, has made extremely difficult to establish the limits and extension of several of its members. Callihormius Ashmead, Platydoryctes Barbalho & Penteado-Dias and Aphelopsia Marsh, are a prime example of this. Here, carried out a phylogenetic study among a number of representative species of the groups mentioned above and other related genera using for this three nuclear and two mitochondrial DNA sequence markers in order to improve their limits. According to our results Callihormius, was not recovered as monophyletic, and for this reason the use of less inclusive characters set on its diagnosis were proposed. Platydoryctes was recovered as paraphyletic and the body flatness of this genera was proven as homoplastic, therefore, other features were proposed to better define it. Aphelopsia was not recovered as monophyletic, though the relationships involved were weakly supported and thus we maintain its species composition. Panama Marsh, stat. rev., which was previously considered a junior synonym of Leluthia Cameron, is revalidated. Various basal and intermediate relationships in the phylogeny had considerable short branch lengths, which could be due to ancient rapid radiation events that occurred during the early evolution of the group. The estimated times of divergence indicated that the clade containing Callihormius and its related genera diversified somewhere between the late Oligocene and middle Miocene, whereas the early diversification events within each genus appeared to have occurred between the middle and late Miocene.

Keywords: Ichneumonoidea, Leluthia, Panama, times of divergence, genetic distance.

22

Introduction

The subfamily Doryctinae is a highly speciose group of braconid wasps that is mainly composed of idiobiont ectoparasitoids species that attack xylophagous and wood-boring beetle larvae, though some members are known or are presumed to attack species of other orders such as Lepidoptera (Marsh, 1997; Marsh, 2002), Hymenoptera (Marsh, 1997; Marsh, 2002) and Embioptera (Shaw & Edgerly, 1985), whereas few are phytophagous (Marsh, 1991, 1997; Marsh et al., 2000; Zaldívar-Riverón et al., 2007; Zaldívar-Riverón et al., 2014) or have unusual biologies, such as inhabiting termite nests (Belokobylskij, 2002). This makes the Doryctinae one of the most diverse subfamilies within Braconidae in terms of its parasitoid and life history strategies, which probably was the cause that triggered its considerably high species richness. Currently, the subfamily contains about 1700 recognized species grouped in 205 genera (Yu et al., 2012; Braet, 2016). The external morphology displayed among members of the Doryctinae is considerably heterogeneous, ranging from species that are apterous to winged, smooth to largely sculptured, with body sizes from less than two to about 20 millimetres and with a wide variety of body shapes and colours (Braet, 2016). Despite this morphological diversity, the extensive variation between these forms within the subfamily has made extremely difficult to establish the limits and extension of various of its supraspecific groups. A prime example of this occurs among a group of three genera, Callihormius Ashmead, Platydoryctes Barbalho & Penteado-Dias and Aphelopsia Marsh (Fig. 1). Callihormius has 13 recognized and several undescribed Nearctic and Neotropical species, whereas the remaining two only have three and two recognized Neotropical species, respectively (Yu et al., 2016). The limits among these genera still are unclear since they lack of consistent morphological diagnostic features that help to separate them from each other (Marsh, 2002; Belokobylskij et al., 2014). Species of Platydoryctes and Aphelopsia are distinguished from those of Callihormius by having a flattened body and mesosoma mostly smooth, respectively (body not flattened and mesosoma sculptured in Callihormius). Nevertheless, species with intermediate levels of body flatness and smooth mesosoma are also found within Callihormius. A considerable flattened, compressed body found in species of Platydoryctes also occurs in other doryctine genera such as Leluthia Cameron and Angelica Marsh (Marsh, 1967, 2002), as well as in other apocritan lineages, probably as an adaptation to live under bark. For instance, the braconine Chartobracon huggerti van Achterberg, which has a flattened body, was reared from cocoons found under spruce bark in tunnels of Callidium coriaceum Paykull (Cerambycidae) (Van Achterberg, 1983). Forshage et al. (2016) also discussed the presence of 23 a flat body in Platyceraphron Kieffer (Megaspilidae) and compared it to other species with the same condition from different apocritan families, including Platygastridae (Platystasius Nixon and Telenomus danubialis Szelényi), Pteromalidae (Spalangia Perkins), and a number of species of Agaonidae, Bethylidae and Mymaridae. The evolution of a considered flattened body in some members of the Doryctinae therefore needs to be assessed to confirm whether it has evolved one or multiple times. To date, no molecular phylogenetic studies have focused on assessing the phylogenetic relationships among species of Callihormius, Platydoryctes and Aphelopsia. The molecular phylogenetic studies that have been carried out for the Doryctinae have only included few representative species of the above three genera, where they are recovered within a main Neotropical clade together with species of other genera morphologically similar such as Leluthia Cameron, Histeromeroides Marsh, Iare Barbalho & Penteado-Dias and Stenocorse Marsh (Martínez et al., 2010; Zaldívar-Riverón et al., 2012, 2013; Belokobylskij et al., 2015). In this study, we reconstructed the phylogenetic relationships among a number of representative species of Callihormius, Platydoryctes, Aphelopsia and of several other morphologically similar genera, in order to recover the monophyly of the first three genera and help to considerably improve the generic classification of the genera involved.

Material and methods Taxon sampling

The specimens examined in this work was obtained from field trips carried out by the authors in Mexico and from donations of specimens collected in several localities along the Neotropics. Specimens were preserved in 70-96% ethanol, and all our collected material was kept at -20˚C until they were processed for DNA extraction. We generated/retrieved from Genbank DNA sequences for 29, 18 and 2 specimens assigned to Callihormius, Platydoryctes and Aphelopsia, respectively. We also included in the concatenated analyses previously published and few generated sequences of 59 species belonging to 35 Neotropical doryctine genera. Species of most of these genera were recovered in previous phylogenetic studies within a major South American doryctine clade (Zaldívar- Riverón et al., 2008; Matinez et al., 2010), which were considered as our ingroup in the phylogenetic analisis, and it is where Callihormius and Aphelopsia were nested on these phylogenies. Among the latter Neotropical taxa, we included five species that keyed to Panama using Marsh’s (2002) key, though this genus was subsequently placed as a junior synonym of Leluthia (Belokobylskij, 2004). For the outgroup, we retrieved sequences of three genera (Jarra 24

Marsh & Austin, Ontsira Cameron and Syngaster Brullé) that were recovered in a major Australian doryctine clade that was sister to the main South American clade (Zaldívar-Riverón et al., 2008). All specimens examined in this study are deposited in the following collections: Colección Nacional de Insectos, Instituto de Biología, Universidad Nacional Autónoma de México, CdMx, Mexico (CNIN IB-UNAM); Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil (INPA); and Universidade Federal do Espírito Santo (UFES), Vitória, Brazil. The list of species included in the study, their localities, voucher and GenBank accession numbers for the examined molecular markers can be found in the Supplementary material 1.

DNA extraction, amplified markers and alignment

We obtained genomic DNA using the non-destructive DNA extraction protocol described in Ceccarelli et al. (2012) with the EZ-10 Spin Kit minipreps DNA. Genomic Column kit (BIO Basic, Toronto, Ontario, Canada). Two mitochondrial [Cytochrome oxidase I (COI) and Cytochrome b (cytb)] and three nuclear [2nd and 3rd domain (D2-3) regions of the 28S ribosomal, Elongation factor 1-alpha (ef-1-a) and wingless (wg)] gene markers were amplified and sequenced. The PCR protocols employed were the ones mentioned in Zaldívar-Riverón et al. (2014). The primers and annealing temperatures used for the PCRs are listed in Supplementary material 2. Unpurified PCR products were sent for sequencing to the DNA sequencing unit at IB UNAM. All generated sequences were edited with the program Sequencher version 4.1.4 (http://www.genecodes.com/). For the four protein-coding mt and nuclear markers, their alignments were performed manually and stablished by examining their translated amino acids. The 28S alignment was performed manually following the secondary structure model proposed by Ceccarelli & Zaldívar-Riverón (2013). All detected ambiguously aligned loop regions were excluded from the 28S data set.

Species delimitation

We first delimited the species boundaries among 79 specimens assigned to the following genera using external morphology and DNA sequence data for the Barcoding locus (COI; Hebert et al., 2003): Aphelopsia (two specimens), Callihormius (29 specimens), Histeromeroides (one specimen), Iare (11 specimens), Leluthia (15 specimens), Platydoryctes (18 specimens), Stenocorse (three specimens). We followed an integrative taxonomic criterion by cumulation (Padial et al., 2010) based on the latter two character systems, where the 25 consistent divergence in any of them represent evidence for the existence of an evolutionary unit (i.e. species). We calculated 2% uncorrected COI divergence threshold (Hebert et al., 2003) to delimit species among the examined specimens and visualised them reconstructing a Neighbour Joining analysis with the program PAUP version 4.0a (Swofford, 2002). We do not use a model- corrected distance once Collins et al. (2012) demonstrated that for identification purpose the uncorrected distances performed as well or marginally better than the last one. Subsequently, one specimen of each delimited species was sequenced for the remaining examined markers and included in the concatenated analyses. In few cases, sequences of two specimens from the same species, generally from the same locality, were considered within the same terminal taxon.

Phylogenetic Analysis

A concatenated matrix containing five gene markers was employed to conduct a phylogenetic analysis using Bayesian inference with the program Mr. Bayes version 3.2.6 (Ronquist et al., 2012). Each protein-coding gene was initially partitioned according to their codon positions and the 28S marker was considered as a single partition. The seven partitions and the corresponding evolutionary models for these partitions were estimated with the program Partition Finder version 1.1.0 (Lanfear et al., 2012) and are shown in Supplementary material 3. The partitioned Bayesian analysis was performed with the concatenated matrix using Mr. Bayes version 3.2.6 on XSEDE through the CIPRES online platform (Miller et al., 2010). The analysis consisted of two independent runs of 100 million generations each, using uniform priors and sampling trees every 5000 generations. Burn-in was stablished after the 30% of sampled trees based on the stationarity of the single run and verifying the stimated sample size (ESS) of the tested parameters with the program Tracer version 1.6 (Rambaut et al., 2014). The remaining trees were used to reconstruct a majority rule consensus tree with posterior probability (PP) values. Clades with a PP ≥ 0.95 were regarded as significantly supported.

Alternative Topology test

The phylogenetic hypothesis recovered from the above analysis was tested against alternative topologies that constrained the following relationships: (1) all species of Platydoryctes and (2) all species of Callihormius. 26

The tests were carried out using the stepping stone (SS) sampling approach (Xie et al., 2011) implemented in the program MrBayes version 3.2 (Ronquist et al., 2012). The SS estimates were run for 10 million generations, followed by 50 steps with 1000 samples within each step, and eliminating the first 25% of samples from each step. Each test consisted of two independent runs, one for the constrained and the other one for an unconstrained topology. The hypothesis recovered with highest marginal likelihoods obtained from the SS sampling approach were consedired as accepted.

Divergence times

The times of origin and species diversification in our ingroup was estimated using the five gene markers matrix and a relaxed molecular clock method with the program BEAST version1.8.2 (Drummond et al., 2012) through the CIPRES online platform (Miller et al., 2010). The analysis considered five partitions, one for each marker. The evolutionary models for each one of them were obtained with the program Partition Finder version 1.1.0 (Lanfear et al., 2012) and are shown in Supplementary material 3. The analysis consisted of 100 million generations, sampling trees every 5000 generations. We used an uncorrelated lognormal relaxed clock rate and the ‘Speciation: Birth- Death Incomplete Sampling’ tree prior. The program TreeAnnotator version 1.8.2 available from the BEAST package was subsequently employed to obtain the maximum clade probability tree with PP of clades using the ‘common ancestor heights’ option and discarding the first 4000 sampled trees to ensure stationary. Two calibrations were included, one on the most basal node separating the Australian (Ontsiria Cameron + Jarra Marsh & Austin + Syngaster Brullé) from the South American clades (Zaldívar-Riverón et al., 2008). This calibration used a normal distribution with a mean age of 46.26 million years (my) and standard deviation of 3.38. The second calibration was on the most recent common ancestor (MRCA) of Aivalykus + Ecphylus according to two fossil species of Ecphylus found in Dominican amber (Muesebeck, 1960; Zuparko & Poinar, 1997). This calibration used a normal distribution with a mean age of 17.5 my and standard deviation of 1.0.

Results Species delimitation

The 613bp of COI obtained from each one of the 79 examined specimes were used to reconstruct a NJ phenogram showing the uncorrected distances among them (Supplementary 27 materials 4 - Fig. 4) and a table with the COI uncorrected distances (Supplementary materials 5). The 2% sequence divergence criterion yielded a total of 47 Barcoding species assigned to Aphelopsia (two spp.), Callihormius (14 spp.), Platydoryctes (11 spp.), Histeromeroides (one spp.), Leluthia (11 spp.), Iare (five spp.) and Stenocorse (three spp.), respectively. Our morphological examination confirmed 47 of the ‘Barcoding’ species and helped to consistently delimit four distinctive species that were not distinguished by the molecular data, totalizing 51 delimited species. One of these incongruences corresponded to Platydoryctes sp. 15, which had a mean COI distance of 0.9% with the specimens of C. circumlitoris, though it was regarded as a separate species since it has various consistent morphological differences. Other cases where one ‘Barcoding’ species were split into two or more morphospecies were between Platydoryctes sp. 11 and Platydoryctes spp. 12 and 13, and between Platydoryctes sp. 1 and the latter two taxa. We excluded from the subsequent phylogenetic analyses seven of our delimited species (C. stigmatus CNIN3179, C. sp.5 CNIN1060, C. sp.6 ASDOR453, C.sp.7 ASDOR097, P. sp.14 ASDOR047, P. sp.15 CNIN3177, L. sp.7 ASDOR010) since we could not amplify their other gene markers.

Phylogenetic Analysis

The 28S, CO I, Cyt b, ef-1-a and wg sequences had ~710, 613, 366, 421 and 410 bp, respectively. About 131 bp were excluded for the 28S data set, which corresponded to ambiguously aligned loop regions. The final concatenated matrix consisted of 89 taxa and 2389 nucleotide positions. The Bayesian phylogram (Fig. 2) significantly supported a major clade with the species of Aphelopsia, Callihormius, Histeromeroides, Iare, Leluthia, Platydoryctes and Stenocorse (PP = 1.0). All species of Platydoryctes were nested in a single clade together with C. palagannensis and C. tayronensis (BPP = 0.63). Two main subclades were recovered within this major Platydoryctes clade, one composed mainly of Colombian species (PP = 0.95), and the other one mainly of Brazilian species (BPP = 0.51). Callihormius was recovered as polyphyletic, with its species being divided into five separate clades. The first clade was mentioned above and had C. palagannensis and C. tayronensis. The second had C. sp. 2 nested together with two species of Leluthia (PP = 0.33). The third recovered C. franciscomartoi as sister to L. canalia (Marsh) + Histeromeroides onkoterebrus Marsh (PP = 0.77). In the fourth clade, C. shawi was sister to a subclade composed of Leluthia sp. 5 + Aphelopsia annulicornis Marsh + Iare (PP = 0.58). The fifth clade recovered five species of Callihormius significantly supported as sister to Aphelopsia striata Braet & 28

Barbalho (PP = 1.0). The remaining included species of Aphelopsia, A. annulicornis Marsh, was more related to Leluthia sp. 5 and to Iare, though with low support. Leluthia was also recovered as non-monophyletic, with five of its species in a single clade, but with the remaining five species including L. canalia (Marsh) (the type species of the synonymised Panama Marsh) being placed in four separate clades. The tests of alternative topologies showed that the hypothesis constraining all species of Platydoryctes as monophyletic yielded a higher marginal likelihood than the hypotheses that did not constraining it (-35218.77 versus -35248.57). The alternative topology constraining all Callihormius, in other hand, reached a lower value than the non-constrained hypothesis (- 35277.17 versus -35252.18).

Divergence times

The chronogram derived from the BEAST analysis (Fig. 3) is mostly congruent with the Bayesian phylogram obtained with MrBayes, both recovering the same significantly supported clades. The time of divergence between the main clade containing species of eight genera (Aphelopsia, Callihormius, Platydoryctes, Iare, Histeromeroides, Leluthia and Stenocorse) and the remaining Neotropical genera was estimated to occur during the end of Oligocene and beginning of Miocene, between 26.66 to 18.74 Mya. The origin and most recent common ancestor (MRCA) of the clade with all species of Platydoryctes, C. palagannensis, C. tayronensis and Leluthia sp.1 on the other hand was estimated to occur both during the early and middle Miocene, between 18.90-12.56 Mya and 18.07-12.18 Mya respectively. A main Callihormius clade also having A. striata was also estimated to have its origin during the early and middle Miocene, 19.15-12.26 Mya, but its MRCA was estimated from the middle Miocene and late Miocene, between 15.43-9.10 Mya.

Discussion Phylogenetic relationships among genera

This represents the first molecular phylogenetic study that focuses on species of Callihormius and related genera. Our best estimate of phylogeny consistently recovered a main clade with species assigned to the following seven genera: Aphelopsia, Callihormius, Histeromeroides, Iare, Leluthia, Platydoryctes and Stenocorse. These genera had previously been nested together within a single major clade in previous molecular phylogenetic analyses of the Doryctinae (Martinez et al., 2010; Zaldívar-Riverón et al., 2013; Belokobylskij et al., 2015). So far, there 29 is not any known exclusive morphological feature or character combination that help us to propose this group as a separate doryctine tribe. Various ingroup relationships were non-significantly supported despite of five nuclear and mitochondrial markers were incorporated in our analyses. Most of these relationships are characterised by having considerable short branch lengths, which could be due to ancient rapid radiation (ARR) events that occurred during the early evolution of the group. ARRs occur when lineages have diverged in rapid succession within a relatively short period of time in the ancient past, generating patterns of molecular and morphological change that are difficult to discern phylogenetically (Whitfield & Kjer, 2008). Although the word ‘ancient’ generally refers to a much older geological period than those estimated for the ingroup taxa examined in this work, in the context of not necessarily indicates a specific age, but a high ratio between the amount of time that has elapsed since divergences occurred and the time span in which they occurred (Whitfield & Kjer, 2008). ARRs have been previously suggested that occurred in the braconid subfamily Microgastrinae (Banks & Whitfield, 2006) and within the doryctine genus Notiospathius (Ceccarelli & Zaldívar-Riverón, 2013).

Taxonomic inferences

The external morphology of the species recovered within the main Platydoryctes clade agree with the original description of the genus. All these species possess a flattened body with a mesoscutum not declivous anteriorly or slightly more elevated than pronotum (Barbalho & Penteado-Dias, 2000). However, we also noticed that this feature is considerably homoplastic, since it is also shared by some species that were assigned to Callihormius, Leluthia and Janzenia, which are nested in separate clades in our phylogenetic hypotheses. Due to this, we suggest that Platydoryctes should also be defined by the following combination of morphological features: 1) considerably flattened body with a flat mesoscutum not declivous anteriorly or slightly more elevated than pronotum; 2) flat scutellum; 2) short antennae (25 or less segments); 3) ovipositor equal or shorter than metasoma, 4) second metasomal tergite without diverging grooves or a semicircular area defined by strong marked carinae, and 5) a wide rugose or striate rugose area at posteromedian mesoscutum. The main Platydoryctes clade appears divided into two smaller clades, one significantly supported clade, composed by six Colombian and a Mexican species. The latter species share a fore wing vein 3RSa smaller or equal to 1.2 times the vein r length. The second one contained three Brazilian species and one from Mexico and Colombia. These species share a fore wing vein 3RSa larger than 1.2 times the vein r length. Platydoryctes was recovered as paraphyletic 30 in our analyses since Platydoryctes sp.2, is nested separately together with other two species of Callihormius, C. palagannensis and C. tayronensis. However, this relationship is not well supported and the test of alternative hypothesis constraining Platydoryctes as monophyletic obtained a significantly higher value of marginal likelihood than our recovered hypothesis. In addition, Platydoryctes sp.2 has all the external morphological features of Platydoryctes, fitting perfectly in the clade with the Brazilian species mentioned above. Therefore, our results support Platydoryctes as a valid genus. All Callihormius species used in this work and the ones describe in Gadelha et al. (2018) were identified according to Marsh’s (1965; 1966) definition of the genus. However, our phylogeny does not recover Callihormius as monophyletic, and this is supported by the test of alternative topology that constrained its monophyly, which had a significantly lower value of marginal likelihood. The clade were most species of Callihormius were recovered had low support (BPP = 0.55), although its internal nodes were significantly supported. Species of this main Callihormius clade share: 1) vertex coriaceous; 2) scutellum convex, although not always swollen; 3) mesoscutum rugose posteromedian area absent or small and triangular when present; 4) notauli absent or slightly indicated by rugosities, but never as a scrobiculate groove; 5) mesoscutum higher than pronotum, not declivous (in 90° angle) but gently curved towards the pronotum. All these characters agree with C. bifasciatus, the type species of the genus, and therefore we suggest that species of this clade should maintain the name of Callihormius. Of all species that were recovered out of this main Callihormius clade, the closest one was C. shawi, which was nested at the base of a clade composed of the Iare spp., A. annulicornis and Leluthia sp.5. This relationship is not well supported in our analysis; however, C. shawi has various morphological features that are not present in the species of the main Callihormius clade, including a very marked notauli, considerably long ovipositor, and vein m-cu of fore wing distal to 2RS. Thus, generic placement of the latter species appears to be uncertain. Other species of Callihormius placed in a separate clade, C. franciscomartoi, was recovered as sister to a clade containing H. onkoterebrus and L. canalia, though this relationship was poorly supported. Morphologically, H. onkoterebrus only shares a smooth mesopleuron with the remaining two species, and only a smooth head with C. franciscomartoi, although in the last species it is not completely smooth. On the other hand, L. canalia and C. franciscomartoi share a long ovipositor and antennae (more than 30 segments), notauli strongly scrobiculate, first metasomal segment almost two times as long as it apical width and the pronotal collar enlarged behind head. Therefore, apparently C. franciscomartoi is more related to this species of Leluthia than to the main clade of Callihormius leading it to an uncertain generic position. Callihormius sp.2 was recovered with low support together with other two 31 species of Leluthia. This species of Callihormius shares more morphological features with the main clade of Callihormius than with the above species of Leluthia. However, the presence of a long ovipositor, a rugose-coriaceous vertex and a hairy body, are characters that are not found in the species belonging to the main Callihormius clade. Thus, the generic placement of this species of Callihormius is also uncertain. As mentioned above, two of the species of Callihormius, C. palagannensis and C. tayronensis were recovered in a significantly supported clade as sister to P. sp. 2. Interestingly, C. tayronenses has a low mesoscutum (lower than propodeum in lateral view) and a flat scutellum as in all Platydoryctes species and thus could fit within the latter genus according to our phylogeny, even with a mesosoma not as flattened as the species of Platydoryctes. On the other hand, C. palagannensis shares with the members of the main clade of Callihormius a high mesoscutum (higher than pronotum in lateral view) and a convex scutellum. However, our morphological examination revealed that the above two taxa share a pair of exclusive features, a convex first metasomal tergite and a smooth metapleuron with poor or no roughness, thus indicating that they could actually represent a separate group. Aphelopsia was not recovered as monophyletic, since its two described species appeared in separate clades. This could be due to the lack of phylogenetic signal, since we could only include for them COI and 28S sequences. However, A. striata was significantly supported as sister of the main Callihormius clade, and this species does not have one of the diagnostic features that separates Aphelopsia from Callihormius, a larger second submarginal cell on the fore wing (3RSa vein length greater than 3RSb), although similar to the type species of Aphelopisa, A. annulicornis, it has the vertex, scutellum and basal median areas of pronotum smoot. We therefore decided to maintain the current generic status for the two species of Aphelopsia pendant to further molecular phylogenetic studies with additional markers and taxa. Our morphological examination of the specimens shows evidence to refute the synonymising Panama under Leluthia as proposed by Belokobylskij et al. (2004). The authors did not make clear why they proposed that synonym. However, it was probably due to a misinterpretation of the weakly impressed diverging grooves at the basal corner of the second metasomal tergite in the type species of Panama as a variation of the strongly marked diverging grooves present in the second tergite in the known species of Leluthia. Moreover, besides these diverging grooves, species of the latter genus also have a second semicircular groove (not present in Panama) that enclosures a circular or oval area at the base of the second tergite. According to this, the name Leluthia should be restricted only to the members of the clade containing four species, among which are its type species, L. mexicana Cameron, and Panama (stat. rev.) should be considered as a valid genus. 32

We also propose to revalidate the name Panama to its type species, Panama canalia, stat. rev., currently assigned to Leluthia and in this context the following species of our phylogeny should be considered as Panama: L. sp.1, L. sp.3, and L. sp.5, despite that they were not clustered in a single clade with P. canalia, since this was weakly supported. These species agree with Marsh’s (1993; 2002) original definition of Panama, since they share the following features: lengthened pronotal collar, precoxal sulcus as long as mesopleuron and second metasomal tergite with weakly impressed diverging grooves at basal corners. For L. sp.1, L. sp.3 and L. sp.5 it is difficult to consider them as an undescribed genus since they lack of substantial morphological characters to separate them at generic level from Panama, were they fit best. However, L. sp. 2 has the epicnemial carina with projections behind the fore coxa, propleuron transversally striate-rugose, and a sinuous groove dividing de second and third metasomal segment followed by a second straight groove on the third tergite. These features are not present neither in P. canalia nor in any of the remaining species assigned here to this genus. Although L. sp. 4 was recovered with high support as sister to Leluthia sensu stricto, it does not have the same sculpture on the second metasomal tergite, besides other features such as the first metasomal tergite more than two times longer than its apical width (first tergite length equal to its apical width in Leluthia) and basal median areas of propodeum coriaceous (propodeum completely rugouse or striate-rugose, basal median areas absent in Leluthia). Therefore, this species does not fit in the Leluthia sensu stricto, and therefore this could actually represent an undescribed genus.

Divergence time inferences

Our phylogenetic study revealed that most of de generic diversification of the American Doryctinae probably occurred during the Tertiary (Fig. 3), a period that was affected by a series of climactic change events (De Man & Simaeys, 2004). Condamine et al. (2012) also suggested that climatic events occurred during Tertiary could significantly influence the diversification rates of swallowtails (Papilionidae). Thus, the generic diversification in our ingroup also seems to be related to these events. The divergence time estimates for the clades that were well supported in the Bayesian phylogram showed that the clade containing Callihormius and its related genera diverged from the other doryctine taxa belonging to the main ‘South American’ clade somewhere between the late Oligocene and middle of Miocene 26.66 to 18.74 Mya, with its MRCA dated to 24.45 to 33

16.88 Mya. These estimated ages are concordant with the Late Oligocene Warming Event, which was estimated to occur around 26 to 24 mya (Villa & Persico, 2006). The following groups, which were well supported, were estimated to have diversified between the middle and late Miocene: Callihormius s. str. + A. striata (MRCA = 15.43 to 9.10 mya), Stenocorse (MRCA = 11.36 to 6.12 mya), Iare (MRCA = 15.52 to 9.44 mya) and Leluthia s. str. (MRCA = 16.74 to 9.48 mya). The estimated diversification times in these groups seem to be congruent with the Middle Miocene Climatic Optimum (MMCO), estimated to occur ca.15 Mya (You et al., 2009). These proposed diversification times agree with the ones obtained for the Neotropical, speciose doryctine genus Notiospathius Matthews & Marsh (Ceccarelli & Zaldívar-Riverón, 2013). In the latter study, the MRCA of Notiospathius was estimated to have diverged around the Oligocene–Miocene boundary, and subsequently diversified and radiated mostly during the mid to late Miocene. Similar times of divergence are also found on the bumble bee (Apidae: Bombus), which was proposed to have diversified along Central and South America during the Late Miocene (Hines, 2008). Within the main Platydoryctes clade there are two main clades, one mainly formed by northwestern Colombian species and another one composed of four species from Brazil, one also from northwestern Colombia and one from Mexico. The divergence between the above clades was estimated to occur between 18.07 and 12.18 MYa, which agrees with the Andean uplift, which started to rise in the north of South America about 23 mya, with an intensification of its rising during the late middle Miocene (~12 mya) and early Pliocene (~4.5 mya) (Hoorn et al. 2010). Therefore, besides the MMCO, which also occurred during this period, is plausible that the Andean uplift also played a role on the separation of these two groups.

Acknowledgements We thank Cristina Mayorga and Guillermina Ortega for their assistance at the CNIN IB UNAM, Laura Márquez for her help with the sequencing facilities at IB UNAM. This work was funded by grants given by UNAM DGAPA (PAPIIT Convocatoria 2019, Proyecto IN201119) to AZR and by a scholarship given by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) to SSG.

34

References

Ashmead, W.H. (1900) Classification of the Ichneumon flies, or the superfamily Ichneumonoidea. Proceedings of the United States National Museum, 23, 1–220.

Austin, A.D., Quicke, D.L.J. & Marsh, P.M. (1994) The hymenopterous parasitoids of eucalypt longicorn beetles, Phoracantha spp. (Coleoptera: Cerambycidae) in Australia. Bulletin of Entomological Research, 84, 145–174.

Banks, J.C. & Whitfield, J.B. (2006) Dissecting the ancient rapid radiation of microgastrine wasp genera using additional nuclear genes. Molecular Phylogenetics and Evolution, 41, 690–703.

Barbalho, S.M. & Penteado-Dias, A.M. (2000) Platydoryctes, a new Doryctinae genus from Brazil (Hymenoptera: Braconidae). Entomological News, 111, 25–31.

Belokobylskij, S.A. (1992) On the classification and phylogeny of the braconid wasp of subfamilies Doryctinae and Exothecinae (Hymenoptera, Braconidae). Part I. On the classification, 1. Entomologicheskoe obozrenie, 71, 900–928.

Belokobylskij, S.A. (2002) Two new Oriental genera of Doryctinae (Hymenoptera, Braconidae) from termite nests. Journal of Natural History, 36, 953–962.

Belokobylskij, S.A., Zaldivar-Riverón, A. & Quicke, D.L.J. (2004) Phylogeny of the genera of the parasitic wasps subfamily Doryctinae (Hymenoptera: Braconidae) based on morphological evidence. Zoological Journal of the Linnean Society, 142, 369–404.

Belokobylskij, S.A., Zaldivar-riverón, A. & Coronado-Blanco, J.M. (2014) A new subgenus of the genus Callihormius Ashmead, 1900 (Hymenoptera: Braconidae: Doryctinae) from Mexico. Proceedings of the Russian Entomological Society. St Petersburg, 85, 151–156.

Belokobylskij, S.A., Samancá, E. & Zaldivar-riverón, A. (2015) Mexiare gen. nov., a new Doryctinae genus (Hymenoptera: Braconidae) from Mexico with fused first and second metasomal tergites. Zootaxa, 3914, 122–130.

Betz, O. (2002) Performance and adaptive value of tarsal morphology in rove beetles of the genus Stenus (Coleoptera, Staphylinidae). The journal of experimental Biology, 205, 1097–1113. 35

Braet, Y. (2016) Key to the genera of Doryctinae of the world. URL http://www.doryctinaekey.myspecies.info Braet, Y. & van Achterberg, C. (2001) New taxa of the subfamily Doryctinae Foerster (Hymenoptera: Braconidae) from French Guiana and Brazil. Zoologische Mededelingen Leiden, 75, 119–136. Brullé, M.A. (1846) Tome Quatrième. Des Hyménoptères. Les Ichneumonides. Histoire Naturelles des Insectes (ed. by de A.L. Saint-Fargeau), pp. 56–521. Paris.

Ceccarelli, F.S., Sharkey, M.J. & Zaldívar-Riverón, A. (2012) Species identification in the taxonomically neglected, highly diverse, neotropical parasitoid wasp genus Notiospathius (Braconidae: Doryctinae) based on an integrative molecular and morphological approach. Molecular Phylogenetics and Evolution, 62, 485–495.

Ceccarelli, F.S. & Zaldívar-Riverón, A. (2013) Broad polyphyly and historical biogeography of the Neotropical wasp genus Notiospathius (Braconidae: Doryctinae). Molecular Phylogenetics and Evolution, 69, 142–152.

Collins, R.A., Boykin, L.M., Cruickshank, R.H. & Armstrong, K.F. (2012) Barcoding’s next top model: an evaluation of nucleotide substitution models for specimen identification. Methods in Ecology and Evolution, 3, 457–465.

Condamine, F.L., Sperling, F.A.H., Wahlberg, N., Rasplus, J.Y. & Kergoat, G.J. (2012) What causes latitudinal gradients in species diversity? Evolutionary processes and ecological constraints on swallowtail biodiversity. Ecology Letters, 15, 267–277.

De Man, E. & Van Simaeys, S. (2004) Late Oligocene Warming Event in the southern North Sea Basin: benthic foraminifera as paleotemperature proxies. Netherlands Journal of Geosciences, 83, 227–239.

Drummond, A.J., Suchard, M.A., Xie, D. & Rambaut, A. (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29, 1969–1973.

Forshage, M., Hanssen, O. & Staverlokk A. (2016) Platyceraphron Kieffer, 1906 (Hymenoptera, Megaspilidae) in the Nordic countries. Norwegian Journal of Entomology, 63, 125–129. 36

Gadelha, S.S., Zaldívar-Riverón, A. & Oliveira, M.L. (2018) Revisionary Taxonomy of the American Doryctine Wasp Genus Callihormius Ashmead, 1900 (Hymenoptera: Braconidae). Annales Zoologici, 68, 211–235.

Gillott, C. (2005) Entomology. Springer Science & Business Media. 831 pp.

Hebert, P.D., Ratnasingham, S. & deWaard, J.R. (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London B: Biological Sciences, 270, 96–99.

Hines, H.M. (2008) Historical Biogeography, Divergence Times, and Diversification Patterns of Bumble Bees (Hymenoptera: Apidae: Bombus). Sustematic Biology, 57, 58–75.

Hoorn, C., Wesselingh, F.P., ter Steege, H., Bermudez, M.A., Mora, A., Sevink, J., Sanmartín, I., Sanchez-Meseguer, A., Anderson, C.L., Figueiredo, J.P., Jaramillo, C., Riff, D., Negri, F.R., Hooghiemstra, H., Lundberg, J., Stadler, T., Särkinen, T. & Antonelli, A. (2010) Amazonia Through Time: Andean Uplift, Climate Change, Landscape Evolution, and Biodiversity. Science, 330, 927–931.

Kass, R.E. & Raftery, A.E. (1995) Bayes factors. Journal of the American Statistical Association, 90, 773–795.

Lanfear R., Calcott B., Ho, S.Y.W. & Guindon, S. (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29, 1695–1701.

Marsh, P.M. (1965) The Nearctic Doryctinae I. A review of the subfamily with a taxonomic revision of the tribe Hecabolini (Hymenoptera: Braconidae). Annals of the Entomological Society of America, 58, 668–699.

Marsh, P.M. (1966) The Nearctic Doryctinae, III. The genus Callihormius Ashmead (Hymenoptera: Braconidae). Proceedings of the Entomological Society of Washington, 68, 240–246.

Marsh, P.M. (1968) Nearctic Doryctinae. 6. Genera Acrophasmus, Glyptocolastes, Doryctinus and a new genus Stenocorse (Hymenoptera Braconidae). Proceedings of the entomological Society of Washington, 70, 101–113. 37

Marsh, P.M. (1991) Description of a phytophagous doryctine braconid from Brasil (Hymenoptera: Braconidae). Proceedings of the Entomological Society of Washington, 93, 92–95.

Marsh, P.M. (1993) Descriptions of new Western Hemisphere genera of the subfamily Doryctinae (Hymenoptera: Braconidae). Contributions of the American Entomological Institute, 28, 1–58.

Marsh, P.M. (1997) Doryctinae. Manual of the New World genera of the family Braconidae (Hymenoptera) (ed. by R. A. Wharton, P. M. Marsh, &, M. J. Sharkey), pp. 211–237. The International Society of Hymenopterists. Special Publications, Washington, DC.

Marsh, P.M. (2002) The Doryctinae of Costa Rica (excluding the genus Heterospilus). Memoirs of The American Entomological Institute, 70, 1–319.

Marsh, P.M., Macêdo, M.V. & Pimental, M.C.P. (2000) Descriptions and biological notes on two new phytophagous species of the genus Allorhogas from Brazil (Hymenoptera: Braconidae: Doryctinae). Journal of Hymenoptera Research, 9, 292–297.

Martínez, J.J., Ceccarelli, F.S. & Zaldívar-Riverón, A. (2010) The genus Iare Barbalho and Penteado-Dias (Hymenoptera: Braconidae: Doryctinae) in Mexico, with the description of two new species. Zootaxa, 2685, 30–38.

Miller, M.A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Gateway Computing Environments Workshop (GCE), IEEE, 1–8.

Muesebeck, C.F.W. (1960) A fossil braconid wasp of the genus Ecphylus (Hymenoptera). Journal of Paleontology, 34, 495–496.

O’Dea, A., Lessios, H.A., Coates, A.G. et al. (2016) Formation of the Isthmus of Panama. Science Advances, 2, 1–11.

Padial, J.M., Miralles, A., De la Riva, I. & Vences, M. (2010) The integrative future of taxonomy. Frontiers in Zoology, 7,1–14.

Rambaut, A., Suchard, M.A., Xie, D. & Drummond, A.J. (2014) Tracer v1.6. URL http://beast.bio.ed.ac.uk/Tracer. 38

Ribera, I. & Nilsson, A.N. (1995) Morphometric patterns among diving beetles (Coleoptera: Noteridae, Hygrobiidae, and Dytiscidae). Canadian Journal of Zoology, 73, 2343–2360.

Ronquist, F., Teslenko, M., Van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542.

Shaw, S.R. & Edgerly, J.S. (1985) A new braconid genus (Hymenoptera) parasitizing webspinners (Embiidina) in trinidad. Psyche, 92, 505–511.

Swofford, D.L. (2002) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.

Thorp, R.W. (1979) Structural, Behavioral, and Physiological Adaptations of Bees (Apoidea) for collecting pollen. Annals of the Missouri Botanical Garden, 66, 788–812.

Van Achterberg, C. (1983) Three new Palaearctic genera of Braconinae (Hymenoptera: Braconidae). Scandinavian Entomology, 14, 69–76.

Villa, G. & Perisco, D. (2006) Late Oligocene climatic changes: Evidence from calcareous nannofossils at Kerguelen Plateau Site 748 (Southern Ocean). Palaeogeography, Palaeoclimatology, Palaeoecology, 231, 110–76.

Wasserthal, L.T. (1997) The Pollinators of the Malagasy Star Orchids Angraecum sesquipedale, A. sororium and A. compactum and the Evolution of Extremely Long Spurs by Pollinator Shift. Botanica Acta, 110, 343–359.

Whitfield, J.B. & Kjer, K.M. (2008). Ancient Rapid Radiations of Insects: Challenges for Phylogenetic Analysis. Annual Review of Entomology, 53, 449–472.

Zaldivar-Riverón, A., Belokobylskij, S.A., León-Regagnon, V., Martínez, J.J., Briceño, R. & Quicke, D.L.J. (2007) A single origin of gall association in a group of parasitic wasps with disparate morphologies. Molecular Phylogenetics and Evolution, 44, 981–992.

Zaldivar-Riverón, A., Belokobylskij, S.A., León-Regagnon, V., Briceño-G, R. & Quicke, D.L.J. (2008) Molecular phylogeny and historical biogeography of the cosmopolitan parasitic wasp subfamily Doryctinae (Hymenoptera: Braconidae). Invertebrate Systematics, 22, 345–363. 39

Zaldívar-Riveron, A., Martínez, J.J., Ceccarelli, F.S. & Shaw, S.R. (2012) Five new species of the genera Heerz Marsh, Lissopsius Marsh and Ondigus Braet, Barbalho and van Achterberg (Braconidae, Doryctinae) from the Chamela-Cuixmala biosphere reserve in Jalisco, Mexico. Zookeys, 164, 1–23.

Zaldívar-Riverón, A., Rodríguez-Jiménez, A., Sarmiento, C.E., Pedraza-Lara, C. & López- Estrada, E.K. (2013) Phylogenetic relationships and description of Bolivar, a new genus of Neotropical doryctine wasps (Hymenoptera: Braconidae). Invertebrate Systematics, 27, 673–688.

Zaldívar-Riverón, A., Martínez, J.J., Belokobylskij, S.A., Pedraza-Lara, C., Shaw, S.R., Hanson, P.E. & Varela-Hernández, F. (2014) Systematics and evolution of gall formationin the plant-associated genera of the wasp subfamily Doryctinae (Hymenoptera: Braconidae). Systematic Entomology, 39, 633–659.

Xie, W., Lewis, P.O., Fan, Y., Kuo, L. & Chen, M.H. (2011) Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Systematic Biology, 60, 150–160.

Yu, D.S., Achterberg, C. & Horstmann, K. (2012) World Ichneumonoidea 2011: taxonomy, biology and distribution. Vancouver: Taxapad, 2011. URL http://www.taxapad.com.

You, Y., Huber, M., Müller, R.D., Poulsen, C.J. & Ribbe, J. (2009) Simulation of the Middle Miocene Climate Optimum. Geophysical Research Letters, 36, 1–5. DOI 10.1029/2008GL036571.

Zuparko, R.L. & Poinar Jr., G.O. (1997) Aivalykus dominicanus (Hymenoptera: Braconidae), a new species from Dominican amber. Proceedings of the Entomological Society of Washington, 99, 744–747. 40

Figures

Figure 1. Different forms of Callihormius and other morphologically close genera. (A) Aphelopsia annulicornis (Holotype); (B) Callihormius janzeni (Paratype); (C) Callihormius shawi (Holotype); (D) Leluthia astigma CNIN3085; (E) Platidoryctes sp. 13 CNIN3289; (F) Platydoryctes sp. 5 CNIN2241.

41

42

Figure 2. Majority rule consensus tree resulting from the Bayesian analysis of the 28S + COI + Cytb + ef-1-a + wg concatenated matrix. Black circles near clades represent posterior probabilities ≥ 0.95; Images from top to bottom: Platydoryctes sp.13, H. onkoterebrus, Iare sp.1 CNIN3275, A. annulicornis, Callihormius sp.1 CNIN2243, Stenocorse sp., L. astigma CNIN3085; Abbreviations: Argentina (ARG), Australia (AUS), Brazil (BRA), Chile (CHI), Colombia (COL), Costa Rica (COR), Dominican Republic (DOR), French Guiana (FGU), Mexico (MEX), Nicaragua (NIC), Spain (SPA), Venezuela (VEN).

43

44

Figure 3. Ultrametric tree derived from the BEAST analysis using the complete dataset, showing divergence time estimates. Blue bars represent 95% confidence intervals. Clustered internal nodes represent clades obtained with BPP values over 0.95 on the Bayesian analysis; Abbreviations: Pliocene (P), Quaternary (Q), Argentina (ARG), Australia (AUS), Brazil (BRA), Chile (CHI), Colombia (COL), Costa Rica (COR), Dominican Republic (DOR), French Guiana (FGU), Mexico (MEX), Nicaragua (NIC), Spain (SPA), Venezuela (VEN).

45

List of Supplementary material

Supplementary material 1. - Species used at this work followed by their voucher numbers, location data, and Genbank access for each gene used (Part 1/2). Individual Collection Altitude Genus Species Country State/Region Locality Habitat GPS Location code code (m) Costa Aivalykus arawak Jo725SB Rica Costa Aivalykus sp. Jo741SB Rica Costa Aivalykus sp. CNIN952 Rica Allorhogas sp. IB18 Argentina La Pampa Costa Aphelopsia annulicornis AW011 Rica 52°09’09.19’’ French Montagnes de Aphelopsia striata Jo838VA Relais Patawa W- Guiana Kaw 4°32’42.20’’N Barbalhoa sp. CNIN3265 Brazil São Paulo Serra do Japi 18.585611- Bolivar tuxtlae CNIN364 Not014 Mexico Veracruz Los Tuxtlas 70 95.061111 Bracocesa sp. CNIN3266 Chile IX Region Villarrica, Flor de Lago Ranch Selva baja caducifoli 19.49859 - Callihormius circumlitoris CNIN2220 Cham-82 Mexico Jalisco Chamela biostation 101 a (dry 105.04476 forest) Callihormius circumlitoris CNIN3178 Mexico Jalisco Chamela Biostation, al lado de la oficina Callihormius circumlitoris CNIN3082 Mexico Jalisco Chamela Biostation, frente al lab ; Selva baja 19.49859 - Callihormius circumlitoris CNIN2221 Cham-82 Mexico Jalisco Chamela Biostation, near office caducifoli 101m 105.04476 a (dry forest) Callihormius franciscomartoi CNIN2246 N01093 Brazil Espírito Santo Santa Tereza, Estação Biológica de Santa Lúcia 20°36’S Callihormius franciscomartoi CNIN2240 N00199 Brazil Espírito Santo Guarapari, P E Paulo César Vinha 4 40°25’W 46

La Huerta, Costa Sur, Estacion de Biologia Callihormius janzeni ASDOR048 Cham-0048 Mexico Jalisco Chamela, a Lado del Laboratorio Cham- ASDOR868 La Huerta, Costa Sur, Estacion de Biologia 19.499 - Callihormius janzeni 85/Cham- Mexico Jalisco 99 /CNIN3283 Chamela, cerca del Laboratorio 105.044 0817 Cham- ASDOR906 La Huerta, Costa Sur, Estacion de Biologia 19.499 - Callihormius janzeni 84/Cham- Mexico Jalisco 99 /CNIN3285 Chamela, cerca del Laboratorio 105.044 0855 11°20’N Callihormius palagannensis CNIN3299 M.1596 Colombia Magdalena Parque Nacional Nautal Tayrona Palagánn 30 74°2’W 11°20’N Callihormius palagannensis CNIN3296 M.2135 Colombia Magdalena Parque Nacional Nautal Tayrona Palagánn 30 74°2’W 11°20’N Callihormius palagannensis CNIN3301 M.2135 Colombia Magdalena Parque Nacional Nautal Tayrona Palagánn 30 74°2’W 11°20’N Callihormius palagannensis CNIN2244 M.2230 Colombia Magdalena Parque Nacional Nautal Tayrona Neguanje 10 74°2’W 11°20'N Callihormius palagannensis CNIN2168 M.2134 Colombia Magdalena Parque Nacional Nautal Tayrona Palagánn 30 74°2'W Estacion de Biologia Chamela, al lado de la Callihormius stigmatus CNIN3179 Mexico Jalisco oficina La Huerta, Costa Sur, Estacion de Biologia 19.499 N Callihormius shawi ASDOR554 Cham-0503 Mexico Jalisco Chamela, a Lado del Laboratorio 105.044 W La Huerta, Costa Sur, Estacion de Biologia 19.505 - Callihormius shawi ASDOR575 Cham-0524 Mexico Jalisco 54 Chamela, calandria (arroyo ca) 105.038 11°20’N Callihormius tayronensis CNIN3302 M.1598 Colombia Magdalena Parque Nacional Nautal Tayrona Palagánn 30 74°2’W 11°20’N Callihormius tayronensis CNIN3290 Colombia Magdalena Parque Nacional Nautal Tayrona Palagánn 30 74°2’W 11°20’N Callihormius tayronensis CNIN2200 M.1596 Colombia Magdalena Parque Nacional Nautal Tayrona Palagánn 30 74°2’W 11°20’N Callihormius tayronensis CNIN2178 M.2018 Colombia Magdalena Parque Nacional Nautal Tayrona Palagánn 30 74°2’W 11°20’N Callihormius tayronensis CNIN2245 M.2137 Colombia Magdalena Parque Nacional Nautal Tayrona Palagánn 30 74°2’W 11°20’N Callihormius sp.1 CNIN2243 M.1597 Colombia Magdalena Parque Nacional Nautal Tayrona Neguanje 10 74°2’W 1°29'23,3''N Callihormius sp.2 CNIN2177 Brazil Roraima Caracaraí, PN Viruá 61°00'08.7''W 47

La Huerta, Costa Sur, Estacion de Biologia 19.498 N Callihormius sp.3 ASDOR046 Cham-0046 Mexico Jalisco Chamela, a Lado del Laboratorio 105.044 W" Callihormius sp.4 CNIN3083 Mexico Jalisco Chamela biostation French Callihormius sp.5 CNIN1060 Montagne des Chevour Guiana La Huerta, Costa Sur, Estacion de Biologia 19.499 - Callihormius sp.6 ASDOR453 Cham-357 Mexico Jalisco 92 Chamela, a Lado del Laboratorio 105.044 La Huerta, Costa Sur, Estacion de Biologia 19.498 - Callihormius sp.7 ASDOR097 CNIN02 Mexico Jalisco 95 Chamela, a Lado del Laboratorio 105.044 Coiba sp.1 CNIN3263 Cham-82 Mexico La Huerta, Costa Sur, Estacion de Biologia 19.499 - Coiba sp.2 ASDOR449 Cham-0353 Mexico Jalisco 56 Chamela, camino chachalaca 105.038 La Huerta, Costa Sur, Estacion de Biologia 19.499 - Coiba sp.3 ASDOR450 Cham-0354 Mexico Jalisco 56 Chamela, camino chachalaca 105.038 Costa Curtiselloides pilosus CNIN3267 61327 Rica Curtiselloides pilosus Jo640SB Belize Costa Doryctinus sp.1 IB2 Rica Doryctinus sp.2 CNIN3262 Mexico D.F. Copilco, Coyoacan Dominica 19.06696- Doryctopambolus clebschi CNIN370 Not048 n La Vega A. Bermudez NP, La Cienega Telostablones 1123 70.86339 Republic Costa 10.20 N - 84.04 Ecphylus sp. CNIN1097 Heredia 11 km SE La Virgen, INBIO-OET transect 450-550 Rica W French Evaniodes areolatus CNIN1049 Guiana French Evaniodes spathiiformis CNIN1050 Guiana French Evanoides palikuri CNIN1051 Guiana French Evanoides wayampisi CNIN1052 Guiana La Huerta, Costa Sur, Estacion de Biologia 19.498 N Glyptocolastes sp. ASDOR080 Cham-080 Mexico Jalisco Chamela, a Lado del Laboratorio 105.044 W Selva Gymnobracon fasciatus CNIN638 IBHym-001 Venezuela Yaracuy San Felipe, estación de Biología la Guaquira subcaduci folia 48

Hecabolus semiaridus Jo650 U. K. Berkshire Ascot, Silwood Park Hecabolus semiaridus CNIN737 Venezuela Lara Cerro Saroche, Cañaote Costa Heerz lukenatcha Jo715 Rica Heterospilus tauricus CNIN884 Spain Valencia 18°58'40"N Heterospilus sp. CNIN3194 Mexico Michoacán Mpio Mujica. El guayabo. 330 102°4'54"W French Histeromeroides onkoterebrus CNIN2197 Regina Kaw mont. "Patawa" Guiana French Histeromeroides onkoterebrus CNIN2217 Regina Kaw mont. "Patawa" Guiana tropical 19.49814 N- Iare belokobylskiji ASDOR029 Cham-029 Mexico Jalisco Chamela Biostation, near lab 95 dry forest 105.0444 W La Huerta, Costa Sur, Estacion de Biologia tropical 19.498 - Iare belokobylskiji ASDOR022 Cham-022 Mexico Jalisco 95 Chamela, a Lado del Laboratorio dry forest 105.044 tropical 19.49814 N- Iare cheguevarai ASDOR021 Cham-021 Mexico Jalisco Chamela Biostation, near lab 95 dry forest 105.0444 W La Huerta, Costa Sur, Estacion de Biologia tropical 19.498 - Iare cheguevarai ASDOR028 Cham-028 Mexico Jalisco 95 Chamela, a Lado del Laboratorio dry forest 105.044 tropical 19.49814 N- Iare mexicanus ASDOR030 Cham-030 Mexico Jalisco Chamela Biostation, near lab 95 dry forest 105.0444 W La Huerta, Costa Sur, Estacion de Biologia tropical 19.498 - Iare mexicanus ASDOR033 Cham-033 Mexico Jalisco 95 Chamela, a Lado del Laboratorio dry forest 105.044 Iare sp.1 CNIN3269 M.1763 Colombia Magdalena Parque Nacional Nautal Tayrona Palagánn 30 11°20N 74°2W Iare sp.1 CNIN3275 M.1925 Colombia Magdalena Parque Nacional Nautal Tayrona Palagánn 30 11°20N 74°2W Iare sp.1 CNIN3271 M.2137 Colombia Magdalena Parque Nacional Natural Tayrona Neguanje 10 11°20N 74°2W Iare sp.1 CNIN3272 M.1599 Colombia Magdalena Parque Nacional Natural Tayrona Neguanje 10 11°20N 74°2W La Huerta, Costa Sur, Estacion de Biologia 19.498 N Iare sp.2 ASDOR032 Cham-032 Mexico Jalisco Chamela, a Lado del Laboratorio 105.044 W Janzenia gauldi CNIN3175 Mexico Jalisco Chamela Biostation Costa Johnsonius sp. Jo719 Rica French Lamquetia marshi Jo833VA Guiana French 4°3201 N -52° Lamquetia marshi CNIN1435 Regina Guiana 0745 W 49

Leluthia aff. astigma CNIN3184 Mexico Jalisco Chamela Biostation, near lab Leluthia astigma CNIN3085 Mexico Jalisco Chamela Biostation, near lab La huerta, Costa Sur, Estacion de Biologia 19.498 - Leluthia canalia ASDOR008 Mexico Jalisco 95 Chamela, a lado del laboratorio 105.044 La huerta, Costa Sur, Estacion de Biologia 19.498 - Leluthia canalia ASDOR009 Mexico Jalisco 95 Chamela, a lado del laboratorio 105.044 Leluthia mexicana CNIN3187 Mexico Jalisco Chamela Biostation, near lab Ruy Barbosa, Riacho da Pratinha, Serra do 12°18'58.1''S Leluthia sp.1 CNIN3088 Brazil Bahia 624 Orubó 40°29'28.5''W French 04°32'643''N Leluthia sp.2 CNIN2218 Regina Kaw mont. "Patawa" Guiana 52°9'153''W French Leluthia sp.2 CNIN2219 Regina Kaw mont. "Patawa" Guiana Selva baja 19.49814 - Leluthia sp.3 ASDOR049 Mexico Jalisco Chamela Biostation, near lab caducifoli 95 105.0444 a Selva baja 19.49814 - Leluthia sp.4 ASDOR014 Cham-0014 Mexico Jalisco Chamela Biostation, near lab caducifoli 95 105.0444 a Selva baja La Huerta, Costa Sur, Estacion de Biologia 19.499N Leluthia sp.5 ASDOR011 Cham-0011 Mexico Jalisco caducifoli 56 Chamela, camino Buho 105.04W a La huerta, Costa Sur, Estacion de Biologia 19.498 - Leluthia sp.5 ASDOR012 Cham-0012 Mexico Jalisco 95 Chamela, a lado del laboratorio 105.044 La huerta, Costa Sur, Estacion de Biologia 19.498 - Leluthia sp.5 ASDOR013 Cham-0013 Mexico Jalisco 95 Chamela, a lado del laboratorio 105.044 Leluthia sp.6 CNIN639 Mexico Coahuila Ocampo, Parque La Mota Leluthia sp.6 Jo982 Mexico La Huerta, Costa Sur, Estacion de Biologia 19.499N Leluthia sp.7 ASDOR010 Cham-0010 Mexico Jalisco 65 Chamela, camino Buho 105.04W Lissopsius pacificus CNIN739 Mexico Jalisco Chamela Monitoriella rufithorax CNIN773 Mexico Veracruz Los Tuxtlas Notiospathius novateutoniae CNIN1092 Brazil Minas Gerais Serra da Canastra, Casca D'anta French Notiospathius sp. CNIN499 Not102 Regina Regina Kaw Mountain "Patawa" 200 Guiana 50

French Ondigus sp. Jo834VA Guiana Costa 10°21'N - Osmophila sp. CNIN1847 Heredia Rica 84°03'W 3° 4821 S - 70° Pedinotus columbianus CNIN1468 Colombia Amazonas 1828 W Percnobracon witru CNIN027 Argentina La Pampa Santa Rosa 11°20'N Platydoryctes sp.1 CNIN3300 M.2018 Colombia Magdalena Parque Nacional Natural Tayrona Palagann 30 74°2'W Platydoryctes sp.2 CNIN3084 Mexico Jalisco Chamela Biostation, near lab Conceição da Barra, Res. Biol. Córrego Grande, 18º16'39''S Platydoryctes sp.3 CNIN2201 N° 01187 Brazil Espírito Santo Lago do Descanso 39º47'46.8''W 20º36'S Platydoryctes sp.4 CNIN2239 N°00197 Brazil Espírito Santo Guarapari, P. E. Paulo César Vinha Restinga 4 40º25'W Platydoryctes sp.5 CNIN2241 Brazil Ceará Meruoca Platydoryctes sp.6 CNIN3180 Mexico Jalisco Chamela Biostation, near lab 11°20'N Platydoryctes sp.7 CNIN3276 M.1599 Colombia Magdalena Parque Nacional Natural Tayrona Neguanje 10 74°2'W 11°20'N Platydoryctes sp.7 CNIN3295 M.1599 Colombia Magdalena Parque Nacional Natural Tayrona Neguanje 10 74°2'W Platydoryctes sp.8 CNIN3277 M.3438 Colombia Magdalena Parque Nacional Natural Tayrona Zaino 50 11°20N 74°2W Platydoryctes sp.9 CNIN3278 M.1763 Colombia Magdalena Parque Nacional Nautal Tayrona Palagánn 30 11°20N 74°2W Platydoryctes sp.9 CNIN2169 Colombia Magdalena Parque Nacional Nautal Tayrona Palagánn 30 11°20N 74°2W Platydoryctes sp.10 CNIN3303 NOT 069 Mexico Platydoryctes sp.11 CNIN3279 M.1599 Colombia Magdalena Parque Nacional Natural Tayrona Neguanje 10 11°20N 74°2W Platydoryctes sp.11 CNIN3292 Colombia Magdalena Parque Nacional Natural Tayrona Neguanje 10 11°20N 74°2W Platydoryctes sp.12 CNIN3280 M.3034 Colombia Magdalena Parque Nacional Natural Tayrona Neguanje 10 11°20N 74°2W Platydoryctes sp.13 CNIN3289 M.3438 Colombia Magdalena Parque Nacional Natural Tayrona Zaino 50 11°20N 74°2W La Huerta, Costa Sur, Estacion de Biologia 19.498 N Platydoryctes sp.14 ASDOR047 Cham-0047 Mexico Jalisco 95 Chamela, a Lado del Laboratorio 105.044 W Platydoryctes sp.15 CNIN3177 Mexico Jalisco Chamela Biostation, calandria La Huerta, Costa Sur, Estacion de Biologia 19.498 N Ptesimogaster sp. ASDOR044 Mexico Jalisco Chamela, a Lado del Laboratorio 105.044 W Semirhytus sp. Jo628Marsh Venezuela Yacambú Municipality of Lara 51

15°39.428N Sergey tzotzil CNIN716 Mexico Chiapas Mpo. Albino Corzo, Reserva el Triunfo 92°48.67W Bosque 17.62334 - Sergey tzeltal CNIN448 Mexico Oaxaca Mpio. Santiago Comaltepec 1460 mesófilo 96.34669 15°39.428N Sergey tzeltal CNIN714 Mexico Chiapas Mpo. Albino Corzo, Reserva el Triunfo 92°48.67W 18° 44.277'N Stenocorse sp.1 CNIN3123 Mexico Veracruz Aprox. 10km de Alvarado en dirección SE 14 95° 42.004'W 11.985N Stenocorse sp.2 CNIN3204 Nicaragua Masaya Las Flores, 1km E. Flores 125 86.016W Mpio. Melgar, Cerca de una vertiente del Río 4º12'N Stenocorse sp.3 CNIN3205 Colombia Tolima 299 Sumapaz 74º41'7.63"W remanente selva alta 18.58512, - Tarasco sp. CNIN789 Not157 Mexico Veracruz Los Tuxtlas 151 perennifol 95.07519 ia French 4°3201 N 52° Trigonophasmus ruficeps CNIN734 Regina Guiana 0745 W Outgroup Jarra maculipennis - Australia Ontsira sp. Jo577 Australia Ontsira sp. CNIN1104 Australia Queensland Mt. Glorious Syngaster lepidus - Australia

52

Supplementary material 1. - Species used at this work followed by their voucher numbers, location data, and Genbank access for each gene used (Part 2/2). Date Collection COI Cytb wg ef-1-a 28s Genus Species Collector collected method Genbank Genbank Genbank Genbank Genbank Aivalykus arawak AY935398 - - - AY935471 Aivalykus sp. EF645790.1 - - - EF645758.1 Aivalykus sp. - KC822264 KC822129 - - Allorhogas sp. DQ498959 - - - EF645756 D.H. Janzen & Aphelopsia annulicornis 12.i.2008 JN212148.1 - - - JN212411.1 W. Hallwachs Malaise Aphelopsia striata x.2000 J. Cerda DQ498974 - - - DQ498941 trap 8- Barbalhoa sp. Moericke This study This study This study This study 10.viii.2011 Bolivar tuxtlae JN870291 KC822249 JN870623 KC822054 KC822193 Bracocesa sp. This study This study - This study This study A. Zaldivar y Callihormius circumlitoris 05.v.11 Light trap This study This study - - This study equi. Trampa de Callihormius circumlitoris This study This study This study This study This study luz Tampa de A. Zaldivar, N. Callihormius circumlitoris 17.vi2016 This study - This study - This study luz Delgado A. Zaldivar y Callihormius circumlitoris 05.v.11 Light trap This study - - - This study equi. C. O. Azevedo Callihormius franciscomartoi 31.v.2001 Varredura This study - - - This study & R. Kawada 02– B. Araujo & M. Callihormius franciscomartoi Malaise This study This study - - This study 10.xii.2006 Santos Hans Clebsch, Alejandro Zaldivar- Callihormius janzeni 23.vi.2009 HM434320 This study - - HQ200642 Riveron, Andrew Polaszek A. Zaldívar- ASDOR868- Callihormius janzeni 05.vi.2011 Riverón, S. - - This study This study 11.COI-5P Zaragoza- 53

Caballero, A. Ibarra. A. Zaldívar- Riverón, S. ASDOR906- Callihormius janzeni 05.v.2011 Zaragoza- - - - This study 11.COI-5P Caballero, A. Ibarra. 20.iv– Callihormius palagannensis Malaise R. Henriquez This study This study - - This study 4.v.2001 17– Callihormius palagannensis Malaise R. Henriquez This study - This study This study - 29.ix.2001 17– Callihormius palagannensis Malaise R. Henriquez This study This study - This study This study 29.ix.2001 18- Callihormius palagannensis Malaise R. Henriquez This study This study - This study This study 31.x.2001 Callihormius palagannensis 9-17.ix.2001 Malaise R. Henriquez This study This study - This study This study Trampa de A. Zaldivar, N. Callihormius stigmatus 7.viii.2016 This study - - - - luz Delgado A. Zaldivar- Callihormius shawi 20.ii.2010 HQ200996 - - This study This study Riverón A. Zaldivar- Callihormius shawi 23.ii.2010 JF863243 - - - This study Riverón Callihormius tayronensis 5-20.iv.2001 Malaise R. Henriquez This study This study - This study This study 28.vii- Callihormius tayronensis Malaise R. Henriquez This study This study - This study This study 18.viii.2001 20.iv– Callihormius tayronensis Malaise R. Henriquez This study This study - - This study 4.v.2001 28.vii- Callihormius tayronensis Malaise R. Henriquez This study This study - This study This study 18.viii.2001 Callihormius tayronensis 9-7.ix.2001 Malaise R. Henriquez This study This study - This study This study Callihormius sp.1 5-20.iv.2001 Malaise R. Henriquez This study This study This study This study This study J. A. Rafael, R. A. Heleodoro, D. M. M. Callihormius sp.2 19.iv.2015 Malaise This study This study - This study This study Mendes, D. W. A. Marques & Maldaner 54

Hans Clebsch, Alejandro Zaldivar- Callihormius sp.3 24.vi.2009 HM434319 This study This study This study HQ200640.1 Riveron, Andrew Polaszek A. Zaldívar, N. Callihormius sp.4 17.vi.2016 Light trap This study - - - This study Delgado 1- Malaise Callihormius sp.5 Yvies Braet This study - - - - 7.viii.2011 trap Callihormius sp.6 19.112.009 HQ200998 - - - - Hans Clebsch, Alejandro Zaldivar- Callihormius sp.7 23.06.2009 HM434338 - - - - Riveron, Andrew Polaszek Coiba sp.1 This study This study - This study This study A. Zaldívar- Coiba sp.2 18.xi.2009 HQ201011 - - - HQ200666 Riverón A. Zaldívar- Coiba sp.3 18.xi.2009 HQ201012 - - - HQ200667 Riverón Curtiselloides pilosus This study This study This study This study - Curtiselloides pilosus - - - - EF645764 Doryctinus sp.1 DQ498976 - - - DQ498943 Doryctinus sp.2 This study This study This study This study This study Doryctopambolus clebschi 15-16.ix.08 sweep HClebsch JN870294 JN870465 JN870627 KC822011 KC822142 Ecphylus sp. 8-iv.2003 KC822007 KC822271 KC822134 KC822088 KC822235 Evaniodes areolatus JQ653316 This study - - This study Evaniodes spathiiformis JQ653317 This study - - This study Evanoides palikuri JQ653318 This study - This study This study Evanoides wayampisi JQ653319 This study - This study This study Hans Clebsch, Glyptocolastes sp. 23.vi.2009 Alejandro JF912235 - - - HQ200619 Zaldivar- 55

Riveron, Andrew Polaszek A. Zaldivar-R. Gymnobracon fasciatus HQ945441 KC822278 KC822141 KC822094 KC822239 Briceño Hecabolus semiaridus AY935400.1 - - - AY935473 12- Hecabolus semiaridus YPT R. Briceño - - KJ586699.1 - - 15.iv.2008 Heerz lukenatcha EF645794 - - - EF645762 Sergey Heterospilus tauricus 28.vi.2010 Sweep KC822008 KC822272 - KC822089 KC822236 Belokobylskij Heterospilus sp. 05.viii.2016 A. Zaldívar This study This study - This study This study Histeromeroides onkoterebrus This study This study - This study This study Histeromeroides onkoterebrus - - This study - - Hans Clebsch, Alejandro Zaldívar- Iare belokobylskiji vi.2009 light trap HQ535827 This study This study This study HQ535814 Riverón, Andrew Polaszek H. Clebsch, A. Zaldívar- Iare belokobylskiji 24.vi.2009 JF912294 - - - - Riverón, A. Polaszek Hans Clebsch, Alejandro Zaldívar- Iare cheguevarai vi.2009 light trap HQ535822 This study This study This study HQ535809 Riverón, Andrew Polaszek H. Clebsch, A. Zaldívar- Iare cheguevarai 23.vi.2009 JF912303 - - - - Riverón, A. Polaszek Hans Clebsch, Iare mexicanus vi.2009 light trap Alejandro HQ535828 This study This study This study HQ535815 Zaldívar- 56

Riverón, Andrew Polaszek H. Clebsch, A. Zaldívar- Iare mexicanus 23.vi.2009 JF912307 - - - - Riverón, A. Polaszek 23.v- Iare sp.1 Malaise R. Henriquez This study This study - This study This study 10.vi.2001 23.vi- Iare sp.1 Malaise R. Henriquez This study - - - - 1.vii.2001 Iare sp.1 17.ix.2001 Malaise R. Henriquez This study This study - This study This study 20.iv- Iare sp.1 Malaise R. Henriquez This study - - - - 4.v.2001 Hans Clebsch, Alejandro Zaldivar- Iare sp.2 24.vi.2009 HM434314 This study - This study HQ200665 Riveron, Andrew Polasze A. Zaldívar- Janzenia gauldi 2.viii.2016 light trap Riverón, N. This study This study This study This study This study Delgado Johnsonius sp. DQ498972 - - - DQ498939 Lamquetia marshi DQ498971 - - - DQ498938 Lamquetia marshi - - KT851912.1 - - A. Zaldívar- Leluthia aff. astigma 7.viii.2016 light trap Riverón, N. This study This study This study This study This study Delgado A. Zaldívar- Leluthia astigma 17.vi.2016 light trap Riverón, N. This study - - This study This study Delgado Hans Clebsch, Alejandro Zaldivar- Leluthia canalia 23.vi.2009 JF912321 This study - This study HQ200887 Riveron, Andrew Polasze 57

Hans Clebsch, Alejandro Zaldivar- Leluthia canalia 23.vi.2009 JF912322 - - - - Riveron, Andrew Polasze A. Zaldívar- Leluthia mexicana 7.viii.2016 light trap Riverón, N. This study This study This study This study This study Delgado Leluthia sp.1 10.xi.2015 CDC Bravo, F et al. This study - This study - This study Leluthia sp.2 vii.2005 J. A. Cerda This study This study This study This study This study Leluthia sp.2 This study - - - - Clebsh, 23- Leluthia sp.3 light trap Zaldivar, HM434321.1 This study - This study HQ200877.1 24.vi.2009 Polaszek Hans Clebsch, Alejandro 23- Zaldivar- Leluthia sp.4 light trap HM434311 This study - This study HQ200639.1 24.vi.2009 Riveron, Andrew Polasze Hans Clebsch, Alejandro 25- Zaldivar- Leluthia sp.5 light trap JF912218.1 This study - This study This study 26.vi.2009 Riveron, Andrew Polasze Hans Clebsch, Alejandro Zaldivar- Leluthia sp.5 23.vi.2009 JF912219 - - - - Riveron, Andrew Polasze Hans Clebsch, Alejandro Leluthia sp.5 23.vi.2009 JF912220 - - - - Zaldivar- Riveron, 58

Andrew Polasze Leluthia sp.6 15.X.2009 - KC822273 KC822136 - - Leluthia sp.6 EF645797 - - - EF645766 Hans Clebsch, Alejandro Zaldivar- Leluthia sp.7 25.vi.2009 HM434310 - - - - Riveron, Andrew Polasze Lissopsius pacificus JQ268737 - KT851938 - JQ268747 Monitoriella rufithorax KC822009 KC822274 KC822137 KC822090 KC822237 Malaise Notiospathius novateutoniae 21.vi.2011 KC821988 KC822248 KC822112 KC822051 KC822190 trap Notiospathius sp. May 2005 J.A.Cerda JN870369 JN870544 JN870696 KC822020 KC822155 Ondigus sp. DQ498970 - - - DQ498937 Osmophila sp. KT851899.1 - KT851929.1 - KT851964.1 Pedinotus columbianus KT851886 - KT851916 - KT851949 Percnobracon witru 21.iii.2008 KJ586716.1 KC822276 KC822139 KC822092 KJ586784.1 28.vii- Platydoryctes sp.1 Malaise R. Henriquez This study This study This study This study This study 18.viii.2001 A. Zaldívar, N. Platydoryctes sp.2 17.vi.2016 This study - This study - This study Delgado 08- E. S. Redighieri Platydoryctes sp.3 Malaise This study This study - This study This study 13.iii.2006 & equipe 02- B. Araujo & M. Platydoryctes sp.4 Malaise This study This study This study This study This study 09.xi.2006 Santos 20- Platydoryctes sp.5 Malaise D. Nogueira This study This study This study This study - 21.vi.2015 A. Zaldívar, N. Platydoryctes sp.6 08.viii.2016 light trap This study This study - - This study Delgado 20.iv– Platydoryctes sp.7 Malaise R. Henriquez This study This study - - - 4.v.2001 20.iv– Platydoryctes sp.7 Malaise R. Henriquez - This study - This study This study 4.v.2001 Platydoryctes sp.8 12-16.i.2003 Malaise C. Sarmiento This study This study - This study This study 59

23.v- Platydoryctes sp.9 Malaise R. Henriquez This study This study - This study This study 10.vi.2001 Platydoryctes sp.9 Malaise R. Henriquez This study - - - - Platydoryctes sp.10 This study This study This study This study This study 20.iv– Platydoryctes sp.11 Malaise R. Henriquez This study This study - This study This study 4.v.2001 Platydoryctes sp.11 Malaise R. Henriquez This study - - - - Platydoryctes sp.12 17-31.i.2002 Malaise R. Henriquez This study This study - This study This study Platydoryctes sp.13 12-16.i.2003 Malaise C. Sarmiento This study This study - This study This study Hans Clebsch, Alejandro Zaldivar- Platydoryctes sp.14 23.vi.2009 JF912212 - - - - Riveron, Andrew Polaszek A. Zaldívar- Trampa de Platydoryctes sp.15 9.viii.2016 Riverón, N. This study - - - - luz Delgado Hans Clebsch, Alejandro Zaldivar- Ptesimogaster sp. 24.vi.2009 HM434318 This study This study This study HQ200889.1 Riveron, Andrew Polaszek Semirhytus sp. DQ498962 - - - DQ498931 Sergey tzotzil 16.xi.2001 Kovarik KC821998.1 KC822258.1 KC822123.1 KC822079.1 KX074198.1 Sergey tzeltal 6.v.2009 A. Zaldivar JN870326.1 JN870511.1 JN870665.1 KC822056.1 - Sergey tzeltal 16.xi.2001 YPT Kovarik - - - - KX074197.1 N. Delgado D. Stenocorse sp.1 07.iii.2016 This study This study - This study This study Shneider Stenocorse sp.2 15.iii.2016 Santos Tellez This study This study - This study This study A. Amarillo, C. Stenocorse sp.3 27.vi.2014 This study This study - This study This study Sarmiento Zaldivar, Tarasco sp. 09.vi.2011 sweep Martinez, KC822000 KC822260 KC822125 KC822081 KC822228 Clebsch 60

Trigonophasmus ruficeps KT851906 - KT851908 - KT851967 Outgroup Jarra maculipennis DQ498957 - - - DQ498925 Ontsira sp. - - - - EF645749 Ontsira sp. 4.xii.1997 KC822010 KC822275 KC822138 KC822091 - Syngaster lepidus DQ498963 - - - AJ245698.1

61

Supplementary material 2. Primers and annealing temperatures.

Gene Primer name Primer sequence (5’ – 3’) Reference Annealing temp. used (°C)

fwd GCG AAC AAG TAC CGTGAG GG Belshaw and Quicke (1997) 28S 50° Rev TAG TTC ACC ATC TTT CGG GTC CC Mardulyn and Whitfield (1999)

LCO GGT CAA CAA ATCATA AAG ATA TTG G CO I Folmer et al. (1994) 50° HCO TAA ACT TCAGGG TGA CCA AAA AAT CA

cyt b fwd TCTTTTTGAGGAGCWACWGTWATTAC Cyt b Belshaw and Quicke (1997) 48° cyt b ver AATTGAACGTAAAATWGTRTAAGCAA

EF1A1F AGATGGGYAARGGTTCCTTCAA ef-1-α Belshaw and Quicke (1997) 55° EF1A1R AACATGTTGTCDCCGTGCCATCC

Wg_1 GARTGYAARTGYCAYGGYATGTCTGG wg Brower and DeSalle (1998) 50° Wg_2 ACTICGCRCACCARTGGAATGTRCA

62

Supplementary material 3. Partitions and corresponding evolutionary models for the Bayesian and Beast analysis.

Analysis Partition Evolutionary model 28S SYM+G Second codon position of COI GTR+I+G Third codon positions of COI and Cyt b GTR+I+G First codon positions of COI and Cyt b and Bayesian phylogenetic analysis on Mr. Bayes GTR+I+G second codon position of Cyt b First codon positions of ef-1-a and wg GTR+I+G Second codon positions of ef-1-a and wg K80+I Third codon positions of ef-1-a and wg K80+G. 28S SYM+G COI GTR+I+G Divergence times analysis on BEAST cyt b GTR+I+G ef-1-a TrNef+I+G wg TrNef+I+G

63

Figure 4. Supplementary material 4. Phenogram resulting from the Neighbor joining analysis of the uncorrected COI distances of Callihormius species and other related genera used in the present work. 64

Supplementary material 5. Genetic distances of the COI marker within and among the Callihormius species and other related genera used in the present work. Distances were calculated using a neighbor joining analysis with uncorrected "p" distances (part 1/7).

Species 1 2 3 4 5 6 7 8 1 Aphelopsia striata Jo838VA - 2 Aphelopsia annulicornis AW011 8.9 - 3 Callihormius circumlitoris 8.6−9.4(9) 8.4−8.7(8.5) 0−0.7(0.4) 4 Callihormius palanganensis 9.9−10.2(10) 10.5−10.7 (10.6) 10.2−11(10.6) 0−0.4(0.2) 5 Callihormius tayronensis 10.2−10.9(10.4) 10.3−11(10.6) 9.3−10.6(9.8) 6.2−7.6(6.9) 0−1.3 (0.8) 6 Callihormius franciscomartoi 9.8 8.4−8.6(8.5) 8.7−9.7(9.2) 8.3−8.7(8.4) 7.6−8.5(8.1) 1.8 7 Callihormius janzeni 7.8−7.9(7.9) 9.6−9.8(9.7) 8−8.8 (8.3) 10.4−11(10.8) 10.3−11.2(10.7) 10−10.5(10.2) 0.3−0.6 (0.5) 8 Callihormius shawi 12.1−12.2(12.1) 11.5−11.7(11.6) 11.3−11.7(11.5) 10.5−11.1(10.8) 10.4−11.3(10.9) 10.5−11.2(10.8) 11.4−11.7(11.6) 0.3 9 Callihormius stigmatus CNIN3179 12.4 11.9 11.6−11.8(11.7) 13.1−13.8(13.6) 12.1−12.3(12.2) 11.4−11.8(11.6) 11.2−11.5(11.4) 10.9(10.9) 10 Callihormius sp.1 CNIN2243 8.9 7.3 7.3−8.1(7.7) 9−9.5(9.2) 8.8−9.1(8.9) 8.8−9.1(8.9) 9.5−9.6(9.6) 12−12.2(12.1) 11 Callihormius sp.2 CNIN2177 11.1 10.6 10.8−11.1(11) 9.9−10.2(10) 10.5−11(10.7) 9.1−9.2(9.1) 11.7−11.9(11.8) 12.7−13(12.8) 12 Callihormius sp.3 ASDOR046 11.5 11.7 8.9−9.3(9.1) 12.8−13.1(12.9) 11.5−12.1(11.7) 11.9−12.3(12.1) 9.3−9.5(9.4) 13.2−13.5(13.3) 13 Callihormius sp.4 CNIN3083 10.8 11.3 8.8−9.2(9) 11.3−11.5(11.4) 10.7−11.5(11) 10.6−11.4(11) 8.7−8.8(8.8) 12.9−13.3(13.1) 14 Callihormius sp.5 CNIN1060 11 10.1 11.1−11.6(11.3) 10−10.2(10.1) 10.6−10.9(10.8) 9.1−9.3(9.2) 11.5−11.6(11.5) 12.4−12.8(12.6) 15 Callihormius sp.6 ASDOR453 10.6 8.4 8.7−9.1(8.9) 8.5−9(8.7) 8.1−9(8.5) 7.5−7.9(7.7) 10.4−10.6(10.5) 10.1−10.5(10.3) 16 Callihormius sp.7 ASDOR097 11.1 10.1 9.9−10.6(10.3) 10.1−10.8(10.5) 9.1−9.8(9.5) 9.1−9.3(9.2) 11.1−11.6(11.3) 9.3−9.5(9.4) Histeromeroides onkoterebrus 17 10.5 11.9 11.1−11.8(11.5) 12.2−12.4(12.3) 10.8−11.5(11.2) 10.3−10.7(10.5) 12.5−12.7(12.6) 12.2−12.5(12.3) CNIN2197 18 Iare belokobylskiji 10.1−10.3(10.2) 9.8−10(9.9) 9.4−10.2(9.9) 10.4−10.9(10.7) 8.6−9(8.8) 7.9−8.3(8.1) 10.3−10.6(10.4) 11.2−11.6(11.4) 19 Iare cheguevarai 9.6−9.8(9.7) 7.7−8(7.8) 8.9−9.7(9.3) 9.3−9.9(9.7) 9.7−10.2(10) 9−9.2(9.1) 9.3−9.6(9.5) 12.1−12.2(12.1) 20 Iare mexicanus 8.4−8.6(8.5) 8.4−8.6(8.5) 8.5−9.1(8.8) 9.1−9.8(9.6) 9.3−9.8(9.6) 8.5−9(8.7) 8.3−8.8(8.5) 11.3−11.7(11.5) 21 Iare sp.1 8.7−8.8(8.8) 8.1−8.3(8.2) 7.9−8.3(8.2) 9.1−10(9.7) 8.9−9.6(9.3) 8.6−8.9(8.7) 8.7−9.3(9) 10.5−11.1(10.8) 22 Iare sp.2 ASDOR032 12.1 11.9 11.5−12.1(11.7) 12.4−14.3(13) 12.6−13.5(13) 10.8−11.1(10.9) 12.2−12.9(12.6) 12−12.3(12.1) 23 Leluthia astigma CNIN3085 12.1 11.3 10−10.6(10.2) 10.5−11(10.7) 9.5−10(9.7) 11.5−11.7(11.6) 12.7−12.9(12.8) 12.9−13.1(13) 24 Leluthia aff. astigma CNIN3184 12.3 11 10.4−10.7(10.6) 10.5−11.1(10.7) 10−10.6(10.3) 10.8−11(10.9) 12.6−12.7(12.7) 11.6−11.7(11.6) 25 Leluthia mexicana CNIN3187 9.4 10.4 9.2−9.6(9.3) 9.3−10(9.6) 8.2−8.9(8.6) 9.1−9.4(9.2) 11−11.4(11.2) 11.7−11.8(11.7) 26 Leluthia canalia 11.3−11.4(11.3) 9.8 8.8−9.2(9.1) 8.5−9.3(9.1) 7.3−8.2(7.6) 8.7−9.2(8.9) 9.3−9.8(9.6) 11.1−11.4(11.2) 27 Leluthia sp.1 CNIN3088 8.2 10.3 9−9.3(9.1) 11.8−12.3(12) 11.2−12.1(11.6) 10−10.1(10) 9.8−9.9(9.8) 13.2−13.3(13.2) 65

28 Leluthia sp.2 12.3 13.7 11.1−11.8(11.4) 12.9−14.1(13.4) 11.9−13.3(12.4) 10.6−11.6(11.1) 11.6−12.4(12) 12.7−13.3(13) 29 Leluthia sp.3 ASDOR049 12.1 12.1 10.4−11.1(10.8) 11.7−12(11.7) 9.8−10.4(10) 10.1−10.8(10.4) 11.3−11.7(11.5) 12.2−12.4(12.3) 30 Leluthia sp.4 ASDOR014 9.6 9.1 8.5−9.2(8.9) 9.4−10(9.6) 9−9.8(9.4) 9.7−10.3(10) 9.3−9.9(9.6) 10.5−10.7(10.6) 31 Leluthia sp.5 11.7−11.8(11.7) 10.5−10.6(10.5) 10.2−10.9(10.6) 11.5−12.6(12) 11.6−12.9(12.3) 11.3−11.5(11.4) 10.8−11.7(11.3) 12.7−13.2(12.9) 32 Leluthia sp.6 Jo982 10.3 12.4 10.3−10.7(10.5) 11.8−12.1(12) 11.3−11.8(11.5) 11.4 9.6−10.1(9.8) 12.8−13(12.9) 33 Leluthia sp.7 ASDOR010 11.3 9.5 9.1−9,8(9.5) 11−11.4(11.3) 11.6−12.2(12) 7.9−9(8.4) 9.8−10.5(10.1) 12.4 34 Platydoryctes sp.1 CNIN3300 11 9.7 8.2−8.8(8.5) 8.6−8.8(8.7) 8.6−9.3(8.9) 8.1−8.3(8.2) 10.8−11.1(11) 10−10.3(10.1) 35 Platydoryctes sp.2 CNIN3084 10.3 9.4 8.3−9(8.8) 8.9−9.1(9) 8.3−8.8(8.5) 8.7 9.7−10.3(10) 11.2−11.3(11.2) 36 Platydoryctes sp.3 CNIN2201 12 9.5 9−9.6(9.3) 9.9−10.5(10.3) 8.1−8.5(8.3) 8.5−8.8(8.6) 11.6−11.9(11.7) 11.7−12.1(11.9) 37 Platydoryctes sp.4 CNIN2239 9.6 11.1 8.9−9.8(9.4) 10−10.3(10.1) 8.8−9.3(9.1) 9.3−10(9.6) 10−10.3(10.2) 10.4−10.7(10.5) 38 Platydoryctes sp.5 CNIN2241 10.1 10.8 9.5−9.6(9.5) 10.5−11(10.7) 9.3−10(9.6) 11.1−11.9(11.5) 10.1−10.3(10.2) 10.9 39 Platydoryctes sp.6 CNIN3180 10 7.9 8.3 8.9−9.4(9.1) 8.6−9.1(8.8) 7.6−7.8(7.7) 9.6−9.8(9.7) 10.9 40 Platydoryctes sp.7 10.6−11.1(10.8) 11.1−11.6(11.3) 7.4−8.2(7.8) 9−9.5(9.2) 8.1−9.1(8.6) 9.6−10(9.8) 9.5−11.1(10.3) 10.2−10.9(10.6) 41 Platydoryctes sp.8 CNIN3277 9.6 9.8 8.3−8.4(8.5) 10.5−11.3(10.7) 12−12.6(12.3) 10−10.1(10) 9.6−9.9(9.8) 10.7−11(10.8) 42 Platydoryctes sp.9 9.3−9.5(9.4) 10.2 8.4−9.2(8.9) 9.1−9.4(9.2) 8.6−9.5(9) 8.4−8.9(8.6) 9.5−10(9.7) 10.7−11.1(10.9) 43 Platydoryctes sp.10 CNIN3303 9.4 10.1 10.7−11(10.8) 8.2−8.7(8.5) 8.9−9.6(9.3) 9.5−10.2(9.8) 10.4−10.6(10.5) 12−12.5(12.2) 44 Platydoryctes sp.11 11−11.4(11.2) 9.9−10.1(10) 8.8−9.5(9.1) 7.8−8.2(8) 8.6−9.8(9.1) 7.4−8.5(8.1) 10.4−11.4(10.9) 10.5−11.1(10.65) 45 Platydoryctes sp.12 CNIN3280 12 10.7 8.1−10(9.2) 8.1−9(8.5) 8.7−10(9.3) 8.7−9.2(8.9) 11.5−11.8(11.6) 10−10.5(10.2) 46 Platydoryctes sp.13 CNIN3289 10.9 10 8.2−8.7(8.4) 8−8.2(8.1) 8.3−8.8(8.6) 8.3−8.4(8.3) 10.8−11.1(10.9) 10.3−10.9(10.6) 47 Platydoryctes sp.14 ASDOR047 11.3 10 10−10.8(10.5) 5.9−6.2(6.1) 6.8−7.5(6.9) 9−9.2(9.1) 11.6−11.7(11.7) 9.8 48 Platydoryctes sp.15 CNIN3177 9 9.4 0.7−1.3(0.9) 11.1−11.6(11.3) 10.1−10.6(10.3) 9.1−9.3(9.2) 7.9−8.2(8.1) 12.4−12.5(12.4) 49 Stenocorse sp.1 CNIN3123 13 13.2 12.1−12.5(12.3) 14.1−14.4(14.2) 11.4−11.8(11.6) 12.2−12.3(12.2) 12.5−12.8(12.7) 14.6−14.8(14.7) 50 Stenocorse sp.2 CNIN3204 13.8 14.1 11.6−11.8(11.7) 13.2−13.6(13.4) 12.5−13.2(12.9) 13.1−14(13.55) 11.3−11.6(11.5) 14.5−14.8(14.6) 51 Stenocorse sp.3 CNIN3205 12.6 12 11.8−12(11.9) 12.9−13.1(13.1) 11.1−11.7(11.4) 11.3−11.6(11.4) 12−12.5(12.2) 14.9−15.2(15)

66

Supplementary material 5. Genetic distances of the COI marker within and among the Callihormius species and other related genera used in the present work. Distances were calculated using a neighbor joining analysis with uncorrected "p" distances (part 2/7).

Species 9 10 11 12 13 14 15 16 Callihormius stigmatus 9 - CNIN3179 10 Callihormius sp1 CNIN2243 13.2 - 11 Callihormius sp2 CNIN2177 13.8 10.7 - 12 Callihormius sp3 ASDOR046 12.7 10.5 13.2 - 13 Callihormius sp4 CNIN3083 14.4 10.5 13.4 7.7 - 14 Callihormius sp5 CNIN1060 13.6 10.3 4.3 11.8 12.6 - 15 Callihormius sp6 ASDOR453 9.7 9 10.7 11.3 10.8 10.4 - 16 Callihormius sp7 ASDOR097 10.4 10 11.6 13.4 12.6 12.2 9.6 - Histeromeroides onkoterebrus 17 12 10.7 12.4 15.1 14.6 13.3 10.5 10.2 CNIN2197 18 Iare belokobylskiji 12.7−12.9(12.8) 9−9.1(9) 10.4−10.5(10.4) 12.2−12.4(12.3) 10.7−10.9(10.8) 10−10.2(10.1) 10.1−10.3(10.2) 8.6−8.8(8.7) 19 Iare cheguevarai 11.4−11.7(11.5) 8.8−9.1(8.9) 11.4−11.6(11.5) 11.7−12.1(11.9) 12.1(12.1) 10−10.3((10.1) 8.5−8.6(8.5) 10.8 (10.8) 20 Iare mexicanus 12.5−12.7(12.6) 8.6−8.8(8.7) 9.5−9.7(9.6) 10.8−10.9(10.8) 10.8−11(10.9) 9.4−9.6(9.5) 9.5−9.6(9.5) 10.1−10.3(10.2) 21 Iare sp1 11.5−11.8(11.6) 8.6−9(8.8) 10−10.4(10.2) 10.5−10.8(10.6) 10.1−10.5(10.3) 10.9−11(10.9) 8.6−8.8(8.7) 9.7−9.8(9.8) 22 Iare sp.2 ASDOR032 12.2 12.6 13.8 15 14.9 14.3 10.1 11.1 23 Leluthia astigma CNIN3085 11.5 10.5 11.8 11.7 12.8 12 10.8 10.5 24 Leluthia aff. astigma CNIN3184 12.7 10.8 13.8 11.9 12.5 13.9 10 10.8 25 Leluthia mexicana CNIN3187 11.9 9.1 12.8 11.7 11.4 11.3 9.4 9.2 26 Leluthia canalia 9.7−9.9(9.8) 9 11.2−11.3(11.2) 10.6−10.9(10.7) 11.2−11.3(11.2) 11.8−12(11.9) 8.2−8.3(8.2) 9.1−9.3(9.2) 27 Leluthia sp.1 CNIN3088 12.3 10 12 11.6 10.5 11.4 11 10.9 28 Leluthia sp.2 12.1 12.9 12.5−12.7(12.6) 11.6−11.9(11.7) 13.8 12.9−13(12.9) 11.4−11.6(11.5) 10.9−11.1(11) 29 Leluthia sp.3 ASDOR049 12.2 11.4 11.9 11.7 11.7 12.2 10.3 10.8 30 Leluthia sp.4 ASDOR014 12 9.1 10.9 11.2 10.5 11.2 9.5 10.6 31 Leluthia sp.5 13.9−14.2(14.1) 10.3−11(10.7) 11.4−11.6(11.5) 13.1−13.4(13.3) 12.4−12.5(12.5) 12.4−12.6(12.5) 10.5−10.8(10.7) 11.5−12.1(11.9) 32 Leluthia sp.6 Jo982 11.4 11.2 13.5 11.6 13.1 13.6 10 9.1 33 Leluthia sp.7 ASDOR010 13.4 11 10 12.3 11.3 11.1 10.3 10.8 34 Platydoryctes sp.1 CNIN3300 10.3 8.6 10.2 11.5 11.2 10.5 5.5 9.9 35 Platydoryctes sp.2 CNIN3084 10.6 8.3 10.9 10.8 11.4 9.9 7.4 8.2 67

36 Platydoryctes sp.3 CNIN2201 11.2 10.3 9.7 11.9 11.1 9.8 9 8.6 37 Platydoryctes sp.4 CNIN2239 12.1 10.2 9.2 12.5 11.4 9.4 8.3 9.5 38 Platydoryctes sp.5 CNIN2241 12.9 9.6 9.6 12.1 12.6 10.7 11.1 10 39 Platydoryctes sp.6 CNIN3180 9.7 8.5 11.1 11.1 9.9 10.8 0.7 9.7 40 Platydoryctes sp.7 11.8−12.5(12.1) 8.6−9.2(8.9) 11.8−12.1(11.9) 10.8−11.2(11) 8.7−9.6(9.1) 11.8−11.9(11.8) 7.3 10−10.1(10) 41 Platydoryctes sp.8 CNIN3277 10.6 11 11.1 13 12.3 11.1 10.1 10.6 42 Platydoryctes sp.9 12.5 8.5−8.8(8.6) 11−11.1(11) 9.2−9.5(9.3) 9.9 11.1−11.2(11.1) 9.2−9.3(9.2) 11−11.3(11.1) 43 Platydoryctes sp.10 CNIN3303 13.5 10.5 11.3 11.9 12.1 11.8 9.1 10.3 44 Platydoryctes sp.11 10.5−11.3(10.9) 9.2−9.3(9.2) 10.8−10.9(10.8) 12−12.4(12.2) 11.3−12.2(11.7) 11.6−11.7(11.6) 5.8−5.9(5.8) 9.2−10.2(9.7) 45 Platydoryctes sp.12 CNIN3280 10.6 9.5 10 12.6 11.4 10.7 6.2 10.6 46 Platydoryctes sp.13 CNIN3289 10.9 8.8 10 12.1 11.4 10.3 6 9.9 47 Platydoryctes sp.14 ASDOR047 13 9.1 11.4 11.9 11.2 10.8 9 10.3 48 Platydoryctes sp.15 CNIN3177 12.3 7.8 11.8 9 9.3 12 9.5 10.1 49 Stenocorse sp.1 CNIN3123 13.5 12.6 13.9 13.9 14.2 13.6 12.5 12.1 50 Stenocorse sp.2 CNIN3204 14.3 12.4 14.5 14.1 15 14.9 12.9 13.4 51 Stenocorse sp.3 CNIN3205 13.4 12 14.2 14 13.7 14.3 10.8 12.3

68

Supplementary material 5. Genetic distances of the COI marker within and among the Callihormius species and other related genera used in the present work. Distances were calculated using a neighbor joining analysis with uncorrected "p" distances (part 3/7).

Species 17 18 19 20 21 22 23 24 Histeromeroides onkoterebrus 17 - CNIN2197 18 Iare belokobylskiji 11.7−11.8(11.7) 0.2 19 Iare cheguevarai 12.2−12.3(12.2) 10.1−10.3(10.2) 0.6 20 Iare mexicanus 11.7−11.8(11.7) 7.3−7.7(7.5) 8.8−9.3(9) 0.2 21 Iare sp1 9.9−10.5(10.2) 7.6−8.1(7.9) 8.7−9(8.8) 3.6−4.2(3.9) 0−1(0.7) 22 Iare sp.2 ASDOR032 13.5 13−13.2(13.1) 11.2−11.6(11.4) 11.7−11.9(11.8) 12.4−12.7(12.6) - 23 Leluthia astigma CNIN3085 12 12.4−12.6(12.5) 12−12.4(12.2) 10.6−10.8(10.7) 10.7−11.2(10.9) 12.8 - 24 Leluthia aff. astigma CNIN3184 13.9 12.3−12.4(12.3) 12.2−12.6(12.4) 11−11.1(11) 10.6−11(10.8) 12.4 6 - 25 Leluthia mexicana CNIN3187 11.6 9.9−10.1(10) 10.7−11(10.8) 9.4−9.6(9.5) 9.8−10(9.9) 12 7.5 7.6 26 Leluthia canalia 10.7 9.8−10.1(9.9) 9.5−9.8(9.6) 9.1−9.5(9.3) 8.6−9.1(8.9) 10.8 9.7−9.9(9.8) 9.6−9.8(9.7) 27 Leluthia sp.1 CNIN3088 10.9 11.7−11.9(11.8) 10 10.2−10.3(10.2) 10.8−11(10.9) 12.8 13.1 13 28 Leluthia sp.2 13.6 11.3−11.8(11.5) 11.9−12.1(12) 11.1−11.4(11.3) 11.4−11.9(11.6) 12.1−12.3(12.2) 12.6−12.8(12.7) 12.6−12.9(12.7) 29 Leluthia sp.3 ASDOR049 12.8 10.8−10.9(10.8) 10.4−10.8(10.6) 11.3−11.4(11.3) 10.4−11(10.6) 13 13 13.2 30 Leluthia sp.4 ASDOR014 12.3 9.3−9.5(9.4) 9.3 9.5−9.6(9.5) 8−8.9(8.4) 12.2 8.7 9.6 31 Leluthia sp.5 11.8−12.7(12.4) 11.7−12.2(12) 11.5−12.1(11.9) 11.4−11.7(11.5) 10.2−10.7(10.5) 12.7 13.5 13.5−13.7(13.6) 32 Leluthia sp.6 Jo982 11.4 11.8−12(11.9) 10.5−10.7(10.6) 9.7−9.8(9.7) 10.3−10.7(10.5) 12.8 12.9 13 33 Leluthia sp.7 ASDOR010 12.5 9.5−9.6(9.5) 10 9.5−9.6(9.5) 9.4−9.5(9.5) 12.1 12.3 12.4 34 Platydoryctes sp.1 CNIN3300 11.6 8.5−8.6(8.5) 10−10.3(10.1) 9.6−9.8(9.7) 9.7−10(9.9) 10.5 9.2 9.5 35 Platydoryctes sp.2 CNIN3084 10.6 10.1−10.3(10.2) 8.9−9.2(9) 9−9.2(9.1) 8.7−9(8.9) 12.2 9.9 11.9 36 Platydoryctes sp.3 CNIN2201 12.5 9.3−9.5(9.4) 9.5 9.6−9.8(9.7) 8.5−9.2(8.8) 12.9 10.8 10.8 37 Platydoryctes sp.4 CNIN2239 11 9.5−9.7(9.6) 10.8−11(10.9) 9.3−9.5(9.4) 8.3−8.8(8.5) 11.6 11.9 11.5 38 Platydoryctes sp.5 CNIN2241 13.1 11.4−11.6(11.5) 11.4−11.6(11.5) 10.3−10.5(10.4) 10−10.3(10.1) 12.9 10.3 11.3 39 Platydoryctes sp.6 CNIN3180 10.4 9.8−10(9.9) 8 9−9.2(9.1) 8−8.1(8) 9.9 10.8 9.6 40 Platydoryctes sp.7 11.5−12(11.7) 9.5−9.8(9.6) 9.7−10.4(10) 10.4−10.9(10.6) 9.2−10.2(9.6) 11.6 10.7−10.8(10.7) 11.1−11.2(11.1) 41 Platydoryctes sp.8 CNIN3277 11.3 10.6−10.8(10.7) 9.8−10.1(9.9) 9.9−10.1(10) 9.5−9.7(9.6) 11.3 12.2 12.2 42 Platydoryctes sp.9 11.5−11.7(10.6) 10.7−11.1(10.9) 8.9−9.5(9.2) 9.5−9.8(9.6) 9.8−10.1(9.9) 12.2−12.3(12.2) 11.4 11.3−11.4(11.3) 43 Platydoryctes sp.10 CNIN3303 11.3 10.4−10.5(10.4) 10.9−11.2(11) 8.7−8.8(8.7) 8.9−9.1(9) 11.6 10.5 10.9 69

44 Platydoryctes sp.11 10.7−11(10.8) 8.8−9.4(9.1) 10.4−11.2(10.9) 10−10.4(10.2) 9.6−10.2(9.9) 11.1−11.3(11.2) 9.5−9.7(9.6) 9.4−9.5(9.4) 45 Platydoryctes sp.12 CNIN3280 12.3 9.5−9.7(9.6) 11.1−11.3(11.2) 10.1−10.3(10.2) 9.3−9.7(9.5) 10.5 10.8 10.8 46 Platydoryctes sp.13 CNIN3289 11.5 8.5−8.6(8.5) 10.6−11.1(10.8) 9.3−9.5(9.4) 9.3−9.7(9.5) 9.8 9.6 9.8 47 Platydoryctes sp.14 ASDOR047 12 9.5−9.6(9.5) 8.8−9.1(8.9) 9.3−9.5(9.4) 8.1−8.3(8.2) 11.9 11 11.1 48 Platydoryctes sp.15 CNIN3177 11.1 10.2−10.3(10.2) 9.2−9.8(9.5) 8.6−8.8(8.7) 8.2−8.3(8.2) 12.1 10.8 11.3 49 Stenocorse sp.1 CNIN3123 13.2 11.8−12(11.9) 12 12.1−12.3(12.2) 11.9−12.1(12) 12.9 12.8 13.6 50 Stenocorse sp.2 CNIN3204 15.4 13.8−14(13.9) 12.6−13.3(12.9) 12.1−12.3(12.2) 12.4−12.5(12.4) 15 13.9 12.6 51 Stenocorse sp.3 CNIN3205 12.9 12−12.2(12.1) 12.5 11.6−11.8(11.7) 10.3−10.4(10.3) 15.1 12.6 13.7

70

Supplementary material 5. Genetic distances of the COI marker within and among the Callihormius species and other related genera used in the present work. Distances were calculated using a neighbor joining analysis with uncorrected "p" distances (part 4/7).

Species 25 26 27 28 29 30 31 32 25 Leluthia mexicana CNIN3187 - 26 Leluthia canalia 9.5 0.5 27 Leluthia sp.1 CNIN3088 9.9 11.5 - 28 Leluthia sp.2 12.9−13.1(13) 11.6−12.2(11.9) 13.9 0.3 29 Leluthia sp.3 ASDOR049 12.3 9.9 12.4 11.6−11.9(11.7) - 30 Leluthia sp.4 ASDOR014 9.7 9.9−10.3(10.1) 11 12.4−12.7(12.5) 10.6 - 31 Leluthia sp.5 13−13.3(13.2) 11.3−11.7(11.6) 12.8−12.9(12.9) 13.5−13.6(13.6) 13.2 11.2−11.6(11.5) 0 32 Leluthia sp.6 Jo982 11.4 9.6−9.8(9.7) 13.1 7.9 11. 10.5 12.6−12.7(12.7) - 33 Leluthia sp.7 ASDOR010 12.5 9.8 12.1 12−12.3(12.1) 12.3 10.1 10.2−10.6(10.5) 11.3 34 Platydoryctes sp.1 CNIN3300 10.3 9.1−9.3(9.2) 11.1 11.2−11.3(11.2) 10.6 9.6 11.5 11.6 35 Platydoryctes sp.2 CNIN3084 8.4 9 10.4 11.3−11.5(11.4) 9.9 10.4 11 10.8 36 Platydoryctes sp.3 CNIN2201 9.6 10.3 10.5 11.9−12.3(12.1) 11.9 9.9 12.7−12.9(12.8) 11.2 37 Platydoryctes sp.4 CNIN2239 10.3 9.5 12.5 11.3−11.6(11.4) 10.8 10 11 10.5 38 Platydoryctes sp.5 CNIN2241 10 9.6−9.8(9.7) 11.4 12.4 12.1 10.9 12.2−12.3(12.3) 12.2 39 Platydoryctes sp.6 CNIN3180 8.5 7.7−7.9(7.8) 10.9 11.7−11.9(11.8) 9.7 8.7 11.4 10.1 40 Platydoryctes sp.7 8.8−9.5(9.1) 7.6−8.3(7.9) 11−11.3(11.1) 12.5−12.9(12.7) 9.5−10(9.7) 7.4−8.3(7.8) 11−11.3(11.2) 11.1−11.6(11.3) 41 Platydoryctes sp.8 CNIN3277 11.2 10.9 9.6 11.3 12.4 10.8 10.4 11.7 42 Platydoryctes sp.9 10.3−10.4(10.3) 10.3−10.5(10.4) 10.6−10.7(10.6) 11−11.4(11.2) 11−11.1(11) 8.7−8.8(8.7) 11.2−11.3(11.3) 9.5 43 Platydoryctes sp.10 CNIN3303 10 9.5−9.6(9.5) 11 12.4−12.5(12.4) 12 10.3 12.5−12.6(12.5) 11.2 44 Platydoryctes sp.11 9.7−10.2(9.9) 7.9−8.9(8.3) 11.4−11.8(11.6) 11.7−11.9(11.8) 10.7−10.9(10.8) 8.8−9.1(8.9) 11−11.5(11.3) 11.2−11.7(11.4) 45 Platydoryctes sp.12 CNIN3280 10.6 9.8−10(9.9) 11.9 11.8−11.9(11.8) 11.6 10.8 11.5−11.6(11.5) 12.8 46 Platydoryctes sp.13 CNIN3289 9.9 8.5−8.6(8.5) 11.2 10.9−11.1(11) 10.8 9.5 10.4−10.6(10.5) 11.6 47 Platydoryctes sp.14 ASDOR047 9.4 9.1−9.3(9.2) 12.3 12.1−12.4(12.2) 10.8 9.6 12.6−12.7(12.7) 12.3 48 Platydoryctes sp.15 CNIN3177 9.7 9.1−9.3(9.2) 9.8 12.1−12.4(12.2) 10.7 9.5 11.4 10.8 49 Stenocorse sp.1 CNIN3123 13 11.1−11.5(11.3) 13.2 13.5−13.8(13.6) 12 11.1 14.3−14.4(14.4) 11.8 50 Stenocorse sp.2 CNIN3204 12.4 12.4−12.8(12.6) 14.8 13.9−14.3(14.1) 15.1 13.3 15.3−15.5(15.4) 13 51 Stenocorse sp.3 CNIN3205 11.8 11.4 12.9 12.7 12.8 12.1 14.1−14.3(14.2) 13.4 71

Supplementary material 5. Genetic distances of the COI marker within and among the Callihormius species and other related genera used in the present work. Distances were calculated using a neighbor joining analysis with uncorrected "p" distances (part 5/7).

Species 33 34 35 36 37 38 39 40 33 Leluthia sp.7 ASDOR010 - 34 Platydoryctes sp.1 CNIN3300 9.8 - 35 Platydoryctes sp.2 CNIN3084 9.8 7.9 - 36 Platydoryctes sp.3 CNIN2201 10 9.1 10.1 - 37 Platydoryctes sp.4 CNIN2239 9.7 8.7 9.6 9 - 38 Platydoryctes sp.5 CNIN2241 12 9.8 10.3 10 10.2 - 39 Platydoryctes sp.6 CNIN3180 9.8 5.2 7.4 9 8.4 10.7 - 40 Platydoryctes sp.7 9.5−10.6(10) 7−7.1(7) 8.9−9.4(9.1) 8.7−8.8(8.7) 8.6−9.3(8.9) 10.1 7.1−7.5(7.3) 0 41 Platydoryctes sp.8 CNIN3277 9.8 9.1 9.5 11.3 10.8 11.4 9.5 10.7−10.9(10.8) 42 Platydoryctes sp.9 11.2−11.5(11.3) 9.2−9.3(9.2) 9.4 9.5−9.6(9.5) 10 10.5 9.3 8.5−8.6(8.6) 43 Platydoryctes sp.10 CNIN3303 10.7 8.6 9 9.3 8.7 9.7 8.7 8.4−9.2(8.8) 44 Platydoryctes sp.11 9.2−10.2(9.7) 2.2−2.7(2.4) 7.9−8.1(8) 9.3−9.8(9.5) 8.8−8.9(8.8) 10.2−10.5(10.3) 6.3−6.5(6.4) 7−7.5(7.3) 45 Platydoryctes sp.12 CNIN3280 10.8 1.7 9 10 8.8 10.6 5.6 6.6−8.2(7.4) 46 Platydoryctes sp.13 CNIN3289 9.6 2 8.2 9.1 8 9.6 5.8 6.6 47 Platydoryctes sp.14 ASDOR047 11.3 9 8.3 9.9 9.8 10.9 8.1 9.3 48 Platydoryctes sp.15 CNIN3177 10 8.6 8.9 9.9 9.6 9.8 9.3 8.2−8.3(8.2) 49 Stenocorse sp.1 CNIN3123 13.2 12.5 11.1 12.1 12.5 14 11.3 11−11.2(11.1) 50 Stenocorse sp.2 CNIN3204 14.6 11.5 12.8 11.8 12.8 13 12.7 12.2−12.9(12.55) 51 Stenocorse sp.3 CNIN3205 14.2 11.3 12.1 12.3 13.2 12.5 10.8 12−12.4(12.2)

72

Supplementary material 5. Genetic distances of the COI marker within and among the Callihormius species and other related genera used in the present work. Distances were calculated using a neighbor joining analysis with uncorrected "p" distances (part 6/7).

Species 41 42 43 44 45 46 47 48 41 Platydoryctes sp.8 CNIN3277 - 42 Platydoryctes sp.9 10.8−11(10.9) 0.2

43 Platydoryctes sp.10 CNIN3303 11.1 10.4 - 44 Platydoryctes sp.11 8.5−8.7(8.6) 9.4−9.5(9.4) 8.4−8.7(8.5) 0 45 Platydoryctes sp.12 CNIN3280 9.5 9.7 8.8 1.6−2.1(1.8) - 46 Platydoryctes sp.13 CNIN3289 8.5 8.8−8.9(8.8) 9 1.6−2.2(1.9) 2 - 47 Platydoryctes sp.14 ASDOR047 11.3 9−9.1(9) 10.3 9.1−9.5(9.3) 9.5 9 - 48 Platydoryctes sp.15 CNIN3177 8.9 8.6−8.8(8.7) 10.9 9.1−9.5(9.3) 8.6 8.4 10.6 - 49 Stenocorse sp.1 CNIN3123 12.8 12.1−12.2(12.1) 13.4 12.9−13.3(13.1) 13.5 12.1 12.6 12.4

50 Stenocorse sp.2 CNIN3204 14.3 12.5−12.6(12.5) 12.7 12.9−13.3(13.1) 12.1 11.9 13.1 11.6 51 Stenocorse sp.3 CNIN3205 13.4 12.7 12.5 11−11.3(11.1) 11 11.1 12.3 12.3

Supplementary material 5. Genetic distances of the COI marker within and among the Callihormius species and other related genera used in the present work. Distances were calculated using a neighbor joining analysis with uncorrected "p" distances (part 7/7). Species 49 50 51 49 Stenocorse sp.1 CNIN3123 - 50 Stenocorse sp.2 CNIN3204 10.5 - 51 Stenocorse sp.3 CNIN3205 9.8 9.8 -

73

Capítulo II

Gadelha, S.S., Zaldívar-Riverón, A., Oliveira, M.L. (2019) Taxonomic update of Callihormius Ashmead, 1900 and Aphelopsia Marsh, 1993 (Hymenoptera: Braconidae: Doryctinae), with the description of four new Neotropical genera. Manuscrito formatado para Zootaxa.

74

Taxonomic update of Callihormius Ashmead, 1900 and Aphelopsia Marsh, 1993 (Hymenoptera: Braconidae: Doryctinae), with the description of four new Neotropical Doryctinae genera

SIAN DE SOUZA GADELHA¹, ALEJANDRO ZALDÍVAR-RIVERÓN³ & MARCIO LUIZ DE OLIVEIRA³

¹Programa de Pós-Graduação em Entomologia do Instituto Nacional de Pesquisas da Amazônia – INPA. Av. André Araújo, 2.936 – Petrópolis – CEP 69.067–375 – Manaus – Amazonas Brazil. E- mail: [email protected] ²Colección Nacional de Insectos, Instituto de Biología, Universidad Nacional Autónoma de México, 3er. circuito exterior s/n, Cd. Universitaria, Copilco, Coyoacán, A. P. 70–233, C. P. 04510., Ciudad de México, Mexico. E-mail: [email protected]; ³Coordenação de Biodiversidade e Programa de Pós-Graduação em Entomologia do Instituto Nacional de Pesquisas da Amazônia – INPA. Av. André Araújo, 2.936 – Petrópolis – CEP 69.067– 375 – Manaus –Amazonas Brazil. E-mail: [email protected]

Abstract. A taxonomic update of the doryctine wasp genera Callihormius Ashmead and Aphelopsia Marsh is made based on external morphological evidence and the relationships recovered from a previous molecular phylogenetic study. The type species of Aphelopsia, A. annulicornis Marsh, and A. uraricoerense Gadelha & Zaldívar-Riverón n. sp., are redescribed and described, respectively. Callihormius is redefined and three new species are described: Ca. arepa Gadelha & Zaldívar- Riverón n. sp., Ca. jalapeno Gadelha & Zaldívar-Riveron n. sp. and Ca. antennisparvis Gadelha & Zaldívar-Riverón n. sp. Callihormius werneri Marsh is transferred to Platydoryctes Barbalho & Penteado-Dias (Pd. werneri (Marsh) n. comb.). Four new Doryctinae genera also are described: Macrometasoma Gadelha & Zaldívar-Riverón n. gen., Caputlenis Gadelha & Zaldívar-Riverón n. gen., Platyhormius Gadelha & Zaldívar-Riverón n. gen. and Caputrugosus Gadelha & Zaldívar- Riverón n. gen. The subgenus Callihormius (Dimitriohormius) Belokobylskij, Zaldívar-Riverón & Coronado-Blanco is elevated to a generic level. The following new combinations are made for former species of Callihormius: M. shawi (Marsh) n. comb., Cl. franciscomartoi (Gadelha & Zaldívar- Riverón) n. comb., Ph. palagannensis (Gadelha & Zaldívar-Riverón) n. comb., Ph. tayronensis (Gadelha & Zaldívar-Riverón) n. comb., D. stigmatus (Marsh) n. comb., D. kasparyani (Belokobylskij, Zaldívar-Riverón & Coronado-Blanco) n. comb. Cr. glebecafejedi Gadelha & Zaldívar-Riverón n. sp., and Cl. capixaba Gadelha & Zaldívar-Riverón n. sp., are also described.

Key words: Dmitriohormius, Macrometasoma, Caputlenis, Platyhormius, Caputrugosus, taxonomic key, Ichneumonoidea, Cyclostome.

75

Introduction

Since the publication of the Manual of the New World genera of Braconidae (Whaton et al. 1997), where Marsh (1997) provided a key for the Doryctinae of the New World, further taxonomic studies have considerably increased the number of recognized genera for this subfamily (e.g. Barbalho & Penteado-Dias 2000; Braet & van Achterberg 2001; Barbalho & Penteado-Dias 2002; Marsh 2002; Braet et al. 2003; Belokobylskij 2004; Nunes et al. 2012; Marsh et al. 2013; Zaldívar-Riverón et al. 2013; Zaldívar-Riverón et al. 2014; Belokobylskij et al. 2015; Gadelha et al. 2016a; Gadelha et al. 2016b; Martinez et al. 2016). This confirmed Marsh’s (1997) prediction that the generic diversity of the Doryctinae would increase as more studies were conducted, especially in the tropics. Nevertheless, we are still far from having a complete knowledge of the actual diversity of this group. In particular, the extensive variation of various key external morphological features is one of the main difficulties that have impeded to establish a stable generic and tribal classification for the Doryctinae. Previous molecular phylogenetic studies have helped to establish the limits of various doryctine genera, such as Notiospathius Matthews & Marsh, Tarascus Marsh, Bolivar Zaldívar- Riverón & Rodríguez-Jiménez, Monarea Szépligeti, Allorhogas Gahan, Mononeuron Fischer and Psenobolos Reinhard (Ceccarelli & Zaldívar-Riveron 2013; Belokobylskij et al. 2014a; Zaldívar- Riverón et al. 2014). Samacá-Sáenz et al. (2016), for example, performed a molecular phylogenetic study to better understand the generic limits within the so called Pedinotus genus group, composed by Gymnobracon Szépligeti, Hybodoryctes Szépligeti, Lamquetia Braet et van Achterberg, Osmophila Szépligeti, Pedinotus Szépligeti and Trigonophasmus Enderlein. These genera were mainly characterized by having lateral, posteriorly converging or subparallel grooves on the second metasomal tergite and, based on their study, the authors were able to investigate the external morphology of the genera involved to determine reliable generic diagnostic features. A taxonomic revision on Callihormius was recently published by Gadelha et al. (2018), where they redescribed most of the Nearctic species of Callihormius and described four new Neotropical species based on Marsh (1965; 1966) definition of the genus, increasing its number of described species from nine to 13. The authors also included the size of fore wing vein 3RSa in relation to vein 3RSb as a diagnostic feature for Callihormius (vein 3RSa shorter than 3RSb) to make clearer its limits with Aphelopsia Marsh (vein 3RSa longer than 3RSb). Gadelha et al.’s (2018) interpretation of the generic limits between Callihormius and Platydooryctes Barbalho & Penteado-Dias was on the other hand mainly based on the flatness of the body in the latter genus (as in Marsh 2002), using the ratio between height and length of mesosoma. A more recent molecular phylogenetic study performed by Gadelha et al. (in prep.) revealed that Callihormius in its former definition is polyphyletic. The authors suggested that an updated set 76 of characters need to be found for a less inclusive definition of the genus. The study also showed the repeated evolution of the flattened body in Platydoryctes and other doryctine taxa, and thus proposed that additional features should be used to define this genus to improve its limits with Callihormius and other related genera. Here we carried out an updated taxonomic revision of Callihormius and Aphelopsia using as a basis the taxonomic inferences that resulted from Gadelha et al.’s (in prep.) phylogenetic study. Based on an exhaustive morphological examination, we described four Neotropical genera of Doryctinae, propose a new morphological definition for Callihormius and Aphelopsia and described three and one new species for the latter genera, respectively.

Material and methods

The specimens examined in this work were obtained from loans, donations and field trips carried out by the authors. A total of about 80 specimens originally assigned to Callihormius, Aphelopsia and Platydoryctes were examined. The examined entomological material is deposited in the following colections: Colección Nacional de Insectos, Instituto de Biología, Universidad Nacional Autónoma and de México (CNIN IB-UNAM); Instituto Nacional de Pesquisas da Amazônia (INPA); Universidade Federal do Espírito Santo (UFES); and United States National Museum of Natural History, Smithsonian Institution (USNMNH), Insect Museum, Department of Renewable Resources, University of Wyoming (ESWU). The identification followed the identification keys of Marsh (1993; 1997; 2002) and comparison with original description and type material of Callihormius: Callihormius bifasciatus (Ashmead), Callihormius texanus Marsh, Callihormius stigmatus Marsh, Callihormius werneri Marsh, Callihormius (Dmitriohormius) kasparyani Belokobylskij, Zaldívar- Riverón & Coronado-Blanco, Callihormius shawi Marsh, Callihormius janzeni Marsh, Callihormius circumlitoris Gadelha & Zaldívar-Riverón, Callihormius franciscomartoi Gadelha & Zaldívar- Riverón, Callihormius tayronensis Gadelha & Zaldívar-Riverón, Callihormius palagannensis Gadelha & Zaldívar-Riverón, and the type species of Aphelopsia, Aphelopsia annulicornis Marsh. The terminology used for the external morphological features followed Sharkey & Wharton (1997) except for the surface sculpture, which follows Harris (1979). The term ‘sternaulus’ was also replaced for ‘precoxal sulcus’ according to Wharton (2006). The fore wing vein that is present when the vein m-cu is distal to vein 2RS was treated here as vein 2M, and not as vein RS+Mb, as it is usually named. The vein RS+Mb is formed only when the vein m-cu is basal to vein 2RS (Quicke 2015). The following abbreviations were also used: POL for postocellar line, Od for ocellar diameter and OOL for ocellocular line. 77

Photos were taken with a Leica M205A stereomicroscope coupled with a Leica DMC4500 camera and processed with a Leica Application Suite V4.10.0 Interactive Measurements, Montage. Resulting images were stacked and combined using Helicon Focus (©HeliconSoft). The final images and plates were edited using Adobe Photoshop and Adobe Illustrator.

Results and discussion Taxonomy Aphelopsia Marsh, 1993 Aphelopsia Marsh, 1993: 5 [Type species: Aphelopsia annulicornis Marsh, 1993 by original designation, USNMNH, examined].

Diagnosis. Species of Aphelopsia are similar to Callihormius and other genera described in this work by sharing characters like the banded wings, the mesoscutum higher than pronotum and gently curved to it in lateral view, and the hind wing vein M+CU longer than 1M. Aphelopsia can be distinguished from these genera by having a mostly smooth body (mostly sculptured in Callihormius and other genera), and a second submarginal cell lengthened in the fore wing with the 3RSa vein generally longer than 3RSb (3RSa shorter than 3RSb in Callihormius and other genera).

Description. Body size 2.5–4.0 mm; head with vertex and temple smooth; face totally smooth to weakly striate above clypeus; pronotal collar lengthened behind head; mesoscutum higher than pronotum in lateral view but not declivous anteriorly (in a 90° angle), gently curved to pronotum; mesosoma with at least propleuron, mesopleuron, scutellum and basal median areas of propodeum smooth; hind coxa with small but distinct basal tubercle; fore wing banded, vein r-m present, second submarginal cell lengthened beyond apex of stigma (vein 3RSa generally longer than 3RSb), first subdiscal cell open at apex, vein 2CU nearly on same line as vein 1CU; hind wing vein M+CU longer than 1M; metasomal tergites smooth after the second segment; ovipositor length equal or longer than metasomal length. Distribution. Costa Rica, Panama, French Guiana, Ecuador and Brazil. Biology. Unknown. Comments. Despite Aphelopsia was recovered as non-monophyletic in the Gadelha et al.’s (in prep.) molecular phylogeny, we decide to maintain A. annulicornis and A. striata as congeneric species, since their result was not conclusive because of the lack of molecular data for these species. Future studies whith more complet data could confirm if A. striata belongs to this genus. Included species. Aphelopsia annulicornis Marsh, 1993. Aphelopsia striata Braet & Barbalho, 2003. Aphelopsia uraricoerense Gadelha & Zaldívar-Riverón n. sp. 78

Identification key for females of Aphelopsia species

1. Face reticulate; mesonotum weakly aciculate-coriaceous with longitudinal rugae in front of the prescutellar depression; fore wing vein 3RSa shorter than 3RSb … A. striata Braet & Barbalho - Face smooth; mesonotum smooth; fore wing vein 3RSa larger than 3RSb … 2 2. Head with vertex densely covered by setae; mesoscutum densely covered by setae; notauli present; prescutellar depression with five cross carinae … A. uraricoerense Gadelha & Zaldívar- Riverón n. sp. - Head with vertex not densely covered of setae; mesoscutum not densely covered with setae; notauli absent; prescutellar depression with three cross carinae … A. annulicornis Marsh

Aphelopsia annulicornis Marsh, 1993 (Figs. 1 A–C) Aphelopsia annulicornis Marsh, 1993: 6 [USNMNH, examined].

Diagnosis. This species can be distinguished from the remaining described species of Aphelopsia by its smooth face (reticulate in A. striata); vertex not densely covered by setae (densely covered in A. uraricoerense n. sp.); mesoscutum smooth (weakly aciculate-coriaceous in A. striata); presence of notauli (Fig. 1C) (absent in A. uraricoerense n. sp.); prescutellar depression with three carinae (five in A. uraricoerense n. sp. and seven in A. striata); propodeum smooth (Fig. 1C) (posteriorly rugose- areolate in A. striata); fore wing vein 3RSa larger than 3RSb (shorter than 3RSb in A. striata). Redescription. Holotype. Female. Body length about 3.33 mm (Fig. 1A). Color. Head mostly yellow, dorsally honey yellow; mesosoma mostly brown, except by the yellow propodeum, propleuron, mesoscutum and venter of mesosoma; first metasomal tergum brown; remaining terga light yellow; scape and pedicel honey yellow; first flagellum honey yellow with brown apex; flagellomeres 2–12 yellow with brown apex; 13–15 brown; remainder flagellomeres yellow; palpi light brown; for leg with coxa, femur and tarsus yellow; trochanter, trochantellus and tibia honey yellow; mid leg honey yellow, except by the yellow tarsus; fore leg honey yellow, except by the yellow tarsus; fore wing mostly brown; base of basal cell and half of subbasal cell white; basal cell also with a white circular spot on its middle; one thin white stripe below the beginning of stigma and other close to the wing tip, right after the vein r-m; veins mostly brown, some veins with white spots on the wing white parts; stigma mostly brown, white at the junction with veins C+Sc+R and 1RS; 79 hind wing hyaline, with white veins; ovipositor sheaths brown at base and apex, middle yellow; ovipositor brown with dark apex. Head. Normal shape, not flattened, height equal its length (lateral view), width 1.64 times median length (dorsal view), equal to width of mesoscutum; length of eye 1.8 times the temple length (dorsal view); frons slightly striate, cover with white setae, not excavated; vertex smooth with more spaced white setae (Fig. 1C); ocelli in triangle, with base length 1.22 its sides; POL 1.67 times Od and 0.41 the OOL; temple smooth, with a few setae close the eyes; eyes high 0.81 its width; malar space smooth, height 0.63 times height of eye, and 2.25 times the basal width of mandible; face smooth, cover with white setae, minimum width 1.31 times height of eye and 1.25 times height of face and clypeus combined; clypeus rugulose and slightly marked by a carina on the dorsal region, ventral region with a roll of setae; hypoclypeal depression width 0.91 times distance from edge of depression to eye, 0.44 times width of face; head below eyes (frontal view) not narrowed; antennae filiform, tip broken; left antenna with 22 segment; right antenna with 19 segments; scape 1.5 times longer than its maximum width; first flagellar segment 3.67 times longer than its apical width, 1.1 times longer than second segment. Mesosoma. Not flattened, its length 2.1 times maximum height (Fig. 1B); pronotum length equal to scutellum length (dorsal view), smooth, with a mid-transversal scrobiculate groove and scrobiculate edges in dorsal view; pronotal groove smooth; lateral area of pronotum smooth; propleuron smooth; maximum width of mesoscutum 1.3 times its length (dorsal view), medially smooth, with some setae; mesonotal lobes smooth, notauli slightly scrobiculated, shallow and not meeting posteriorly (Fig. 1C); prescutellar depression with three carinae, one in the middle and one on each side; scutellum width 1.57 times its median length, smooth, concave and slightly swollen; mesopleuron smooth (Fig. 1B); subalar depression slightly scrobiculate on the upper half, reminder smooth and enclosing a smooth triangular shaped area right below the fore tegula; mesopleural sulcus thin and scrobiculated; precoxal sulcus thin, smooth, presente only on the anterior two third of mesopleuron; venter of mesosoma smooth; propodeum smooth, dorsolateral carinae present (Fig. 1C); basal carina present only anteriorly; metapleuron smooth. Wings. Fore wing length 2.13 mm; stigma 3.44 times longer than wide; r vein arising from basal 0.32 of stigma; 3RSa 2.72 times longer than r, 1.5 times the 3RSb length, 1.72 times longer than r-m; M+CU slightly sinuate; m-cu in line with 2RS, thus RS+Mb absent; first discal cell 1.69 times longer than maximum width; 1cu-a in line with 1M; 2cu-a absent, thus first subdiscal cell open at apex; left hind wing missing; hind wing M+CU 2.5 times the 1M length; m-cu present. Legs. Left fore leg broken; fore leg with coxa 1.15 times longer than maximum width, smooth, with white setae dorsally; femur 3.57 times longer than maximum width (lateral view), smooth, covered with white setae; tibia 5.2 times longer than maximum width, smooth, with 7 spines on its 80 inner side, and full of setae; basitarsus 0.31 times tarsus length, tarsus with dense white setae; right middle leg broken; middle leg with coxa 1.5 times longer than maximum width, smooth, with some setae; femur 3.44 times longer than maximum width, smooth, covered with setae; tibia 6 times longer than its maximum width (lateral view), smooth, and covered with white setae; basitarsus 0.27 times tarsus length, tarsus covered with dense white setae; hind leg with coxa 1.44 times longer than maximum width (lateral view), smooth, with a few white setae, especially on dorsal region; basoventral tubercle present; femur 3.63 times longer than maximum width (lateral view), smooth, coverd with white setae; tibia 6.2 times longer than maximum width (lateral view), smooth, covered with white setae, fringe of setae at its inner apex present; basitarsus 0.4 times tarsus length, tarsus densely covered with white setae. Metasoma. Same length of mesosoma and head combined (without ovipositor) (Fig. 1A, B); length of first tergite 1.28 times its apical width (Fig. 1C), 1.38 times length of propodeum, striate- rugose, laterally with some long setae; dorsope absent; basal sternal plate 0.46 length of first tergite; length of second and third tergite combined 0.75 its basal width, basal width 0.58 its apical width; tergites 2-8 smooth; no distinct groove between second and third tergite (Fig. 1C); length of ovipositor and ovipositor sheath equal to metasoma; ovipositor sheath full of small white setae; ovipositor apex strongly sclerotized. Male. Unknow. Distribution. Panama, Ecuador and Costa Rica. Biology. Unknow. Material examined. Holotype. “PANAMA, CZ [Canal Zone], Barro Colorado Is [Island], iv.1983, H. Wolda”; “CNC”, “USNMENT 00831680”; (USNMNH)

Aphelopsia striata Braet & Barbalho, 2003 Aphelopsia striata Braet & Barbalho, in Braet et al. 2003: 97.

Diagnosis. This species differs from the other described species of Aphelopsia by its reticulate face (smooth in A. annulicornis and A. uraricoerense n. sp.); vertex not densely covered with setae (densely covered in A. uraricoerense n. sp.); mesoscutum weakly aciculate-coriaceous (smooth in A. annulicornis and A. uraricoerense n. sp.); presence of notauli (absent in A. uraricoerense n. sp.); prescutellar depression with seven cross carinae (five cross carinae in A. uraricoerense n. sp. and three in A. annulicornis); propodeum posteriorly rugose-areolate (smooth in A. annulicornis and A. uraricoerense n. sp.); fore wing vein 3RSa shorter than 3RSb (3RSa vein larger than 3RSb in A. annulicornis and A. uraricoerense n. sp.). Distribution. French Guiana. 81

Biology. Unknow. Comments. Braet et al. (2003) provides a detailed description of A. striata, where is possible to notice that this is the only species of Aphelopsia with the fore wing vein 3RSa smaller than vein 3RSb. According to the phylogeny of Gadelha et al. (in prep.), this species was recovered as sister to the Callihormius clade and could represent a sister genus of it. However, A. striata shares more features with members of Aphelopsia than with those of Callihormius. Also, as the non-monophyletic condition of Aphelopsia was not conclusive in Gadelha et al.’s (in prep.) molecular phylogeny, due to the lack of gene markers for the species of Aphelopsia, here we decided to maintain A. striata within Aphelopsia until further phylogenetic studies are performed. One non-conspecific specimen from Brazil (Espírito Santo), also with the fore wing vein 3RSa smaller than 3RSb, was analyzed but we decided not to describe it as a new species until a phylogenetic study with more specimens of Aphelopsia is performed.

Aphelopsia uraricoerense Gadelha & Zaldívar-Riverón n. sp. (Figs. 2 A–F) Aphelopsia annulicornis; Gadelha et al. 2016: 367 [misidentified]

Diagnosis. This species can be distinguished from the remaining Aphelopsia by its smooth face (reticulate in A. striata); vertex densely covered with setae (Fig. 2B) (not densely covered with setae in A. striata and A. annulicornis); mesoscutum smooth (weakly aciculate-coriaceous in A. striata); absence of notauli (Fig. 2B) (present in A. striata and A. annulicornis); prescutellar depression with five cross carinae (three cross carinae in A. annulicornis and seven in A. striata); propodeum smooth (Fig. 2F) (posteriorly rugose-areolate in A. striata); fore wing vein 3RSa larger than 3RSb (Fig. 2D) (shorter than 3RSb in A. striata). Description. Holotype. Female (Fig. 2A). Body length about 2.9 mm. Color. Head mostly brown, dorsally dark brown; mesosoma dark brown; metasomal terga light brown; scape, pedicel and flagellomeres 1–12 brown, 13–17 yellow and apex dark brown; palpi dark brown; legs dark brown, except by the light brown tarsi; fore wing mostly brown; basal third of basal cell and subbasal cell white; one thin white stripe below the beginning of stigma and other on the wing tip, right after the vein r-m; veins mostly brown, some veins with white spots on the wing white parts; stigma mostly brown, white at the junction with veins C+Sc+R and 1RS; hind wing hyaline, with light brown veins; ovipositor sheaths dark brown at base and apex, middle light brown; ovipositor brown with dark apex. Head. Normal shape, not flattened, height equal its length (lateral view), width 1.32 times median length (dorsal view) (Fig. 2A), 1.25 the width of mesoscutum; length of eye 1.83 times the temple length (dorsal view); frons smooth, densely cover with white setae, slightly excavated; vertex smooth, densely cover with white setae (Fig. 2B); ocelli in triangle, base length 1.5 its sides; POL 82

2.8 times Od and 0.7 the OOL; temple smooth, with only a few setae close to de eyes; eyes high 1.08 its width; malar space smooth, with some white setae, height 0.5 times height of eye, and 2.33 times the basal width of mandible; face smooth, densely cover with thin white setae, minimum width 1.16 times height of eye, 1.33 times height of face and clypeus combined; clypeus smooth and slightly marked by a carina on the dorsal region, ventral region with a roll of setae, slightly striate below the anterior tentorial pit; hypoclypeal depression width 0.73 times distance from edge of depression to eye, 0.39 times width of face; head below eyes (frontal view) slightly narrowed; antennae filiform; left antenna broken, remaining 16 segment; right antenna with 24 segments; scape 1.71 times longer than its maximum width; first flagellar segment 4 times longer than its apical width, 1.09 times longer than second segment. Mesosoma. Not flattened, its length two times maximum height (Fig. 2E); pronotum length equal to scutellum length (dorsal view) (Fig. 2B), smooth, with a mid-transversal smooth groove; pronotal groove smooth; lateral area of pronotum smooth; propleuron smooth; maximum width of mesoscutum 1.2 times its length (dorsal view), smooth, densely covered with white setae; mesonotal lobes not separated by sculptures, notauli absent (Fig. 2B); prescutellar depression with five carinae, one in the middle and two on each side; scutellum width 1.14 times its median length, smooth, convex but not swollen, covered by white setae; mesopleuron smooth (Fig. 2E); subalar depression smooth enclosing a smooth triangular shaped area full of white setae right below the fore tegula (Fig. 2E); mesopleural sulcus thin and smooth; precoxal sulcus thin, smooth and shallow, almost absent, present only on the anterior two third of mesopleuron; venter of mesosoma smooth; propodeum smooth, dorsolateral carinae weakly marked (Fig. 2F); basal carina present only anteriorly; metapleuron smooth (Fig. 2E). Wings. fore wing length 1.93 mm (Fig. 2D); stigma 3.17 times longer than wide; r vein arising from basal 0.37 of stigma; 3RSa 2.5 times longer than r, 1.12 times the 3RSb length, 1.9 times the r- m vein; M+CU straight; m-cu in line with 2RS, thus RS+Mb absent; first discal cell 1.89 times longer than maximum width; 1cu-a in line with 1M; 2cu-a absent, thus first subdiscal cell open at apex; hind wing M+CU 1.53 times the 1M length; m-cu present as a short spectral vein. Legs. Fore leg with coxa 1.07 times longer than maximum width, smooth, with white setae dorsally; femur 3.85 times longer than maximum width (lateral view), smooth, covered with white setae; tibia 5.78 times longer than maximum width, smooth, with two spines on its inner side, and full of setae; basitarsus 0.33 times tarsus length, tarsus with dense white setae; middle leg with coxa length equal to its maximum width, smooth, with some setae; femur 4.09 times longer than maximum width, smooth, covered with setae; tibia 6.25 times longer than its maximum width (lateral view), smooth, and covered with white setae; basitarsus 0.25 times tarsus length, tarsus densely covered with white setae; hind leg with coxa 1.57 times longer than maximum width (lateral view), smooth, 83 covered with white setae except on dorsal area and in a more densely way ventrally; basoventral tubercle present; femur 4.06 times longer than maximum width (lateral view), smooth, covered with white setae; tibia 7.14 times longer than maximum width (lateral view), smooth, covered with white setae, fringe of setae at its inner apex present; basitarsus 0.4 times tarsus length, tarsus densely covered with white setae. Metasoma. Same length of mesosoma and head combined (without ovipositor) (Fig. 2A); length of first tergite 1.21 times its apical width, 1.21 times length of propodeum, longitudinally finely striate-rugose, laterally with some short setae (Fig. 2C); dorsope present; basal sternal plate 0.25 length of first tergite; length of second and third tergite combined 0.86 its basal width, basal width 0.60 its apical width; tergites 2–8 smooth; groove between second and third tergite thin, shallow and curved towards the apical side of tergite; length of ovipositor and ovipositor sheath about equal to metasoma (Fig. 2A); ovipositor sheath full of small white setae; ovipositor apex strongly sclerotized. Variation. Body length about 2.32–2.9 mm; antennae with 21–24 segments; convex scutellum not swollen to slightly swollen; fore tibia with 2–4 spines on its inner side. Male. Similar to female. Body size 2.26; frons slightly striate close to the antennae; antennae with 22 segments; clypeus striate; propodeum basal carina rugose, ending in a rugose area posteriorly; hind wing with stigma; length of first metasomal tergite two times its apical width; length of second and third tergite combined 1.25 its basal width. Distribution. Brazil (Roraima state). Biology. Unknow. Etymology. The species name is a reference to the locality where the type was collected. Material examined. Holotype: Female. “Brasil, RR [Roraima state], Rio Uraricoera, Ilha de Maracá; 21–30.xi.1987; Fogging; J. A. Rafael e equipe col.”, (INPA). Paratype: Two females and two males. Two females, same label as holotype, (INPA, CNIN IB-UNAM). Two males, same label as holotype, (INPA, CNIN IB-UNAM). Comments. The specimens analyzed here were previously identified as A. annulicornis in Gadelha et al. (2016), based only on the original description of the species. However, after we analyze and redescribe the holotype of A. annulicornis we conclude that these specimens were not conspecific with it and therefore we describe them as A. uraricoerense n. sp.

Callihormius Ashmead, 1900 Callihormius Ashmead, 1900: 148 [Type species: Pambolus bifasciatus Ashmead, 1892 by original designation, USNMNH].

84

Diagnosis. Species of Callihormius can be distinguished from other phylogenetic closer Doryctinae by the coriaceous vertex (striate in Dimitriohormius n. stat., coriaceous-rugose in Caputrugosus n. gen., and smooth in Caputlenis n. gen., Aphelopsia and Histeromeroides); antennae with less them 30 segments (more than 30 segments in Caputlenis n. gen., Dimitriohormius n. stat., Panama, some Leluthia); mesoscutum higher than pronotum, and gently curved to pronotum in lateral view (slightly higher than pronotum or in the same level in Platydoryctes, Panama, Macrometasoma n. gen. and Leluthia, strongly declivous in Stenocorse Marsh); posteromedian rugose or striate-rugose area of mesoscutum small or absent (wide and rectangular shaped in Platydoryctes and Dimitriohormius n. stat.); fore wing vein 3RSa shorter than 3RSb (3RSa longer than 3RSb in Aphelopsia); vein m-cu in line or slightly basal to 2RS (m-cu distal to 2RS in Macrometasoma n. gen., and in D. kasparyani n. comb.) and an ovipositor usually shorter than metasoma (longer than metasoma in Caputrugosus n. gen., Dimitriohormius n. stat.).

Description. Body size 2.5–4.2 mm; head with vertex and temple coriaceous; face rugose or striate-rugose; antennae no longer them 30 segments; pronotal collar variable; mesoscutum higher than pronotum in lateral view but not declivous anteriorly (in a 90° angle), gently curved to pronotum; mesosoma mostly sculptured; mesoscutum mostly coriaceous; notauli usually absent or slightly marked; posteromedian rugose or striate-rugose area of mesoscutum small and in a “V” shape, or absent; scutellum convex, usually swollen; hind coxa with distinct basal tubercle; fore wing banded; vein r-m present; second submarginal cell slightly lengthened beyond apex of stigma, thus vein 3RSa shorter than 3RSb; vein m-cu in line with 2RS or slightly basal to 2RS; first subdiscal cell open at apex, thus vein 2cu-a absent; vein 2CU slightly curved on its base, not in line with vein 1CU; hind wing vein M+CU longer than 1M, ovipositor length not much longer than metasoma, usually equal or shorter than metasomal length. Distribution. USA, Mexico, Guatemala, Costa Rica and Colombia. Biology. The only biological record, from the type species Callihormius bifasciatus (Ashmead), indicated that it was reported as parasitoid of Anthaxia viridicornis (Say) and Xylotrechus quadrimaculatus (Haldman), Buprestidae and Cerambycidae, respectively (Marsh 1966). Comments. Gadelha et al. (in prep.) showed that Callihormius is part of a generic diverse group and that its former definition comprised other undescribed genera. Thus, Callihormius is treated here as a less inclusive genus, excluding variations that were usually considered as part of the genus, such as a striate vertex, variable position of the fore wing m-cu vein related to 2RS (usually it could be basal or distal to 2RS) and long antennae (more than 30 segments). According to the definition proposed here, Ca. werneri Marsh, 1966 is no longer considered as a member of this genus and, therefore, we make the combination Platydoryctes werneri (Marsh, 85

1966) n. comb., in order to reallocate the species in a genus that is congruent with its features. Other described species of Callihormius that do not fit in its new definition were placed in other genera included in this work (Dimitriohormius n. stat., Macrometasoma n. gen., Caputlenis n. gen. Platyhormius, n. gen, Caputrugosus n. gen.). As a consequence of these changes, the original species number in Callihormius downs to six species, without counting the three new species described in this work. Included species. Callihormius bifasciatus (Asmead, 1892). Callihormius bajaensis Marsh, 1966. Callihormius texanus Marsh, 1966. Callihormius careosulcus Marsh, 2002. Callihormius janzeni Marsh, 2002. Callihormius circumlitoris Gadelha & Zaldívar-Riverón, in Gadelha et al. 2018. Callihormius arepa Gadelha & Zaldívar-Riverón n. sp. Callihormius jalapeno Gadelha & Zaldívar-Riveron n. sp. Callihormius antennisparvis Gadelha & Zaldívar-Riverón n. sp.

Identification key for females of Callihormius species

1. Mesopleuron coriaceous … 2 - Mesopleuron smooth … 5 2. Pronotum dorsal length smaller than scutellum length; notauli absent, sometimes slightly indicated anteriorly, but never forming a v-shaped sculptured area before the scutellum; first metasomal tergite shorter than its apical width [USA] … 3 - Pronotum dorsal length greater than scutellum length; notauli weakly indicated, with a small v- shaped foveolate or striate-rugose area before the scutellum; length of first metasomal tergite equal or longer than its apical width ... 4 3. Antennae with more than 15 segments; second metasomal tergite with a groove forming a basal semicircular area; fourth and fifth metasomal tergite basally striate-coriaceous … Ca. bifasciatus (Ashmead) - Antennae with 15 segments; second metasomal tergite without a groove forming a basal semicircular area; fourth and fifth metasomal tergite basally coriaceous … Ca. antennisparvis Gadelha & Zaldívar-Riverón n. sp. 4. Propodeum without basal median areas, totally rugose; metasomal tergites 4-8 smooth; fore wing brown stripe before stigma without a white spot on basal cell [Mexico] … Ca. bajaensis Marsh - Propodeum with basal median areas present and coriaceous, remaining propodeum rugose; metasomal tergites 4-8 sculptured; fore wing brown stripe before stigma with a white spot on basal cell [Mexico] … Ca. jalapeno Gadelha & Zaldívar-Riveron n. sp. 86

5. Ovipositor slightly longer than metasoma [Costa Rica] ... Ca. careosulcus Marsh - Ovipositor shorter than metasoma … 6 6. Fore wing with three dark cross bands [USA, Mexico] … Ca. texanus Marsh - Fore wing with two dark cross bands … 7 7. Notauli complete; third metasomal tergite medially strigate on basal half [Mexico, Guatemala, Costa Rica] … Ca. janzeni Marsh - Notauli absent or present only anteriorly; third metasomal tergite medially smooth on basal half … 8 8. Mesoscutum without a striate-rugose area before the scutellum; propodeum entirely rugose, without basal median area … Ca. arepa Gadelha & Zaldívar-Riverón n. sp. - Mesoscutum with a small striate-rugose area before the scutellum; propodeum rugose only posteriorly, basal median areas of propodeum small and coriaceous [Mexico] … Ca. circumlitoris Gadelha & Zaldívar-Riverón

Callihormius arepa Gadelha & Zaldívar-Riverón n. sp. (Figs. 3 A–F)

Diagnosis. This species is similar to other Callihormius with smooth mesopleuron but could be distinguished by its ovipositor smaller than metasoma (Fig. 3A) (slightly longer than metasoma in Ca. careosulcus); notauli present only anteriorly (Fig. 3B) (complete in Ca. janzeni and weakly marked in Ca. texanus and Ca. careosulcus); metasoma smooth before third tergite (Fig. 3D) (tergites four to six basally coriaceous in Ca. texanus); mesoscutum without an striate-rugose or foveolate area before the scutellum (Fig. 3B) (with an striate-rugose area in Ca. janzeni and Ca. circumlitoris, and with a foveolate area before the scutellum in Ca. texanus); basal median areas of propodeum absent (Fig. 3F) (present in Ca. circumlitoris and Ca. careosulcus). Description. Holotype. Female (Fig. 3A). Body length about 3.23 mm. Color. Head brown; mesosoma mostly dark brown, pronotum and propleuron brown; first metasomal tergite brown, remaining tergites dark brown; antennae light brown with last seven flagellomeres dark brown; palpi dark brown; legs with coxae brown; trochantellus, femur and tibia dark brown; fore and middle tarsus white, hind tarsus light yellow; fore wing mostly brown; basal half of basal cell and subbasal cell white; one thin white stripe below the beginning of stigma; veins mostly dark brown, light brown on the basal white stripe and white on the second white stripe; stigma mostly brown, white on its basal 0.26; hind wing hyaline, with light brown veins; ovipositor sheaths dark brown; ovipositor brown with dark apex. 87

Head. Normal shape, not flattened, height equal its length (lateral view) (Fig. 3A), width 1.4 times median length (dorsal view) (Fig. 3B), 1.08 the width of mesoscutum; length of eye 1.78 times the temple length (dorsal view); frons coriaceous, slightly excavated; vertex coriaceous (Fig. 3B); ocelli in triangle, with base length 1.1 its sides; POL 1.67 times Od and 0.41 the OOL; temple smooth; eyes high 0.93 its width; malar space smooth; height 0.41 times height of eye, and 2.4 times the basal width of mandible; face horizontally rugose-striate, densely cover with white setae, minimum width 0.96 times height of eye and 1.12 times height of face and clypeus combined; clypeus rugulose, ventral region with a roll of long setae; hypoclypeal depression width 0.81 times distance from edge of depression to eye, 0.44 times width of face; head below eyes (frontal view) slightly narrowed; antennae filiform; right antenna broken, remaining the scape and pedicel; left antenna with 23 segments; scape 1.75 times longer than its maximum width; first flagellar segment 5 times longer than its apical width, 1.25 times longer than second segment. Mesosoma. Not flattened, its length 2.04 times maximum height (Fig. 3C); pronotum length equal to scutellum length (dorsal view) (Fig. 3B), rugulose, with an anterior transversal scrobiculate groove; pronotal groove smooth; lateral area of pronotum slightly coriaceous on its upper half and rugose on its lower half; propleuron smooth; maximum width of mesoscutum 1.23 times its length (dorsal view), coriaceous (Fig. 3B); mesonotal lobes not separated by sculptures, notauli present only anteriorly; prescutellar depression with nine carinae; scutellum width 1.5 times its median length, coriaceous, convex and swollen; mesopleuron smooth (Fig. 3C); subalar depression smooth, slightly striate on the upper half, enclosing a coriaceous triangular shaped area right below the fore tegula; mesopleural sulcus thin and punctate; precoxal sulcus thin, smooth and vertically striate, present on the anterior two third of mesopleuron; venter of mesosoma smooth; propodeum rugose, dorsolateral and basal carinae absent (Fig. 3F); metapleuron vertically striate (Fig. 3C). Wings. Fore wing length 1.87 mm (Fig. 3E); stigma 3.14 times longer than wide; r vein arising from basal 0.54 of stigma; 3RSa 1.5 times longer than r, 0.45 times the 3RSb length, 1.5 times the r- m vein; M+CU slightly sinuous; m-cu in line with 2RS, thus RS+Mb absent; first discal cell 2.5 times longer than maximum width; 1cu-a distal to 1M; 2cu-a absent, thus first subdiscal cell open at apex; hind wing M+CU 1.35 times the 1M length; m-cu present and straight. Legs. Fore leg with coxa 1.36 times longer than maximum width, smooth, with white setae dorsally; femur 3.46 times longer than maximum width (lateral view), with spaced setae, dorsally coriaceous with a row of small setae on a longitudinal carina, ventrally smooth; tibia 5.5 times longer than maximum width, coriaceous, with nine spines on its inner side, with spaced setae; basitarsus 0.33 times tarsus length, tarsus densely covered of white setae; middle leg with coxa length 1.15 its maximum width, smooth, with some setae; femur 3.33 times longer than maximum width, dorsally coriaceous, ventrally smooth, with spaced setae; tibia 6.71 times longer than its maximum width 88

(lateral view), coriaceous, dorsally with spaced setae, ventrally with smaller denser setae; basitarsus 0.26 times tarsus length, tarsus densely covered with white setae; hind leg with coxa 1.44 times longer than maximum width (lateral view), dorsally slightly striate, ventrally smooth, covered with spaced white setae, short white setae densely clustered behind the basoventral tubercle; basoventral tubercle present; femur three times longer than maximum width (lateral view), dorsally coriaceous, ventrally smooth, with spaced white setae; tibia 7.22 times longer than maximum width (lateral view), coriaceous, dorsally with spaced white setae, ventrally with smaller denser setae, fringe of setae at its inner apex present; basitarsus 0.35 times tarsus length, tarsus densely covered with white setae. Metasoma. Length 1.08 the length of head and mesosoma combined (without ovipositor) (Fig. 3A); length of first tergite 1.36 times its apical width, 1.4 times length of propodeum, longitudinally costate-rugose, raised median area convex and reaching apex of tergite, laterally with some short setae (Fig. 3D); dorsope present; basal sternal plate 0.43 length of first tergite; length of second and third tergite combined 0.92 its basal width, basal width 0.56 its apical width; second metasomal tergite striate-rugose; third metasomal tergite mostly smooth, striate-coriaceous only on the basal corners; groove between second and third tergite thin, shallow and very sinuous; tergites 4–8 smooth (Fig. 3D); length of ovipositor and ovipositor sheath 0.42 the length of metasoma; ovipositor sheath full of small white setae; ovipositor apex strongly sclerotized. Male. Unknow. Distribution. Colombia (Magdalena) Biology. Unknow. Etymology. The specific name “arepa” is a reference to a traditional food of Colombia where the type species were collected. Material examined. Holotype: Female, “Colombia, Magdalena, PNN Tayrona Neguanje; 11°20’N 74°2’W, 10m; 5–20.iv.2001; Malaise; R. Henriquez leg. M 1597”, “CNIN2243” (CNIN IB- UNAM). Comments. Callihormius arepa n. sp., was treated by Gadelha et al. (in prep) as Callihormius sp. 1.

Callihormius jalapeno Gadelha & Zaldívar-Riverón n. sp. (Figs. 4 A–F)

Diagnosis. This species is similar to other Callihormius with coriaceous mesopleuron but could be distinguished by its pronotum dorsal length greater than scutellum length (Fig. 4B) (smaller in Ca. bifasciatus and Ca. antennisparvis n. sp.); mesoscutum with a small v-shaped sculptured area before the scutellum (Fig. 4B) (not present in Ca. bifasciatus and Ca. antennisparvis n. sp.); basal median 89 areas of propodeum present (absent in Ca. bajaensis); metasomal tergites sculptured before fourth tergite (Fig. 4D) (smooth in Ca. bajaensis); fore wing brown stripe before stigma with a white spot on basal cell (Fig. 4E) (absent in Ca. bifasciatus, Ca. bajaensis and Ca. antennisparvis n. sp.). Description. Holotype. Female (Fig. 4A). Body length about 4.19 mm. Color. Head with face, frons and vertex brown, remainder of head light brown; palpi dark brown; pronotum and propleuron brown; mesonotum reddish-brown; upper half of mesopleuron brown, lower half dark brown; propodeum dark brown; metasoma dark brown; fore and middle leg with coxa brown, trochanter and trochantellus dark brown, femur ventrally brown and dorsally dark brown, tibia dark brown; fore tarsus brown; middle tarsus light yellow; hind leg with coxa dark brown dorsally, brown ventrally; trochanter and trochantellus dark brown; femur dark brown with a brown spot dorsally and a thin longitudinal brown stripe ventrally; tibia dark brown; tarsus brown; fore wing banded; one dark brown stripe before stigma with a white spot on basal cell; second dark brown stripe under the last 0.7 of stigma, getting lighter toward wing tip; stigma white on posterior 0.3, remaining dark brown; veins dorsally white on the white parts of the wing and dark brown on the stripes, ventrally veins totally whitish; hind wing hyaline; veins dorsally mostly white, brown at the junction of veins r-m, SC+R, R and RS, ventrally all veins are whitish; ovipositor sheaths dark brown; ovipositor brown with dark apex. Head. Normal shape, not flattened, height equal its length (lateral view), width 1.32 times median length (dorsal view) (Fig. 4A), 1.11 the width of mesoscutum (Fig. 4F); length of eye 1.5 times the temple length (dorsal view); frons coriaceous, slightly rugose near escape, slightly excavated; vertex coriaceous (Fig. 4F); ocelli in triangle, with base length 1.3 its sides; POL 1.71 times Od and 0.43 the OOL; temple smooth anteriorly, coriaceous posteriorly; eyes high equal to its width; malar space striate, height 0.51 times height of eye, and 2.57 times the basal width of mandible; face rugose, cover with white setae, minimum width 1.17 times height of eye and 1.36 times height of face and clypeus combined; clypeus rugulose, ventral region with a roll of long setae; hypoclypeal depression width 0.75 times distance from edge of depression to eye, 0.36 times width of face; head below eyes (frontal view) slightly narrowed; antennae missing. Mesosoma. Not flattened, its length 2.04 times maximum height (Fig. 4C); pronotum length 1.4 scutellum length (dorsal view) (Fig. 4B), rugulose, delimited anteriorly and posteriorly by transversal scrobiculate grooves; pronotal groove rugose; lateral area of pronotum finely rugose; propleuron rugose anteriorly, posteriorly smooth; maximum width of mesoscutum 1.15 times its length (dorsal view); lateral mesonotal lobes coriaceous, middle lobe rugulose; notauli represented by rugosities, posteriorly ending in a small rugose area before prescutellar depression (Fig. 4B); prescutellar depression with nine carinae; scutellum width 1.46 times its median length, coriaceous, convex and swollen (Fig. 4B); mesopleuron coriaceous; subalar depression rugose, enclosing a 90 coriaceous triangular shaped area right below the fore tegula (Fig. 4C); mesopleural sulcus thin and scrobiculate; precoxal sulcus thin, slightly scrobiculate, present on the anterior half of mesopleuron; venter of mesosoma coriaceous; propodeum rugose-areolate posteriorly; basal median areas rugose- coriaceous; dorsolateral carinae present; basal carina present and followed by two carinae, one on each side; metapleuron vertically striate-rugose. Wings. Fore wing length 2.58 mm (Fig. 4E); stigma 4.09 times longer than wide; r vein arising from basal 0.62 of stigma; 3RSa 1.9 times longer than r, 0.58 times the 3RSb length, 1.9 times the r- m vein; M+CU sinuous; m-cu in line with 2RS, thus RS+Mb absent; first discal cell 2.46 times longer than maximum width; 1cu-a distal to 1M; 2cu-a absent, thus first subdiscal cell open at apex; hind wing M+CU two times the 1M length; m-cu straight, not tubular, almost not visible. Legs. Fore leg with coxa 1.26 times longer than maximum width, coriaceous, with white setae dorsally; femur 3.23 times longer than maximum width (Lateral view), with spaced setae, coriaceous; tibia 7.5 times longer than maximum width, coriaceous, with ten spines on its inner side, covered with white setae, apex with a fringe of seven spines; basitarsus 0.35 times tarsus length, tarsus densely covered of white setae; middle leg with coxa length 1.29 its maximum width, slightly coriaceous, with some setae dorsally; femur 3.23 times longer than maximum width, coriaceous, with spaced setae; tibia eight times longer than its maximum width (lateral view), coriaceous, covered with white setae, with ten spines on its inner side, apex with a fringe of six spines; basitarsus 0.26 times tarsus length, tarsus densely covered with white setae; hind leg with coxa 1.43 times longer than maximum width (lateral view), coriaceous, with spaced white setae, short white setae densely clustered behind the basoventral tubercle; basoventral tubercle present; femur 2.86 times longer than maximum width (lateral view), coriaceous, with spaced white setae; tibia 6.83 times longer than maximum width (lateral view), coriaceous, dorsally with spaced white setae, ventrally covered with smaller denser setae, fringe of setae at its inner apex present; basitarsus 0.41 times tarsus length, tarsus densely covered with white setae. Metasoma. Length 1.03 the length of head and mesosoma combined (without ovipositor) (Fig. 4A); length of first tergite equal to its apical width, 1.26 times length of propodeum, longitudinally costate-rugose, raised median area delimited by two convergent carinae reaching apex of tergite, laterally with some short setae; dorsope slightly marked; basal sternal plate 0.4 length of first tergite; length of second and third tergite combined 0.92 its basal width, basal width 0.67 its apical width; second metasomal tergite striate-rugose (Fig. 4D); third metasomal tergite mostly finely striate- rugose, apex smooth; groove between second and third tergite thin, shallow and sinuous; tergites 4 and 5 with basal half coriaceous, posterior half smooth (Fig. 4D); sixth tergite smooth medially, coriaceous laterally; seventh tergite basal half smooth, posterior half coriaceous; eighth tergite 91 transversally striate; length of ovipositor and ovipositor sheath 0.57 the length of metasoma (Fig. 4A); ovipositor sheath full of small white setae; ovipositor apex strongly sclerotized. Male. Unknow. Distribution. Mexico (Jalisco) Biology. Unknow. Etymology. The species name is a reference to the Mexican pepper “jalapeño”. Material examined. Holotype: Female, “Mexico: Jalisco, Est. Chamela. Near lab.19.49814 -105.0444. 24–25/vi/2009. 95 msnm. Light trap. Selva baja cad. Cham-006B. Clebsch/Zaldivar/Polaszek”, “Coleción del Instituto de Biologia, UNAM, México, D. F.”, “BOLD ASDOR 046”, “5611 [QR code]” (CNIN IB-UNAM). Comments. Callihormius jalapeno n. sp. was treated by Gadelha et al. (in prep) as Callihormius sp. 3.

Callihormius antennisparvis Gadelha & Zaldívar-Riverón n. sp. (Figs. 5 A–F)

Diagnosis. This species is similar to other Callihormius with coriaceous mesopleuron but could be distinguished by its pronotum dorsal length smaller than scutellum length (Fig. 5B) (greater in Ca. bajaensis and Ca. jalapeno n. sp.); mesoscutum without a small v-shaped sculptured area before the scutellum (Fig. 5B) (present in Ca. bajaensis and Ca. jalapeno n. sp.); antennae with 15 segments (more than 15 segments in Ca. bifasciatus, Ca. bajaensis and Ca. jalapeno n. sp.); second metasomal tergite without a groove forming a basal semicircular area (Fig. 5F) (present in Ca. bifasciatus). Description. Holotype. Female (Fig. 5A). Body length about 2.38 mm. Color. Head brown; antenna brown with last flagellomeres dark brown; palpi brown with last segments honey yellow; mesosoma mostly brown, except for the honey yellow pronotum, propleuron and anterior mesoscutum; venter of mesosoma yellow; first, second and base of third metasomal tergites honey yellow, remainder of metasoma brown; ovipositor sheaths dark brown; ovipositor brown with dark apex; legs mostly brown; tarsomeres 1–4 honey yellow, last tarsomere brown; fore wing mostly hyaline, covered by dark setae and with two brown stripes, one passing through the apex of basal cell and base of first discal cell, and the other right below the stigma throughout apex of first submarginal cell, base of marginal cell, all second submarginal cell and middle of second discal cell; light brown veins, stigma brown; hind wing hyaline, veins mostly brown on upside wings and white on the underside. Head. Not flattened, height 1.05 its length (lateral view) (Fig. 5A), width 1.57 times median length (dorsal view) (Fig. 5B), 1.16 times the width of mesoscutum; dorsal length of eye 1.33 times 92 the temple length (dorsal view); frons coriaceous and not excavated; vertex coriaceous (Fig. 5B); ocelli in triangle, base length 1.25 times its sides; POL 1.33 times Od and 0.30 times OOL.; temple coriaceous and shining (Fig. 5C); eyes high equal its width; malar space smooth and shining, height 0.67 times height of eye, and three times the basal width of mandible; face acinose, minimum width 1.44 times height of eye, 1.62 times height of face and clypeus combined; clypeus slightly margined dorsally by a carina; hypoclypeal depression width 0.83 times distance from edge of depression to eye, 0.38 times width of face; head below eyes (frontal view) slightly narrowed; antennae filiform, 15 segmented; scape 1.8 times longer than its maximum width; first flagellar segment four times longer than its apical width, 1.50 times longer than second segment. Mesosoma. Not flattened, its length 2.5 times its maximum height (Fig. 5C); pronotum length 0.6 times scutellum length (dorsal view) (Fig. 5B), dorsally rugose, pronotal groove slightly scrobiculate, lateral area of pronotum coriaceous; propleuron coriaceous; maximum width of mesoscutum 1.29 times its length (dorsal view); mesoscutum entirely coriaceous, mesonotal lobes coriaceous and almost indistinguishable (Fig. 5B); notauli slightly indicated anteriorly, but mostly absent; prescutellar depression with about 9 carinae; scutellum width 1.56 times its median length, convex, swollen, coriaceous; mesopleuron coriaceous (Fig. 5C); subalar depression scrobiculate, enclosing a triangular coriaceous area; mesopleural sulcus scrobiculated; precoxal sulcus coriaceous shallow (almost absent) incomplete; venter of mesosoma coriaceous; propodeum basal median areas coriaceous (Fig. 5D); areola rugulose; basal carina present and almost not visible, dorsolateral carinae present (Fig. 5D); metapleuron coriaceous (Fig. 5C). Wings. Fore wing length 1.52 mm (Fig. 5E); stigma 2.54 times longer than wide; r vein arising from basal 0.43 of stigma; 3RSa 2.12 times longer than r, 0.60 times the 3RSb length, 2.12 times longer than r-m; M+CU slightly sinuate; m-cu basal to 2RS, thus RS+Mb present with 0.33 times the m-cu length; first discal cell length 2.20 times its maximum width; 1cu-a distal to 1M, distance from 1cu-a to 1M equal to 1cu-a length; 2cu-a absent, thus first subdiscal cell open at apex; hind wing M+CU two times the 1M length; m-cu present. Legs. Fore leg with coxa length equal to its maximum width, smooth and shining; femur 2.80 times longer than maximum width (lateral view), coriaceous, with some long setae ventrally and a roll of shorter setae dorsally; tibia eight times longer than maximum width, acinose, with about seven spines on the inner side, full of setae dorsally and ventrally; basitarsus 0.37 times tarsus length, tarsus covered with white setae; middle leg with coxa length equal to its maximum width; femur 3.09 times longer than maximum width, with some spaced long setae, coriaceous; tibia 6 times longer than maximum width (lateral view), coriaceous, with five spines on the inner side and some spaced setae; basitarsus 0.20 times tarsus length, tarsus with dense white setae; hind leg with coxa 1.50 times longer than maximum width (lateral view), with some long setae, coriaceous; basoventral tubercle present; 93 femur 3.08 times longer than maximum width (lateral view), coriaceous, full of spaced long setae; tibia 8.34 times longer than maximum width (lateral view), coriaceous, full of spaced long setae, with a fringe of setae at its inner apex; basitarsus 0.42 times tarsus length, tarsus with dense short white setae. Metasoma. Length of metasoma equal to mesosoma and head combined (Fig. 5A); length of first tergite 0.71 times its apical width, 0.83 length of propodeum, longitudinally rugose, with a raised median area defined by two longitudinal carinae converging to the end of the tergite, laterally with some setae (Fig. 5F); dorsope present; basal sternal plate 0.15 length of first tergite; length of second and third tergites combined 0.90 times second tergite basal width, second tergite basal width 0.71 times third tergite apical width; grove dividing second and third tergite shallow, striate-rugose and sinuous (Fig. 5F); second tergite striate-rugose; third tergite basally striate-rugose remaining tergite coriaceous and shining; remaining metasoma coriaceous and shining (Fig. 5F); ovipositor sheaths length equal to the metasoma length. Male. Unknown Distribution. United States of America (Virginia) Biology. Unknown Etymology. The species name comes from the Latin words “antennis” for antennae and “parvis” for small, in reference to the small antennae of Ca. antennisparvis n. sp. Material examined. Holotype: Female, EUA: Virginia, Essex Co.; 1 mi.SE Dunnsville; 17.ix-10.x.1991; Malaise trap; D. R. Smith; (USNMNH).

Dmitriohormius Belokobylskij, Zaldívar-Riverón & Coronado-Blanco, 2014 n. stat. Callihormius (Dmitriohormius) Belokobylskij, Zaldívar-Riverón & Coronado-Blanco, 2014: 152 [Type species: Callihormius (Dmitriohormius) kasparyani Belokobylskij, Zaldívar-Riverón & Coronado-Blanco, 2014, by original designation, CNIN IB-UNAM, examined].

Diagnosis. Species of Dimitriohormius n. stat., are similar to Callihormius and other related genera, but this genus can be distinguished by the striate vertex (coriaceous in Callihormius and Platyhormius n. gen., coriaceous-rugose in Caputrugosus n. gen. and smooth in Aphelopsia and Caputlenis n. gen.); antennae longer than 30 segments (smaller in Callihormius, Aphelopsia, Caputrugosus n. gen., Platyhormius n. gen.); the fore wing vein M+CU strongly curved (sinuous but not strongly curved in all other genera), with a cluster of thicker dark setae on its curve, sometimes forming a pyramidal structure and the ovipositor much longer than metasomal length (this kind of setae is absent in other genera). 94

Description. Body size 3.47–5 mm; head vertex striate, at least posteriorly; face striate at least on lower half, upper half striate to rugulose-reticulate; antennae longer than 30 segments; pronotal collar not lengthened, length shorter than scutellum length; mesoscutum higher than pronotum in lateral view but not declivous anteriorly (in a 90° angle), gently curved to pronotum; mesosoma sculptured; mesoscutum mostly coriaceous, posteromedian area striate to striate-rugose; notauli absent to present only anteriorly; prescutellar depression with more than 10 cross carinae; scutellum high, convex and laterally compressed or concave with high lateral lobes; hind coxa with distinct basoventral tubercle; fore wing banded; vein M+CU strongly curved, with a cluster of thicker dark setae on its curve, sometimes forming a pyramidal structure; vein r-m present; second submarginal cell slightly lengthened beyond apex of stigma, but vein 3RSa shorter than 3RSb; position of vein m- cu in relation to 2RS variable; first subdiscal cell open at apex, thus vein 2cu-a absent; vein 2CU curved to slightly curved on its base, not in line with vein 1CU; hind wing vein M+CU longer than 1M, ovipositor length longer than metasoma. Distribution. USA and Mexico Biology. The only biological record for this genus is from D. stigmatus n. comb., which was reared from unknown buprestid larvae that were feeding on avocado (Marsh 1966). Comments. This genus was a former subgenus of Callihormius and here it was erected to genus level because it has many features in disagree with the new diagnosis of Callihormius proposed according to the phylogenetic study performed by Gadelha et al. (in prep.). Characters like the striate vertex, the strongly curved M+CU vein of the fore wing and the cluster of thicker dark setae on the M+CU vein gives to Dimitriohormius n. stat. a status of genus, not being congeneric with Callihormius as initially proposed by Belokobylskji et al. (2014). Included species. Dmitriohormius stigmatus (Marsh, 1966) n. comb. Dmitriohormius kasparyani (Belokobylskij, Zaldívar-Riverón & Coronado-Blanco, 2014) n. comb.

Identification key for females of Dmitriohormius n. stat. species

1. Scutellum convex, high and laterally compressed; cluster of thicker dark setae on M+CU curve not forming a pyramidal structure; vein m-cu basal to 2RS … D. stigmatus (Marsh) n. comb. - Scutellum high, but distinctly concave with high lateral lobes; cluster of thicker dark setae on M+CU curve forming a pyramidal structure; vein m-cu distal to 2RS … D. kasparyani (Belokobylskij, Zaldívar-Riverón & Coronado-Blanco) n. comb.

95

Dmitriohormius kasparyani (Belokobylskij, Zaldívar-Riverón & Coronado-Blanco, 2014) n. comb. Callihormius (Dmitriohormius) kasparyani Belokobylskij, Zaldívar-Riverón & Coronado-Blanco, 2014: 154.

Diagnosis. D. kasparyani n. comb., can be recognized by the scutellum distinctly concave with high lateral lobes (scutellum convex, high, and laterally compressed on D. stigmatus n. comb.); fore wing M+CU vein with a cluster of thicker dark setae on its curve, forming a pyramidal structure (cluster of setae not forming a pyramidal structure on D. stigmatus n. comb.); fore wing vein m-cu slightly distal to 2RS forming a small 2M vein (m-cu basal to 2RS forming a long RS+Mb in D. stigmatus n. comb.). Distribution. Mexico (Morelos). Biology. Unknow. Material examined. Holotype: Female, “México: Morelos, Tlaquiltenango, 2 km N Huaxtla, 18.390840° N 99.04836° W, Alt. 1142 m”, “Selva Baja Caducifolia, Trampa de luz, 13–XI–2009, Cols. Campos, Reza, Martinez” (CNIN IB-UNAM).

Dmitriohormius stigmatus (Marsh, 1966) n. comb. Callihormius stigmatus Marsh, 1966: 243; Gadelha et al. 2018: 224 [Redescription].

Diagnosis. Dmitriohormius stigmatus n. comb., can be recognized by the convex, high and laterally compressed scutellum (distinctly concave with high lateral lobes in D. kasparyani n. comb.); fore wing M+CU vein with a cluster of thicker dark setae on its curve, not forming a pyramidal structure (cluster of setae forming a pyramidal structure on D. kasparyani n. comb.); fore wing vein m-cu basal to 2RS forming a long RS+Mb (slightly distal to 2RS forming a small XX vein on D. kasparyani n. comb.). Distribution. United States of America (New Jersey and Florida, also Texas and Louisiana according to Mash (1966)); Mexico (Jalisco). Biology. D. stigmatus n. comb., was reared from unknown buprestid larvae that were feeding on avocado (Marsh 1966). Material examined. Holotype. Female. [USA]; “Florida, Homestead; ex. Buprestidae in avocado; 19.vii.1918; G. E. Moznett col.; Type N° 68924; USNM ENT 00831839” (USNMNH). Paratypes. Three specimens: one male, two females. USA: 1 male, New Jersey, Camden, 6.2697; “Marsh Slide No 180” (USNMNH). 1 female, Florida, Homestead; ex. Buprestidae in avocado; G. E. Moznett col. (USNMNH). 1 female; Florida, Homestead; 19.vii. 1918; ex. Buprestidae in avocado; G. E. Moznett col. (USNMNH). Non-type material. Two females. USA:1 female; Florida, Highlands Contry, Archbold Biological Station; 15.iii.1963; S.W. Frost col. (USNMNH). MEXICO: 1 female, Jalisco, Est. Biol. 96

Chamela; 7.viii.2016; Trampa de luz; al lado de la Oficina; CNIN3179; A. Zaldívar, N. Delgado, cols. (CNIN IB-UNAM). Comments. D. stigmatus n. comb., was originally described within Callihormius, but it was removed from this genus because it does not agree with the updated definition of Callihormius proposed in this work. Therefore, we believe that this species better fits in Dmitriohormius because of its striate vertex, the cluster of setae present on the curve of the strongly curved M+CU fore wing vein, and its long antennae and ovipositor.

Macrometasoma Gadelha & Zaldívar-Riverón n. gen.

Type species. Callihormius shawi Marsh, 2002 [by present designation] Diagnosis. Macrometasoma n. gen., is similar to Caputlenis n. gen. because of the long metasoma (longer than mesosoma) and first metasomal tergite (length 1.5 times its apical width). It is also similar to Callihormius because of the banded wings, and the length of hind wing vein M+CU longer than 1M vein. Macrometasoma n. gen., differs from these both genera by the coriaceous vertex (smooth in Caputlenis n. gen.); the flat mesoscutum, slightly higher than pronotum in lateral view (mesoscutum higher than pronotum and not flattened in Caputlenis n. gen. and Callihormius); the fore wing vein m-cu distal to 2RS, forming a short 2M vein (fore wing vein m-cu in line with 2RS in Caputlenis n. gen., in line or basal to 2RS in Callihormius); the vein 2CU in line with vein 1CU (2CU slightly curved basally in Caputlenis n. gen. and Callihormius). Description. Body size 3.40–5 mm; head vertex coriaceous; face rugulose and a little striate above the clypeus; antennae with 28–33 segments (generally with more than 30); pronotal collar lengthened, length greater than scutellum length; mesoscutum flat, slightly higher than pronotum in lateral view; mesosoma sculptured; mesoscutum lobes coriaceous, posteromedian area striate to striate-rugose; notauli present; prescutellar depression with about 10 cross carinae; scutellum flattened to slightly convex, but never swollen; hind coxa with distinct basoventral tubercle; fore wing banded; vein M+CU sinuous; vein r-m present; second submarginal cell slightly lengthened beyond apex of stigma, but vein 3RSa shorter than 3RSb; vein m-cu distal to 2RS, thus vein 2M is short; first subdiscal cell open at apex, thus vein 2cu-a absent; vein 2CU in line with vein 1CU; hind wing vein M+CU longer than 1M; metasoma longer than mesosoma length; first metasomal tergite length with about 1.5 times its apical width; ovipositor length almost same length of metasoma. Distribution. Costa Rica and Mexico. Etymology. The genus name is a reference to the size of its metasoma (longer than mesosoma and head combined). 97

Comments. This genus was erected to place the former species Ca. shawi, which do not agree with the new definition of Callihormius proposed here. In the Gadelha et al.’s (in prep) phylogeny Ca. shawi was recovered closer to a clade composed of Iare and one species of Aphelopsia and Leluthia each. However, its morphology does not agree with any of these genera once it don´t have the unsculptured body of Aphelopsia nor the fused first and second metasomal tergite of Iare, or the vein m-cu basal to the vein 2RS and the straight groove separating the metasomal tergites two and three of the Leluthia species in this clade. Included species. Macrometasoma shawi (Marsh, 2002) n. comb.

Macrometasoma shawi (Marsh, 2002) n. comb. (Fig. 6 A–I) Callihormius shawi Marsh, 2002: 60 [ESUW, examined].

Redescription. Holotype. Female. Body length about 4.5 mm (Fig. 6A). Color. Head mostly honey yellow, frons and vertex brown; mesosoma mostly brown; mesoscutum anteriorly light brown, posteriorly dark brown; first metasomal tergite brown; fused second and third tergites medially light brown, with dark brown edges; fourth tergite light brown anteriorly and honey yellow posteriorly, medially with a longitudinal dark brown stripe; tergites five and six dark brown anteriorly, honey yellow posteriorly; seventh tergite honey yellow, medially with a transversal dark brown stripe; eighth tergite honey yellow; antenna yellow gradually darkening to dark brown at the tips; palpi white; fore leg with white coxa and trochanter; trochantellus yellow; femur brown; tibia mostly dark brown, apex yellow; tarsus yellow; middle leg with white coxa, trochanter and trochantellus; femur dark brown; tibia dark brown medially, basal and apical apex yellow; tarsus yellow; hind leg with dark brown coxa; trochanter and trochantellus white; femur dark brown; tibia dark brown with basal apex white and apical apex yellow; tarsus yellow; fore wing mostly infuscate, covered by dark setae and with dark brown veins, except for the basal third hyaline with white veins, and the thin white stripe passing through the basal half of first submarginal cell and distal third of first discal cell; stigma brown with basal apex white; hind wing mostly infuscate, with brown veins, except by the white basal fourth with white veins; ovipositor sheaths dark brown; ovipositor brown with dark apex. Head. Normal shape, not flattened, height equal its length (lateral view), width two times median length, 1.08 times the width of mesoscutum; length of eye 1.5 times the temple length (dorsal view); frons slightly excavated, mostly coriaceous, striate close to antennae; vertex coriaceous; ocelli in triangle, with base length equal its sides; POL 1.5 times Od and 0.42 the OOL; temple coriaceous; eyes high equal to its width; malar space smooth and shining, height 0.33 times height of eye, and equal to basal width of mandible; face slightly swollen medially, rugulose with some striation above the clypeus, minimum width 1.3 times height of eye, 1.3 times height of face and clypeus combined; 98 clypeus margined dorsally by carina; hypoclypeal depression width 1.1 times distance from edge of depression to eye, 0.4 times width of face; head below eyes (frontal view) not narrowed; antennae filiform, 31 segmented; scape 1.7 times longer than its maximum width; first flagellar segment 4.3 times longer than its apical width, 1.3 times longer than second segment. Mesosoma. Slightly flattened, its length three times maximum height (Fig. 6A); pronotum length 1.1 times scutellum length (dorsal view) (Fig. 6B), rugulose and with a scrobiculate transversal groove in dorsal view; pronotal groove scrobiculate; lateral area of pronotum coriaceous on the upper half, rugose on lower half; propleuron coriaceous; maximum width of mesoscutum 1.05 times its length (dorsal view), medially with a rugose area (Fig. 6B, F); mesonotal lobes coriaceous, notauli scrobiculate, ending in the mesoscutum rugose area without meeting; prescutellar depression with about 10 carinae; scutellum width 1.4 times its median length, flattened and coriaceous (Fig. 6B); mesopleuron coriaceous; subalar depression coriaceous, strongly scrobiculate posteriorly, shallow and slightly scrobiculate anteriorlly; mesopleural sulcus scrobiculate; precoxal sulcus coriaceous and complete (Fig. 6D); venter of mesosoma coriaceous; propodeum dorsally rugose-areolate, dorsolateral carinae present, metapleura rugose (fig. 6D, F). Wings. fore wing length 3.0 mm (Fig. 6C); stigma 3.6 times longer than wide; r vein arising from basal 0.5 of stigma; 3RSa two times longer than r, 0.7 times the 3RSb length, two times longer than r-m; M+CU sinuate; m-cu distal to 2RS, thus 2M small, length almost equal to m-cu; first discal cell three times longer than maximum width; 1cu-a distal to 1M, distance from 1cu-a to 1M equal to 1cu-a length; 2cu-a absent, thus first subdiscal cell open at apex; vein 2CU in line with vein 1CU; hind wing M+CU 2.14 times the 1M length; m-cu present. Legs. Fore leg with coxa 1.2 times longer than maximum width, smooth and shining; femur four times longer than maximum width (lateral view), slightly coriaceous, with some long setae ventrally and a roll of short setae dorsally; tibia eight times longer than maximum width, slightly coriaceous, left tibia with 11 spines on the inner side, right tibia with 13 spines, dorsally with long setae, ventrally with short setae; basitarsus 0.37 times tarsus length, tarsus densely covered white setae; middle leg with coxa 1.2 times longer than maximum width; femur four times longer than maximum width, with some long setae, coriaceous; tibia nine times longer than maximum width (lateral view), slightly coriaceous with some setae, an also some spines in the inner side; basitarsus 0.26 times tarsus length, tarsus with dense white setae; hind leg with coxa two times longer than maximum width (lateral view), coriaceous, with a few setae; basoventral tubercle present; femur 3.2 times longer than maximum width (lateral view), coriaceous, with some long setae; tibia 7.5 times longer than maximum width (lateral view), coriaceous, with some short setae and a fringe at apex; basitarsus 0.39 times tarsus length, tarsus with dense white setae. 99

Metasoma. Length 1.4 times length of mesosoma and head combined (without ovipositor) (Fig. 6A); length of first tergite 1.5 times its apical width (Fig. 6E), 1.2 times length of propodeum, longitudinally costate, laterally with some setae; dorsope absent; basal sternal plate about 0.5 length of first tergite; length of second and third tergites combined 1.2 its basal width, basal width 0.6 its apical width, laterally striate-coriaceus; grove dividing second and third tergites sinuous, shallow and slightly scrobiculate (Fig. 6E); second tergite dorsally striate; third tergite finely striate; fourth tergite coriaceous-striate, with smooth and shining apex; fifth and sixth tergites coriaceous with smooth and shining apex; remaining tergites smooth and shining; ovipositor and ovipositor sheath length slightly shorter than metasoma. Variation. Antennae 28–33 segments; mesosoma length 2.7–3 times its maximum height, slightly flattened to not flattened; scutellum width 1.3 – 1.5 times its median length, flattened to slightly convex, but never swollen; maximum width of mesoscutum 1.05 – 1.30 times its length (dorsal view); propodeum dorsally rugose-areolate to rugose; ovipositor and ovipositor sheath length slightly shorter than metasoma to slightly longer than metasoma. Male. (Fig. 6G) Color. Head mostly honey yellow, frons and vertex brown; antennae yellow; palpi yellow; mesosoma mostly dark brown, median mesonotal lobe honey yellow; metasoma mostly brown, except by the end of the third tergite, beginning of fourth and fifth tergites, and the seventh and eighth tergites witch are honey yellow; fore leg with coxa and trochanter yellow; trochantellus, femur, tibia and tarsus honey yellow; middle leg with yellow coxa; trochanter and trochantellus white; femur dark brown; tibia dark brown with apical apex yellow; tarsus yellow; hind leg with dark brown coxa; trochanter and trochantellus white; femur dark brown; tibia dark brown with basal apex white and apical apex yellow; tarsus yellow; fore wings mostly infuscate, covered by dark setae and with dark brown veins, except for the basal third hyaline with white veins, and the thin white stripe passing through the basal half of first submarginal cell and distal third of first discal cell; stigma brown with basal apex white; hind wing hyaline with brown veins. Head. Transverse diameter of eye 1.2 times the temple length (dorsal view); eyes high 1.23 its width; height of malar space 0.33 times height of eye, 1.6 times the basal width of mandible; face minimum width equal to height of eye and 1.4 times height of face and clypeus combined; hypoclypeal depression width 1.6 times distance from edge of depression to eye; antennae 29 segmented. Mesosoma. Not flattened, its length 2.8 times maximum height; pronotum length 1.6 times scutellum length (dorsal view) (Fig. 6G); pronotal groove slightly scrobiculate; maximum width of mesoscutum 1.2 times its length (dorsal view) (Fig. 6H); prescutellar depression with about 7 carinae; scutellum width 1.6 times its median length; propodeum rugose. Wings. Hind wing with stigma (Fig. 6G). 100

Metasoma. Length 1.15 times length of mesosoma and head combined; length of first tergite 2.4 times its apical width (Fig. 6I), 1.4 times length of propodeum; length of second and third tergites combined 2.2 its basal width, basal width 0.4 its apical width, finely striate-coriaceous; groove dividing second and third tergites straight and scrobiculate (Fig. 6I); fourth tergite divided by a slightly scrobiculate groove, anteriorly coriaceous, posteriorly slightly striate; fifth tergite coriaceous and divided by a slightly scrobiculate groove; sixth tergite coriaceous with smooth and shining apex; remaining tergites smooth and shining. Biology. Unknowm Distribution. Mexico (Jalisco) and Costa Rica Material examined. Holotype: Female. “Costa Rica, Guanacaste Pr. Guan. Conservation Area Santa Rosa Hdq. 200m Malaise trap 22-26 VII 1997, 3xnight L.J. van de Ent.” (ESUW). Paratypes: Three females and one male. One male, “Costa Rica: Guanacaste Santa Rosa Natl. Park, 300m, ex. Malaise trap, Dates: 21.ii-14.iii.1987, I.D. Gauld & D. Janzen” “[H] open regenerating woodland < 10 years old [O] in clearing fully isolated part of day” “RMSEL”, (ESUW). One female, “Costa Rica, Guanacaste, Santa Rosa National Pk, 300m. Malaise, Ian Gauld, 31.i- 21.ii.1987”, “Bosque Humedo Mature dry Forest high proportion Evergreen species Sun”, “RMSEL”, (ESUW). 1 female, “Costa Rica: San Jose Ciudad Colon, 800m, iii-iv.1990, Col. Luis Fournier”, “RMSEL”, (ESUW). One female, “Costa Rica: BH-10-C, Guanacaste Province Santa Rosa Natl. Pk. 300m, (dry season) 10-31 January 1987”, “Bosque Humedo, mature dry forest with high proportion evergreen species, fully shaded, Townes style Malaise Ian Gauld coll.”, “RMSEL”, (ESUW). Additional material: Two Female. One female, “México: Jalisco, Est. [Estacion] Chamela. Cerca de laboratorio. 19.49858 -105.04417. 92m. 9.viii.2010. Trampa de luz, selva baj. Cad. [Selva baja caducifolia] Cham-67. Zaldivar, Salinas, Garcia [col.]”, “BOLD ASDOR: 858”, (CNIN IB- UNAM). One female, “México: Jalisco, Est. [Estacion] Chamela. Cerca laboratorio. 19.4986 - 105.04411.122m. 20.ii.2010. Trampa de luz, Selva baj. cad. [Selva baja caducifolia] Cham-47. Alejandro Zaldivar R. [col.]”, “BOLD ASDOR: 554”, (CNIN IB-UNAM).

Caputlenis Gadelha & Zaldívar-Riverón n. gen.

Type species. Callihormius franciscomartoi Gadelha & Zaldívar-Riverón, 2018 [by present designation]

Diagnosis. Species of Caputlenis n. gen. are similar to Macrometasoma n. gen. because of the long metasoma and first metasomal tergite, also to Callihormius because of the banded wings and the length of hind wing vein M+CU longer than 1M vein, and because of the smooth it can also be interpreted as Aphelopsia. Caputlenis n. gen., differs from the last three genera by the smooth vertex 101

(coriaceous in Macrometasoma n. gen. and Callihormius); the fore wing vein m-cu in line with 2RS (m-cu distal to 2RS in Macrometasoma n. gen.); the long antennae with more than 30 segments (less than 30 segments in Callihormius and Aphelopsia); the mesoscutum higher than pronotum, and gently curved to pronotum in lateral view (only slightly higher than pronotum and flat in Macrometasoma n. gen.) and the fore wing vein 3RSa shorter than 3RSb (3RSa longer than 3RSb in Aphelopsia).

Description. Body size 3.87–5.16 mm; head mostly smooth, vertex mostly smooth, with very weakly coriaceous and shiny parts (better visible in high magnification); face rugulose medially and smooth close to eyes; antennae with over than 30 segments; pronotal collar lengthened, length greater than scutellum length; mesoscutum higher than pronotum in lateral view; mesoscutum lobes coriaceous, posteromedian area rugose; notauli present and scrobiculate; prescutellar depression with about 7 to 10 cross carinae; scutellum convex but not swollen; propodeum sculptured; hind coxa with distinct basoventral tubercle; fore wing banded; vein M+CU not strongly sinuous; vein r-m present; vein 3RSa shorter than 3RSb; vein m-cu in line with 2RS; first subdiscal cell open at apex, thus vein 2cu-a absent; vein 2CU almost in line with vein 1CU, 2CU slightly curved basally; hind wing vein M+CU longer than 1M, hind m-cu infuscate; metasoma longer than mesosoma; length of first metasomal tergite longer than 1.5 times its apical width; ovipositor length equal or slightly longer than metasoma. Distribution. Brazil (Espírito Santo). Etymology. The genus name is a combination of the Latin words “caput” for head and “lenis” for smooth, in reference to the smooth vertex. Comments. This genus was erected to place the former Callihormius franciscomartoi Marsh and a new species which do not agree with the new definition of Callihormius proposed here, specially by the smooth head, not present in the species of Callihormius, also Ca. franciscomartoi was not recovered as part of the main clade of Callihormius in Gadelha et al. (in prep). Included species. Caputlenis franciscomartoi (Gadelha & Zaldívar-Riverón, 2018) n. comb. Caputlenis capixaba Gadelha & Zaldívar-Riverón n. sp.

Identification key for females of Caputlenis Gadelha & Zaldívar-Riverón n. gen., species

1. Propodeum with basal median areas distinct and slightly coriaceous; pronotal groove and lateral area of pronotum smooth; venter of mesosoma smooth; fore and middle coxa white … Cl. capixaba Gadelha & Zaldívar-Riverón n. sp. - Propodeum with basal median areas rugulose, almost not distinguishable; pronotal groove and lateral area of coriaceous; venter of mesosoma weakly coriaceous; fore and middle coxa light yellow … Cl. franciscomartoi (Gadelha & Zaldívar-Riverón) n. comb. 102

Caputlenis capixaba Gadelha & Zaldívar-Riverón n. sp. (Figs. 7 A–F)

Diagnosis. Caputlenis capixaba n. sp., can be recognized by its propodeum with basal median areas distinct and slightly coriaceous (Fig. 7D) (rugulose and not distinct in Cl. franciscomartoi n. comb.); pronotal groove and lateral area of pronotum smooth (Fig. 7C) (coriaceous in Cl. franciscomartoi n. comb.); venter of mesosoma smooth (slightly coriaceous in Cl. franciscomartoi n. comb.); fore and middle coxa white (Fig. 7A) (light yellow in Cl. franciscomartoi n. comb.). Description. Holotype. Female. Body length about 3.87 mm (Fig. 7A). Color. Head honey yellow; antenna honey yellow with last flagellomeres brown; palpi basal segments light brown, reminder segments white; mesosoma brown; first metasomal tergite honey yellow; second tergite and base of third tergite yellow, remaining third tergite dark brown; tergites 4–7 dark brown; tergite 8 light yellow; ovipositor sheaths dark brown; ovipositor brown with black apex; fore leg coxa and trochanter white; trochantellus and femur brown; tibia dark brown; tarsomeres light brown; middle leg coxa and trochanter white; trochantelus and femur brown; tibia dark brown with white apex; tarsomeres 1–4 white, last tarsomere brown; hind leg coxa brown; trochanter and trochantelus white; femur dark brown; tibia dark brown with white apex; tarsomeres honey yellow; wings banded in white and brown, covered by dark setae; brown veins, except for the basal 0.24 hyaline with white veins and the thin white stripe passing along basal half of first submarginal cell, apex of first discal cell and base of second discal cell; pterostigma mostly brown, with base white; hind wing hyaline, veins mostly brown. Head. Not flattened, height 1.16 its length (lateral view) (Fig. 7A), width 1.56 times its median length (dorsal view) (Fig. 7B), 1.09 times the width of mesoscutum; dorsal length of eye 2.57 times the temple length (dorsal view); frons smooth and shining, slightly excavated; vertex weakly coriaceous behind ocelli, mostly smooth and shining (Fig. 7B); ocelli in triangle, with base length 1.2 times its sides; POL two times Od and 0.60 times OOL; temple smooth and shining; eyes height 0.94 times its width; malar space mostly smooth and shining, striate close to the hypoclypeal depression, height 0.4 times height of eye, and 2.40 times the basal width of mandible; face smooth and shining, medially with discrete roughness, minimum width equal to the height of eye and 1.25 times height of face and clypeus combined; clypeus strigate, margined dorsally by a carina; hypoclypeal depression width 0.73 times distance from edge of depression to eye, 0.37 times width of face; head below eyes (frontal view) slightly narrowed; antennae filiform; antenna with 33 segments; scape 1.60 times longer than its maximum width; first flagellar segment 5.33 times longer than its apical width, 1.14 times longer than second segment. 103

Mesosoma. Not flattened, its length 2.86 times maximum height (Fig. 7C); pronotum length 1.6 scutellum length (dorsal view), rugulose and with a scrobiculate transversal groove in dorsal view (Fig.7B); pronotal groove and lateral area of pronotum smooth and shinning; propleuron slightly rugose close to the head, posteriorly smooth and shining; maximum width of mesoscutum 1.14 its length (dorsal view); mesoscutum with a triangular rugose area medially, mesonotal lobes coriaceous (Fig. 7B); notauli strongly scrobiculate, ending at the triangular rugose area; prescutellar depression with 7 carinae; scutellum width 1.5 times its median length, coriaceous, convex but not swollen; mesopleuron smooth and shiny (Fig. 7C); subalar depression smooth, enclosing a triangular smooth area; mesopleural sulcus thin and scrobiculate; precoxal sulcus smooth and complete; venter of mesosoma smooth and shiny; propodeum rugose-areolate posteriorly, basal median areas distinct, slightly coriaceous and shining, basal carina and dorsolateral carinae present (Fig. 7D); metapleuron rugose-areolate (Fig. 7C). Wings. Fore wing length 2.64 mm (Fig. 7E); pterostigma 3.44 times longer than wide; r vein arising from basal 0.48 of pterostigma; 3RSa 1.55 times longer than r, 0.41 times the 3RSb length and 1.55 times longer than r-m; M+CU slightly sinuate; m-cu in line with 2RS, thus RS+Mb absent; first discal cell length 2.07 times its maximum width; 1cu-a distal to 1M, distance from 1cu-a to 1M equal to 0.67 the 1cu-a length; 2cu-a absent, thus first subdiscal cell open at apex; hind wing M+CU 1.82 times the 1M length; m-cu infuscate. Legs. Fore leg coxa 1.3 times longer than maximum width, smooth and shining; femur 3.89 times longer than maximum width (lateral view), dorsally coriaceous, ventrally smooth, with some spaced long setae and a roll of short setae dorsally; tibia 6.5 times longer than maximum width, smooth, with six spines on the inner side, full of long setae dorsally and ventrally; basitarsus 0.33 times tarsus length, tarsus full of small white setae; middle leg coxa length 1.3 its maximum width, smooth; femur four times longer than maximum width, with some spaced long setae, coriaceous; tibia 6.87 times longer than maximum width (lateral view), smooth, with three spines on the inner side, full of small setae ventrally and some spaced long setae dorsally; basitarsus 0.25 times tarsus length, tarsus with a lot of short white setae; hind leg coxa 1.69 times longer than maximum width (lateral view), with some long setae, dorsally slightly coriaceous, ventrally smooth; basoventral tubercle present; femur 3.33 times longer than maximum width (lateral view), dorsally coriaceous, ventrally smooth, full of spaced long setae; tibia 11.6 times longer than maximum width (lateral view), dorsally mostly smooth, weakly coriaceous at base and ventrally, full of spaced long setae dorsally, full of short setae ventrally, and with a fringe at its inner apex; basitarsus 0.43 times tarsus length, with some long setae dorsally and full of small setae; remainder of tarsus full of small setae. Metasoma. Length of metasoma 1.14 the length of mesosoma and head combined (Fig. 7A); length of first tergite 1.68 times its apical width (Fig. 7F), 1.5 times length of propodeum, 104 longitudinally costate-rugose, dorsope present, laterally with some setae; basal sternal plate about 0.36 length of first tergite; length of second and third tergites combined 1.26 times second tergite basal width, second tergite basal width 0.66 times third tergite apical width; grove dividing second and third tergite sinuous and barely visible; second tergite and base of third tergite striate; remaining third tergite smooth; tergites 4–6 coriaceous on its basal half and smooth posteriorly (Fig. 7F); remainder of metasoma smooth and shining; ovipositor and ovipositor sheath length equal to the length of metasoma. Male. Unknown. Biology. Unknown. Distribution. Brazil (Espírito Santo). Etymology. The species name refers to capixaba, which refers to those born at Espírito Santo, a state of Brazil. Material examined. Holotype. Female. Brasil, ES [Espirito Santo], Vila Valério, Sítio Benincá, 18°58’S 40°27’W, 14-28.ix.2011, Malaise; C. O. Azevedo & eq. col.; UFES N° 121898; (UFES).

Caputlenis franciscomartoi (Gadelha & Zaldívar-Riverón, 2018) n. comb. Callihormius franciscomartoi Gadelha & Zaldívar-Riverón, in Gadelha et al. 2018: 219 [UFES, examined].

Diagnosis. Caputlenis franciscomartoi n. comb, can be recognized by its propodeum with basal median areas rugulose and not distinct (slightly coriaceous and distinct in Cl. capixaba n. sp.); pronotal groove and lateral area of pronotum coriaceous (smooth in Cl. capixaba n. sp.); venter of mesosoma slightly coriaceous (smooth in Cl. capixaba n. sp.); fore and middle coxa light yellow (white in Cl. capixaba n. sp.). Distribution. Brazil (Espírito Santo). Biology. Unknow. Material examined. Holotype. Female. Brasil, ES [Espirito Santo], Santa Teresa, Estação Biológica de Santa Lúcia, 31.v.2001, Varredura [sweep]; C. O. Aze -vedo & R. Kawada col. (N01093); CNIN 2246; (UFES). Paratypes. three females. Brazil: One female, ES [Espírito Santo], Santa Teresa, Estação Biológica de Santa Lúcia, 31.i.2001, Varredura [sweep]; C. O. Azevedo & R. Kawada col. (N01089); CNIN 2203 (UFES). One female, ES [Espírito Santo], Santa Teresa, Estação Bio lógica de Santa Lúcia, 23.iv.2001; Varredura [sweep]; C. O. Azevedo & R. Kawada col. (N01092); CNIN 2202; (INPA). One female, ES [Espírito Santo], Guarapari, P E Paulo César Vinha, Restinga, mata 2; 105

20°36’S 40°25’W, 4 m, 02–10.xii.2006; Malaise; B. Araujo & M. Santos col. (N00199); CNIN 2240 (UFES).

Platyhormius Gadelha & Zaldívar-Riverón n. gen.

Type species. Callihormius (Callihormius) palagannensis Gadelha & Zaldívar-Riverón, 2018 [by present designation]

Diagnosis. Species of Platyhormius n. gen. are morphologically close to Platydoryctes and Callihormius but they differ from them and by the metapleuron with a smooth shinning spot, sometimes with discreet roughness (vertically striate or rugose in Callihormius and Platydoryctes) and the convex first metasomal tergite (first tergite plane or with a raised median area, but never convex in other Doryctinae). Description. Body size 2.7–3.56 mm; head with frons and vertex coriaceous, face horizontally striate-rugose; antennae with 17–20 segments; pronotal collar variable 0.80–1.48 scutellum length; mesoscutum posteromedian area striate-rugose in a rectangular like shape; mesoscutal lobes coriaceous; notauli present only anteriorly; prescutellar depression with about 7 to 10 cross carinae; propodeum rugose, without basal median areas; propodeal basal carina and dorsolateral carinae not distinct; metapleuron with a smooth shinning spot, sometimes with discreet roughness; hind coxa with distinct basoventral tubercle; fore wing banded; vein M+CU not strongly sinuous; vein r-m present; vein 3RSa shorter than 3RSb; vein m-cu in line with 2RS; first subdiscal cell open at apex, thus vein 2cu-a absent; vein 2CU almost in line with vein 1CU, 2CU slightly curved basally; hind wing vein M+CU longer than 1M, hind m-cu spectral; first metasomal tergite convex; second metasomal tergite short, separated from third tergite by a barely visible grove in a semicircle shape; ovipositor length shorter than metasoma. Distribution. Colombia (Parque Nacional Natural Tayrona and Parque Ambiental Palagánn). Etymology. This genus name is a combination of the genera names Platydoryctes and Callihormius, in reference to its resemblance to theses genera. Comments. This genus was erected to place the former Ca. palagannensis and Ca. tyronensis. These two species were recovered in the Gadelha et al. (in prep) phylogeny as a well supported clade close to Platydoryctes. Interestingly Ca. tayronensis share more features with Platydoryctes (a flat scutellum and a mesoscutum slightly more elevated than pronotum for example) than Ca. palagannensis which share more features with Callihormius (a convex and swollen scutellum and a mesoscutum higher than pronotum) although its male seems to be somewhat flattened as in Platydoryctes. Nevertheless, the both species share the unique convex first metasomal tergite, that is not present in any of the two genera mentioned above, and therefore, we propose Platyhormius n. 106 gen. to place them, and make the new combination Platyhormius palagannensis (Gadelha & Zaldívar- Riverón) n. comb. and Platyhormius tayronensis (Gadelha & Zaldívar-Riverón) n. comb. Descriptions and photos of the two species can be found at Gadelha et al. (2018). Included species. Platyhormius palagannensis (Gadelha & Zaldívar-Riverón, 2018) n. comb. Platyhormius tayronensis (Gadelha & Zaldívar-Riverón, 2018) n. comb.

Identification key for the female of Platyhormius n. gen., species

1. Mesoscutum higher than pronotum in lateral view and gently curved to pronotum; Scutellum convex; Fore wing vein 3RSa generally longer than 1.5 times vein r … Ph. palagannensis (Gadelha & Zaldívar-Riverón) n. comb. - Mesoscutum slightly more elevated than pronotum in lateral view and flattened; Scutellum flattened; fore wing vein 3RSa generally shorter than 1.5 times vein r … Ph. tayronensis (Gadelha & Zaldívar-Riverón) n. comb.

Platyhormius palagannensis (Gadelha & Zaldívar-Riverón, 2018) n. comb. Callihormius (Callihormius) palagannensis Gadelha & Zaldívar-Riverón, in Gadelha et al. 2018: 221

Diagnosis. This species is morphologically similar to Ph. tayronensis n. comb. but it can be distinguished by the mesoscutum higher than pronotum in lateral view, and gently curved to pronotum (slightly more elevated than pronotum in lateral view, and flattened in Ph. tayronensis n. comb.), the convex and swollen scutellum (flattened in Ph. tayronensis n. comb.) and the fore wing vein 3RSa generally longer than 1.5 times vein r (3RSa generally shorter than 1.5 times vein r in Ph. tayronensis n. comb.). Distribution. Colombia (Parque Nacional Natural Tayrona and Parque Ambiental Palagánn). Biology. Unknown. Material examined. Holotype. Female. Colombia, Magdalena, PNN [Parque Nacional Nautal] Tayrona Palagánn; 11°20’N 74°2’W, 30m; 9–17.ix.2001; Malaise; R. Henriquez leg. M.2134; CNIN 2168 (CNIN IB-UNAM). Paratypes. Four specimens (three females, one male). Colombia: One female, Magdalena, PNN [Parque Nacional Nautal] Tayrona Palagánn; 11°20’N 74°2’W, 30m; 17–29.ix.2001; Malaise; R. Henriquez leg. M.2135; CNIN 3296 (INPA). One female, idem; M.2135; CNIN 3301 (CNIN IB- UNAM). One female, Magdalena, PNN [Parque Nacional Nautal] Tayrona Neguanje; 11°20’N 74°2’W, 10m; 18–31.x.2001; Malaise; R. Henriquez leg. M.2230; CNIN 2244 (INPA). One male, 107

Magdalena, PNN [Parque Nacional Nautal] Tayrona Palagánn; 11°20’N 74°2’W, 30m; 20.iv– 4.v.2001; Malaise; R. Henriquez leg. M.1596; CNIN 3299 (CNIN IB-UNAM).

Platyhormius tayronensis (Gadelha & Zaldívar-Riverón, 2018) n. comb. Callihormius (Callihormius) tayronensis Gadelha & Zaldívar-Riverón, in Gadelha et al. 2018: 227.

Diagnosis. This species is morphologically similar to Ph. palagannensis n. comb. but it can be distinguished by the mesoscutum flattened and slightly more elevated than pronotum in lateral view (higher than pronotum in lateral view, and gently curved to pronotum in Ph. palagannensis n. comb.), the flattened scutellum (convex and swollen in Ph. palagannensis n. comb.) and the fore wing vein 3RSa generally shorter than 1.5 times vein r (3RSa generally longer than 1.5 times vein r in Ph. palagannensis n. comb.). Distribution. Colombia (Parque Nacional Natural Tayrona). Biology. Unknown. Material examined. Holotype. Female. Colombia, Magdalena, PNN [Parque Nacional Nautal] Tayrona Palagánn; 11°20’N 74°2’W, 30m; 28.vii–18.viii.2001; Malaise; R. Henriquez leg. M.2018; CNIN 2178 (CNIN IB-UNAM). Paratypes. Four females. Colombia: one female, same label as holotype; CNIN 3290 (INPA). One female, same location as holotype; 5–20.iv.2001; Malaise; R. Henriquez leg. M1598; CNIN 3302 (CNIN IB-UNAM). One female, same location as holotype; 20.iv–4.v.2001; Malaise; R. Henriquez leg. M1596; CNIN 2200 (CNIN IB-UNAM). One female, same location as holotype; 9–17.ix.2001; Malaise; R. Henriquez leg. M2137; CNIN 2245 (CNIN IB-UNAM).

Caputrugosus Gadelha & Zaldívar-Riverón n. gen.

Type species. Caputrugosus glebecafejedi Gadelha & Zaldívar-Riverón n. sp. [by present designation] Diagnosis. Caputrugosus n. gen. are morphologically close to Callihormius but it differs from the last one by the head with vertex coriaceous-rugose (coriaceous in Callihormius); the coriaceous malar space (smooth in callihormius); the body full of long white setae (body with not many setae, the ones present are short in Callihormius); and the ovipositor longer than metasoma (equal or usually shorter than metasoma in Callihormius). Description. Body size about 3.8 mm; body full of long white setae, especially on the head and mesoscutum; head with vertex coriaceous-rugose; temple and malar space coriaceous; face horizontally coriaceous-rugose; antennae with about 25 segments; pronotal collar 0.81 scutellum length; mesoscutum higher than pronotum in lateral view, gently curved to pronotum; mesoscutum 108 posteromedian area striate-rugose; mesoscutal lobes coriaceous; notauli scrobiculate; prescutellar depression with about 5 carinae; scutellum convex but not swollen; propodeum basal median areas present; propodeal basal carina bifurcate at its base forming a rugose-areolate areola at the middle of propodeum; dorsolateral carinae distinct; hind coxa with distinct basoventral tubercle; fore wing banded; vein M+CU not strongly sinuous; vein r-m present; vein 3RSa shorter than 3RSb; vein m-cu in line with 2RS; first subdiscal cell open at apex, thus vein 2cu-a absent; vein 2CU almost in line with vein 1CU, 2CU slightly curved basally; hind wing vein M+CU longer than 1M, hind m-cu spectral; first metasomal tergite length equal to its apical width; second metasomal tergite with a groove enclosing a semicircle or triangular area on its base; groove dividing the second and third tergite straight, followed by a second almost parallel groove on the base of third tergite; ovipositor length longer than metasoma. Distribution. French Guiana and Brazil (Roraima). Etymology. The genus name is a combination of the Latin words “caput” for head and “rugosus” for rugose, in reference to the vertex sculpture. Comments. This genus was erected to place the new species Caputrugosus glebecafejedi n. sp., which do not fit in the new definition of Callihormius proposed anteriorly. A coriaceous-rugose vertex (coriaceous in Callihormius) together with the coriaceous malar space (usually smooth in Callihormius), long ovipositor (smaller in Callihormius) and a body full of long setae (shorter setae and less dense in Callihormius) are features that justified its placement within a new genus. Gadelha et al. (in prep) used two specimens of this genus in its COI delimitation (identified as Callihormius sp. 2 and Callihormius sp. 5) resulting in two species, though no significant morphological characters were found to separate these two specimens as different species and therefore we considered them as the same species, Cr. glebecafejedi n. sp. Included species. Caputrugosus glebecafejedi Gadelha & Zaldívar-Riverón n. sp.

Caputrugosus glebecafejedi Gadelha & Zaldívar-Riverón n. sp. (Figs. 8 A–E)

Description. Holotype. Female. Body length about 3.87 mm (Fig. 8A). Color. Head dark brown; antenna honey yellow with last flagellomeres black; palpi dark brown; mesosoma mostly brownish black, dorsal pronotum, propleuron and venter of mesosoma dark brown; metasoma most brownish black, tergite 7 dark brown, tergite 8 yellow; ovipositor sheaths dark brow on its base and apex, middle honey yellow; ovipositor brown with dark brown at apex; fore leg and middle leg dark brown with tarsomeres honey yellow; hind legs dark brown, tarsomeres 2–5 honey yellow; wings banded in white and dark brown, covered in white and dark setae respectively; brown veins, except on the white 109 parts of the wing; three dark bands, one close to the base of basal cell, a second at the apical 0.45 of basal cell passing through the apex of subbasal cell, half of first discal and subdiscal cell, third stripe passing under the stigma; estigma dark brown; hind wing hyaline, veins mostly white, vein r-m and R brown. Head. Not flattened, height 1.04 its length (lateral view), width 2.06 times its median length (dorsal view) (Fig. 8B), 1.22 times the width of mesoscutum; dorsal length of eye 2.17 times the temple length (dorsal view); frons coriaceous; vertex coriaceous-rugose, full of long white setae (Fig. 8B); ocelli in triangle, with base length 1.3 times its sides; POL 2.33 times Od and 0.54 times OOL; temple coriaceous, with long white setae close to the eyes and occipital carina; eyes height equal its width; malar space coriaceous, height 0.47 times height of eye, and three times the basal width of mandible; face horizontally coriaceous-rugose, full of long white setae, minimum width equal to the height of eye and 1.15 times height of face and clypeus combined; upper half of clypeus coriaceous, lower half strigate, clypeus margined dorsally by a smooth groove; hypoclypeal depression width 0.88 times distance from edge of depression to eye, 0.48 times width of face; head below eyes (frontal view) slightly narrowed; antennae filiform; antenna with 25 segments; scape 1.82 times longer than its maximum width; first flagellar segment 4.17 times longer than its apical width, 1.25 times longer than second segment.

Mesosoma. Not flattened, its length 2.4 times maximum height; full of long white setae, especially on mesoscutum and metapleuron (Fig. 8C); pronotum length 0.81 scutellum length (dorsal view) (Fig. 8D), dorsally coriaceous anteriorly and with transversal slightly scrobiculate grooves posteriorly, pronotal groove smooth, lateral area of pronotum coriaceous; propleuron coriaceous; maximum width of mesoscutum 1.23 its length (dorsal view); mesoscutum with a rugose-striate area medially, mesonotal lobes coriaceous (Fig. 8D); notauli scrobiculate, ending at the rugose-striate area; prescutellar depression with 5 carinae; scutellum width 1.4 times its median length, coriaceous, slightly convex but not swollen; mesopleuron coriaceous (Fig. 8C); subalar depression coriaceous and striate, enclosing a triangular coriaceous area; mesopleural sulcus thin and slightly scrobiculate; precoxal sulcus smooth and complete (Fig. 8C); venter of mesosoma coriaceous; propodeum basal median areas present and rugulose; propodeal basal carina bifurcate at its base forming a rugose- areolate areola at the middle of propodeum (Fig. 8D); dorsolateral carinae distinct; metapleuron rugose-areolate (Fig. 8C).

Wings. Fore wing length 2.45 mm (Fig. 8E); pterostigma 2.86 times longer than wide; r vein arising from basal 0.37 of pterostigma; 3RSa three times longer than r, 0.81 times the 3RSb length and 2.25 times longer than r-m; M+CU slightly sinuate, with long dark setae on its basal dark stripe; m-cu in line with 2RS, thus RS+Mb absent; first discal cell length 2.15 times its maximum width; 110

1cu-a distal to 1M, distance from 1cu-a to 1M equal to 1cu-a length; 2cu-a absent, thus first subdiscal cell open at apex; hind wing M+CU 1.75 times the 1M length; m-cu spectral.

Legs. Fore leg coxa 1.3 times longer than maximum width, smooth and shining, full of long white setae ventrally; femur 4.37 times longer than maximum width (lateral view), coriaceous, with some spaced long setae and a roll of short setae dorsally; tibia 7.14 times longer than maximum width, coriaceous, with six spines on the inner side, full of long white setae; basitarsus 0.31 times tarsus length, tarsus full of small yellow setae; middle leg coxa length 1.39 its maximum width, coriaceous; femur 3.76 times longer than maximum width, full of long white setae, coriaceous; tibia 7.44 times longer than maximum width (lateral view), coriaceous, with six spines on the inner side, full of white setae ventrally and full of white long setae dorsally; basitarsus 0.2 times tarsus length, tarsus with a lot of short yellow setae; hind leg coxa 1.59 times longer than maximum width (lateral view), full of long white setae, coriaceous; basoventral tubercle present; femur 3.53 times longer than maximum width (lateral view), coriaceous, full of long white setae; tibia eight times longer than maximum width (lateral view), coriaceous, full of spaced long white setae dorsally, full of short white setae ventrally, with a fringe at its inner apex and a roll of three spines on its external apex; basitarsus 0.37 times tarsus length, full of white setae, specially clustered ventrally; remainder of tarsus full of small yellow setae.

Metasoma. Length of metasoma equal the length of mesosoma and head combined (Fig. 8A); length of first tergite equal its apical width (Fig. 8F), and equal the length of propodeum, with a rugulose raised median area defined by two carinae converging to the end of tergite without meet, lower part of tergite coriaceous-rugulose, dorsope present, laterally with some setae; basal sternal plate about 0.31 length of first tergite; length of second and third tergites combined 1.12 times second tergite basal width, second tergite basal width 0.64 times third tergite apical width; second metasomal tergite rugose-striate, with a groove enclosing a semicircle or triangular area on its base; groove dividing the second and third tergite straight, followed by a second almost parallel groove on the base of third tergite (Fig. 8F); third tergite anteriorly rugose-striate, posteriorly coriaceous; fourth tergite rugose-striate anteriorly and coriaceous posteriorly; tergites 5–7 coriaceous; eighth tergite smooth; ovipositor and ovipositor sheath length longer than metasoma.

Male. Unknown. Biology. Unknown. Distribution. French Guiana and Brazil (Roraima). Etymology. The name of this species is an aleatory combination of first letters of the names of some senior author’s friends (Gabriela M. R. G., Lucas S. M. A., Elba S. G. M., Bruno A. M., Erica S. G. M., Camila F. G. A., Fernanda S. P. S., Jessica C. G. S. and Diego C. O. F.). 111

Material examined. Holotype. Female. “Brasil, RR [Roraima], Caracarai, P.N. [National Park] Viruá; 1°29’23’’N - 61°00’08.7’’W, 19.iv.2015; armadilha Malaise; J. A. Rafael. R. A. Heleodoro, D. M. M. Mendes, D. W. A. Marques & C. Maldaner” cols.; CNIN2177; (INPA). Paratype: One Female. “French Guayana; Montagne des Chevour; 1–7.viii.2011; Malaise trap. Rec. Seag. Yvies Braet; CNIN-1060;” (CNIN IB-UNAM)

Acknowledgements

We thank Cristina Mayorga and Guillermina Ortega for their assistance at the CNIN IB UNAM, Dr. Robert Kula for allowing examination of most of the type material used in this study that is deposited at USNMNH, and for providing digital photos of A. annulicornis, Dr. Scott R. Shaw for allowing examination of type material deposited in the ESWU; Dr. Marcelo Teixeira Tavares for allowing examination of specimens deposited UFES; the REDEBIA project that provide the specimen of Caputrugosus n. gen. This work was funded by grants given by UNAM DGAPA (PAPIIT Convocatoria 2019, Proyecto IN201119) to AZR; by scholarship given by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) to SSG, and by the CNPq productivity bursary, Brazil (306100/2016–9) to MLO.

112

References

Ashmead, W.H. (1892) Three new pambolids from the United States. Psyche, 6, 289–290.

Ashmead, W.H. (1900) Classification of the Ichneumon flies, or the superfamily Ichneumonoidea. Proceedings of the United States National Museum, 23, 1–220.

Barbalho, S.M. & Penteado-Dias, A.M. (2000) Platydoryctes, a new Doryctinae genus from Brazil (Hymenoptera: Braconidae). Entomological news, 111, 25–31.

Barbalho, S.M. & Penteado-Dias, A.M. (2002) A new genus and species of Doryctinae (Hymenoptera: Braconidae) with fused first and second metasomal terga. Entomological News, 113, 179–182.

Belokobylskij, S.A. (2004) New genus and new subgenus of subfamily Doryctinae (Hymenoptera: Braconidae) from the Old World fauna. Annales de la Société Entomologique de France, 40, 199–204. https://doi.org/10.1080/00379271.2004.10697417

Belokobylskij, S.A., Zaldivar-Riverón, A., & Coronado-Blanco, J.M. (2014a). Phylogenetic affinities of Monarea Szépligeti, 1904 (Hymenoptera: Braconidae, Doryctinae) with description of a new species from Mexico. Zootaxa, 3795, 421–430. http://dx.doi.org/10.11646/zootaxa.3795.4.2

Belokobylskij, S.A., Zaldivar-Riverón, A. & Coronado-Blanco, J.M. (2014b) A new subgenus of the genus Callihormius Ashmead, 1900 (Hymenoptera: Braconidae: Doryctinae) from Mexico. Proceedings of the Russian Entomological Society. St Petersburg, 85, 151–156.

Belokobylskij, S.A., Samaca-Sáenz, E. & Zaldivar-Riverón, A. (2015). Mexiare gen. nov., a new Doryctinae genus (Hymenoptera: Braconidae) from Mexico with fused first and second metasomal tergites. Zootaxa, 3914, 122–130. http://dx.doi.org/10.11646/zootaxa.3914.2.2

Braet, Y. & van Achterberg, C. (2001) New taxa of the subfamily Doryctinae Foerster (Hymenoptera: Braconidae) from French Guiana and Brazil. Zoologische Mededelingen (Leiden), 75, 119–136.

Braet, Y., Barbalho S.M. & van Achterberg, C. (2003) Description of four new genera and nine new species of Doryctinae (Hymenoptera: Braconidae) from French Guyana. Zoologische Mededelingen (Leiden), 77, 93–125. 113

Ceccarelli, F.S. & Zaldívar-Riverón, A. (2013) Broad polyphyly and historical biogeography of the Neotropical wasp genus Notiospathius (Braconidae: Doryctinae). Molecular Phylogenetics and Evolution, 69, 142–152. https://doi.org/10.1016/j.ympev.2013.05.001

Gadelha, S.S., Nunes, J.F. & Oliveira, M.L. (2016a). New genera, species and records of Doryctinae (Hymenoptera: Braconidae) from Brazil. Zootaxa, 4083, 359–370. http://dx.doi.org/10.11646/zootaxa.4083.3.2

Gadelha, S.S., Nunes, J. F., Zaldívar-Riverón, A., & Oliveira, M. L. (2016b) Venifurca, a new genus of neotropical Doryctinae (Hymenoptera: Braconidae), and its phylogenetic placement. Journal of Hymenoptera Research, 51: 91–100. https://doi.org/10.3897/jhr.51.9634

Gadelha, S.S., Zaldívar-Riverón, A., & Oliveira M.L. (2018) Revisionary taxonomy of the american Doryctine wasp genus Callihormius Ashmead, 1900 (Hymenoptera: Braconidae). Annales zoologici, 68, 211–235. https://doi.org/10.3161/00034541ANZ2018.68.2.002

Gadelha, S.S., Zaldívar-Riverón, A. & Oliveira, M.L. (2019) Molecular phylogenetics of the doryctine parasitoid wasp genus Callihormius (Hymenoptera: Braconidae) and related genera. In prep., Cap II.

Harris, R.A. (1979) A glossary of surface sculpturing. California Department of Food and Agriculture, Bureau of Entomology. Occasional Papers in Entomology, 28, 1–31.

Marsh, P.M. (1965) The Nearctic Doryctinae I. A review of the subfamily with a taxonomic revision of the tribe Hecabolini (Hymenoptera: Braconidae). Annals of the Entomological Society of America, 58, 668–699.

Marsh, P.M. (1966) The Nearctic Doryctinae, III. The genus Callihormius Ashmead (Hymenoptera: Braconidae). Proceedings of the Entomological Society of Washington, 68, 240–246.

Marsh, P.M. (1993) Descriptions of new Western Hemisphere genera of the subfamily Doryctinae (Hymenoptera: Braconidae). Contributions of the American Entomological Institute, 28, 1–58. 114

Marsh, P.M. (1997) Doryctinae. In: Wharton, R.A., Marsh, P.M. & Sharkey, M.J. (Eds), Manual of the New World genera of the family Braconidae (Hymenoptera). Special Publication No 1. International Society of Hymenopterists, Washington, pp. 211–237.

Marsh, P.M. (2002) The Doryctinae of Costa Rica (excluding the genus Heterospilus). Memoirs of The American Entomological Institute, 70, 1–319.

Marsh, P.M., Wild, A. L. & Whitfield, J.B. (2013) The Doryctinae (Braconidae) of Costa Rica: genera and species of the tribe Heterospilini. Zookeys, 347, 1–474. https://doi.org/10.3897/zookeys.347.6002

Martínez, J.J., Lázaro, R.N.M, Pedraza-Lara, C. & Zaldívar-Riverón, A. (2016) Sergey gen. n., a new doryctine genus from temperate forests of Mexico and Cuba (Hymenoptera, Braconidae). Zookeys, 589, 143–164. https://doi.org/10.3897/zookeys.589.8291

Nunes, J.F., Zaldívar-Riverón, A., Castro, C.S., Marsh, P.M., Penteado-Dias, A.M., Briceño, R. & Martínez, J.J. (2012) Doryctopambolus Nunes & Zaldívar-Riverón (Braconidae), a new neotropical doryctine wasp genus with propodeal spines. Zookeys, 223, 53–67. http://dx.doi.org/10.3897/zookeys.223.3540

Quicke, D.L.J. (2015) Biology, Systematics, Evolution and Ecology of Braconid and Ichneumonid Parasitoid Wasps. Wiley Blackwell, Chichester, UK,752 pp.

Samacá-Sáenz, E., Belokobylskij, S.A., Quicke, D.L.J. & Zaldívar-Riverón, A. (2016) Systematics of the Neotropical braconid wasps of the Pedinotus genus group (Doryctinae). Systematic Entomology, 41, 481–491. https://doi.org/10.1111/syen.12169

Sharkey, M.J. & Wharton, R.A. (1997) Morphology and terminology. In: Wharton, R.A., Marsh, P.M. & Sharkey, M.J. (Eds.) Manual of the New World genera of the family Braconidae (Hymenoptera). Special Publication No 1. International Society of Hymenopterists, Washington, pp. 21–40.

Wharton, R.A. (2006) The species of Sternaulopius Fischer (Hymenoptera: Braconidae: Opiinae) and the braconid sternaulus. Journal of Hymenoptera Research, 17, 317–347. 115

Wharton, R.A., Marsh, P.M. & Sharkey, M.J. (1997) Manual of the New Worldgenera of the family Braconidae (Hymenoptera). The International Society of Hymenopterists, Special Publications 1, Washington, DC, 439 pp.

Zaldívar-Riverón, A., Rodríguez-Jiménez, A., Sarmiento, C.E., Pedraza-Lara, C. & López-Estrada, E.K. (2013) Phylogenetic relationships and description of Bolivar, a new genus of Neotropical doryctine wasps (Hymenoptera: Braconidae). Invertebrate Systematics, 27, 673–688. http://dx.doi.org/10.1071/IS13021

Zaldívar-Riverón, A., Martínez, J.J., Belokobylskij, S.A., Pedraza-Lara, C., Shaw, S.R., Hanson, P.E. & Varela-Hernández, F. (2014) Systematics and evolution of gall formation in the plant- associated genera of the wasp subfamily Doryctinae (Hymenoptera: Braconidae). Systematic Entomology, doi: 10.1111/syen.12078. https://doi.org/10.1111/syen.12078

116

Figures

FIGURE 1. Aphelopsia annulicornis Marsh (holotype) A. lateral habitus, B. lateral head, mesosoma and metasoma, C. dorsal head, mesosoma and metasoma. Photos by Kula and Kweskin.

117

FIGURE 2. Aphelopsia uraricoerense Gadelha & Zaldívar-Riverón n. sp. (holotype) A. lateral habitus, B. dorsal head and mesoscutum, C. dorsal metasoma, D. dorsal fore wing, E. lateral mesosoma, F. dorsolateral propodeum. 118

FIGURE 3. Callihormius arepa Gadelha & Zaldívar-Riverón n. sp. (holotype) A. lateral habitus, B. dorsal head and mesonotum, C. lateral mesosoma, D. dorsal metasoma, E. dorsal fore wing, F. dorsal propodeum.

119

FIGURE 4. Callihormius jalapeno Gadelha & Zaldívar-Riverón n. sp. (holotype) A. lateral habitus, B. dorsal mesonotum, C. lateral mesosoma, D. dorsal metasoma, E. ventral fore wing, F. dorsal head.

120

FIGURE 5. Callihormius antennisparvis Gadelha & Zaldívar-Riverón sp. nov. (holotype) A. lateral habitus, B. dorsal head and mesonotum, C. lateral head and mesosoma, D. dorsolateral propodeum, E. ventral fore wing, F. dorsal metasoma.

121

FIGURE 6. Macrometasoma shawi (Marsh, 2002) n. comb. (holotype) A. lateral habitus, B. dorsal mesonotum, C. dorsal and ventral wings, D. lateral mesosoma, E. dorsolateral metasoma, F. dorsolateral mesosoma. Male (Paratype) G. lateral habitus, H. dorsal mesocutum and pronotum, I. dorsolateram metasoma.

122

FIGURE 7. Caputlenis capixaba Gadelha & Zaldívar-Riverón n. sp. (holotype) A. lateral habitus, B. dorsal head and mesonotum, C. lateral mesosoma, D. dorsolateral propodeum, E. dorsal fore wing, F. dorsal metasoma.

123

FIGURE 8. Caputrugosus glebecafejedi Gadelha & Zaldívar-Riverón n. sp. (holotype) A. lateral habitus, B. dorsal head and pronotum, C. lateral mesosoma, D. dorsal mesosoma, E. dorsal fore wing, F. dorsal metasoma.

124

Capítulo III

Gadelha, S.S., Zaldívar-Riverón, A., Oliveira, M.L. (2019) Updated diagnosis and four new species of the Neotropical Doryctinae genus Platydoryctes Barbalho & Penteado-Dias, 2000 (Hymenoptera: Braconidae). Manuscrito formatado para Zootaxa.

125

Updated diagnosis and four new species of the Neotropical Doryctinae genus Platydoryctes Barbalho & Penteado-Dias, 2000 (Hymenoptera: Braconidae)

SIAN DE SOUZA GADELHA¹, ALEJANDRO ZALDÍVAR-RIVERÓN² & MARCIO LUIZ DE OLIVEIRA³

¹Programa de Pós-Graduação em Entomologia do Instituto Nacional de Pesquisas da Amazônia – INPA. Av. André Araújo, 2.936 – Petrópolis – CEP 69.067–375 – Manaus – Amazonas Brazil. E- mail: [email protected] ²Colección Nacional de Insectos, Instituto de Biología, Universidad Nacional Autónoma de México, 3er. circuito exterior s/n, Cd. Universitaria, Copilco, Coyoacán, A. P. 70–233, C. P. 04510., Ciudad de México, Mexico. E-mail: [email protected]; ³Coordenação de Biodiversidade e Programa de Pós-Graduação em Entomologia do Instituto Nacional de Pesquisas da Amazônia – INPA. Av. André Araújo, 2.936 – Petrópolis – CEP 69.067– 375 – Manaus –Amazonas Brazil. E-mail: [email protected]

Abstract. Platydoryctes is a genus that was distinguished from the remaining doryctine taxa mainly by its considerably flattened body. A recent molecular phylogenetic study, however, showed that this morphological feature has independently evolved in other members of the subfamily. Therefore, we provide an updated diagnosis of Platydoryctes and describe the following four new species: P. birria Gadelha & Zaldívar-Riverón n. sp., P. patacones Gadelha & Zaldívar-Riverón n. sp., P. rapadura Gadelha & Zaldívar-Riverón n. sp. and P. vianai Gadelha & Martínez n. sp. A key to all the currently recognized species of Platydoryctes is also given.

Key words: Neotropical, taxonomic key, Ichneumonoidea; flattened body.

126

Introduction

Doryctinae is a morphologically diverse braconid subfamily, which has a variety of shapes and sizes, including genera with flattened body such as Leluthia Cameron, Angelica Marsh, Sharkeyella Marsh and Platydoryctes Barbalho & Penteado-Dias (Marsh 2002; Braet 2016). Currently, very little is known about the adaptation for the latter morphological feature but, as it was presumed for a flattened Braconinae (Chartobracon huggerti van Achterberg), it could be related to the emergence from bark, where their host live (Van Achterberg 1983). Although the hosts of species of Angelica, Sharkeyella and Platydoryctes remains unknown, in a review on the biology of the Neartic species of Leluthia Kula et al. (2010) mentioned that they are parasitoids of wood-boring beetles of the beetle families Buprestidae, Cerambycidae and Curculionidae, which agrees with Van Achterberg’s (1983) hypothesis. With four recognized (Yu et al. 2012; Gadelha et al. in prep., Chapter 2) and at least 13 undescribed species (Gadelha et al., in prep., Chapter 1), Platydoryctes is the second most speciose genus with flattened body of Doryctinae after Leluthia, which has 16 recognized species (Kula et al. 2010). This genus was erected by Barbalho & Penteado-Dias (2000) mainly by its dorsoventrally, considerably flattened body, including four species based on this feature (P. soaresi Barbalho & Penteado-Dias - type species, P. duckensis Barbalho & Penteado-Dias, P. rafaeli Barbalho & Penteado-Dias and P. amazonensis Barbalho & Penteado-Dias). The authors also pointed out the similarity of Platydoryctes and Sharkeyella. However, Sharkeyella distinguishes from Platydoryctes by having the second metasomal tergite with a pair of longitudinal striate grooves converging to the base of third tergite (grooves absent, parallel or diverging before the third tergite in Platydoryctes), a coarsely and densely hairy ovipositor sheaths (not densely hairy in Platydoryctes), and a developed notauli that reaches a wide rugose area before scutellum (notauli absent or present only anteriorly in Platydoryctes). Marsh (2002) erected Angelica to place A. amazonensis (Barbalho & Penteado-Dias), originally described as P. amazonensis Barbalho & Penteado-Dias. According to him, this species does not belong to Platydoryctes because of the absence of fore wing vein r-m and by the distinctly petiolate metasoma with the basal sternal plate of the first segment being nearly as long as the tergite. Marsh (2002) also stated that Platydoryctes is very similar to Callihormius, being separated from the last one by its flattened body and the longer basal sternal plate. The last character actually is variable among species of Platydoryctes, making difficult to distinguish it from Callihormius. Gadelha et al. (in prep., Chapter 1) included for the first time species of Platydoryctes in a molecular phylogeny and confirmed the validity of this genus. In addition, the above authors proposed other features to better define Platydoryctes besides its considerably flattened body to separate Platydoryctes from 127

Callihormius and other flattened or partially flattened genera. Gadelha et al. (in prep., chapter 2) also presented an updated diagnosis for Callihormius and concluded that C. werneri Marsh do not agree with its diagnostic features and thus they placed them within Platydoryctes with the combination P. werneri (Marsh). Four species of Platydoryctes are currently recognized (P. soaresi, P. duckensis, P. rafaeli and P. werneri), although several species remain undescribed. Here we present an updated definition of Platydoryctes, including the characters previously proposed by Gadelha et al. (In prep., Chapter 1) together with the description of four new species and a taxonomic key for all the recognized species of the genus.

Material and methods

A total of 34 specimens assigned to Platydoryctes Barbalho & Penteado-Dias were examined. These speciemns are deposited in the following colections: Colección Nacional de Insectos, Instituto de Biología, Universidad Nacional Autónoma and de México (CNIN IB-UNAM); Instituto Nacional de Pesquisas da Amazônia (INPA); Universidade Federal do Espírito Santo (UFES); and United States National Museum of Natural History, Smithsonian Institution (USNMNH); Museo Argentino de Ciencias Naturales (MACN). The examined specimens of Platydoryctes were identified using the descriptions provided by Barbalho & Penteado-Dias (2000) and Marsh’s (2002) key to Doryctinae genera from Costa Rica and the redescriptions provided for the genus and for P. duckensis. The species described here were compared with the original descriptions of all the currently recognized species of Platydoryctes. Three of the species described here (P. birria Gadelha & Zaldívar-Riverón n. sp., P. patacones Gadelha & Zaldívar-Riverón n. sp., P. rapadura Gadelha & Zaldívar-Riverón n. sp.) were previously delimited with DNA sequence-based approaches using the animal Barcoding locus (COI; Hebert et al. 2003) by Gadelha et al. (In prep., Chapter 1). The terminology used for the descriptions followed Sharkey & Wharton (1997) for external morphological features except for the surface sculpture, which follows Harris (1979), and the term ‘sternaulus’, which was replaced for ‘precoxal sulcus’ according to Wharton (2006). The following abbreviations were also used: POL for postocellar line, Od for ocellar diameter and OOL for ocellocular line. Digital photographs were taken with a Leica M205A stereomicroscope coupled with a Leica DMC4500 camera and processed with a Leica Application Suite V4.10.0 Interactive Measurements, Montage. Resulting images were stacked and combined using Helicon Focus (©HeliconSoft). The final images and plates were edited using Adobe Photoshop and Adobe Illustrator. 128

Results and discussion Taxonomy Platydoryctes Barbalho & Penteado-Dias, 2000 Platydoryctes Barbalho & Penteado-Dias, 2000: 26 [Type species: Platydoryctes soaresi Barbalho & Penteado-Dias, by original designation, DCBU]; Marsh, 2002: 176 [Redescription].

Diagnosis. Platydoryctes differs from other dorsoventrally flattened genera by the presence of the vein r-m on the fore wing (absent in Angelica and some Leluthia), hind wing M+CU longer than 1M (smaller in Sharkeyella), absence of propodeal carinae (carinae present in Angelica), first metasomal tergite with a pair of strong longitudinal carinae dorsally, usually demarking a raised media area, but not convex (dorsally convex and without strong carinae in Platyhormius), second tergite usually striate to striate-rugose, with only one straight or sinuous transversal groove separating it from the third tergite (with semicircular area defined by strong marked carinae on Leluthia; with a pair of longitudinal striate grooves converging to base of third tergum in Sharkeyella). Description. Body size 3–4 mm; body dorsoventrally flattened. Frons and vertex coriaceous in most of the species; face striate to stiate-rugose; antennae with 25 segments or less; mesosoma mostly sculptured; pronotal collar lengthened (pronotal collar length longer than scutellum length); mesoscutum flat, at the same level or slightly more elevated than pronotum (lateral view); mesoscutal lobes coriaceous, posteromedian rugose or striate-rugose area of mesoscutum wide; notauli absent or present only anteriorly; scutellum flat; precoxal sulcus complete, joining with the subalar depression anteriorly; propodeum not decliveous posteriorly and without basal median areas or propodeal carinae; fore wing usually banded; vein r-m present; vein 3RSa shorter than 3RSb; vein m-cu in line with 2RS or slightly basal to 2RS; fore wing 2RS tubular (occasionally this vein is weak and appears not tubular); first subdiscal cell open at apex, thus vein 2cu-a absent; vein 2CU almost in line with vein 1CU; hind wing vein M+CU longer than 1M; fore tibia with a single row of 6–8 spines on the inner side; hind coxa with basoventral tubercle variable; second metasomal tergite without diverging grooves or a semicircular area defined by strong marked carinae on its base; ovipositor length usually shorter than metasomal length. Distribution. México, Colombia, Brazil and Argentina. Biology. Unknow. Comments. In this updated diagnosis of Platydoryctes, we considered the characters proposed by Gadelha et al. (In prep., Chapter 1), which help to distinguish this genus from other doryctine taxa with flattened or partially flattened body, such as Leluthia, Sharkeyella, Angelica and Platyhormius Gadelha & Zaldívar-Riverón. Two characters were excluded from the original diagnosis of Platydoryctes because they were to variable on the specimens that were examined, propleuron smooth 129

(Barbalho & Penteado-Dias, 2000) and first metasomal segment petiolate, with basal sternal plate equal to or longer than 0.5 the length of first tergite, (Marsh, 2002). Included species. Platydoryctes soaresi Barbalho & Penteado-Dias, 2000 Platydoryctes rafaeli Barbalho & Penteado-Dias, 2000 Platydoryctes duckensis Barbalho & Penteado-Dias, 2000 Platydoryctes werneri (Marsh, 1966) Platydoryctes birria Gadelha & Zaldívar-Riverón n. sp. Platydoryctes patacones Gadelha & Zaldívar-Riverón n. sp. Platydoryctes rapadura Gadelha & Zaldívar-Riverón n. sp. Platydoryctes vianai Gadelha & Martínez n. sp.

Identification key for females of Platydoryctes species 1. Frons and vertex smooth … P. duckensis Barbalho & Penteado-Dias - Frons and vertex coriaceous … 2 2. Temple entirely smooth and shinning … 3 - Temple coriaceous, at least on its upper half … 5 3. Propleuron entirely smooth; propodeum rugose; metasomal tergites 5–8 entirely smooth … P. soaresi Barbalho & Penteado-Dias - Propleuron slightly coriaceous or coriaceous at least in part; propodeum striate-rugose; metasomal tergites 5–8 coriaceous, or coriaceous in part … 4 4. Mesopleuron entirely coriaceous; venter of mesosoma coriaceous; hind wing m-cu present; hind coxa with basoventral tubercle … P. werneri (Marsh) - Mesopleuron mostly smooth; venter of mesosoma smooth; hind wing m-cu absent; hind coxa without basoventral tubercle ... P. rapadura Gadelha & Zaldívar-Riverón n. sp. 5. Vertex slightly rugose behind the ocelli; propodeum foveolated … P. vianai Gadelha & Matínez n. sp. - Vertex totally coriaceous; propodeum rugose or striate rugose … 6 6. Propodeum striate-rugose; ovipositor longer than metasoma ... P. rafaeli Barbalho & Penteado- Dias - Propodeum rugose, or slightly striate-rugose medially; ovipositor shorter than metasoma … 7 7. Mesoscutum basal median area striate-rugose; hind wing vein m-cu basal to r-m vein … P. patacones Gadelha & Zaldívar-Riverón n. sp. - Mesoscutum basal median area rugose; hind wing vein m-cu in line with r-m vein … P. birria Gadelha & Zaldívar-Riverón n. sp.

Platydoryctes birria Gadelha & Zaldívar-Riverón n. sp. (Figs. 1 A–F) 130

Diagnosis. Platydoryctes birria n. sp., can be distinguished from other species of Platydoryctes by its frons and vertex entirely coriaceous (Fig. 1B) (smooth in P. duckensis and slightly rugose behind the ocelli in P. vianai n. sp.); coxa with distinct basal tubercle (absent in P. soaresi, P. duckensis and P. rapadura n. sp.); propodeum rugose (Fig. 1C) (striate-rugose in P. rafaeli and P. werneri, foveolate in P. vianai n. sp.); mesoscutum basal median area rugose (Fig. 1B) (striate-rugose or costate-rugose in P. duckensis, P. rafaeli, P. werneri, P. patacones n. sp., P. rapadura n. sp. and P. vianai n. sp.); fore wing 2RS vein partially almost not visible (Fig. 1F) (entirely tubular and visible in P. soaresi, P. rafaeli, P. werneri, P. patacones n. sp., P. rapadura n. sp. and P. vianai n. sp.); hind wing vein m-cu in line with r-m vein (m-cu basal to r-m in P. patacones n. sp., m-cu absent in P. soaresi, P. duckensis, P. rafaeli and P. rapadura n. sp.). Description. Holotype. Female. Body length about 3.22 mm (Fig. 1A). Color. Head brown; antennae light brown with last four flagellomeres dark brown; palpi light brown; striate-rugose posteromedian area of mesoscutum, mesopleuron, scutellum and propodeum dark brown, reminder of mesosoma brown; metasoma mostly dark brown, meeting of first and second tergites light brown, eight tergite yellow; ovipositor sheaths dark brown, ovipositor brown, with black apex; fore and middle legs mostly light brown, tibia and fifth tarsomere dark brown; hind leg mostly dark brown, trochanter and trochantellus light brown, tarsomeres 1–4 yellow; fore wing mostly infuscate, covered by dark setae, except for two white stripes, one passing along basal third of basal cell and the second one passing along the basal half of first submarginal cell and distal half of first discal cell; stigma dark brown; veins brown, except at the white stripes and the r-m vein which is spectral; hind wing hyaline with brown veins.

Head. Height 0.78 its length (lateral view), width 1.72 times its median length (dorsal view), equal to the width of mesoscutum; dorsal length of eye 2.5 times the temple length (dorsal view); frons coriaceous; vertex coriaceous (Fig. 1B); ocelli in triangle, with base length 1.2 times its sides; POL two times Od and 0.75 the OOL; upper half of temple smooth close to the eye, coriaceous close to the occipital carina, lower half of temple smooth; eyes high 0.81 its width; malar space smooth and shining, height 0.41 times height of eye, and 2.25 times the basal width of mandible; face medially horizontally striate-rugose, smooth close to the eyes; minimum width of face 1.13 times height of eye and 1.47 times height of face and clypeus combined; clypeus margined dorsally by a carina; hypoclypeal depression width 0.8 times distance from edge of depression to eye, 0.32 times width of face; head below eyes (front view) slightly narrowed; antennae filiform, 20 segments; scape coriaceous, 1.73 times longer than its maximum width; first flagellar segment 4.25 times longer than its apical width, 1.21 times longer than second segment. 131

Mesosoma. Flattened, its length four times maximum height (Fig. 1D); pronotum length 1.22 scutellum length (dorsal view), rugulose, with a transversal slightly scrobiculate groove; pronotal groove smooth and slightly scrobiculate; lateral area of pronotum coriaceous; propleuron coriaceous; maximum width of mesoscutum 1.28 times its length (dorsal view); mesoscutum with a posteromedian rugose area with anterior extensions along where notauli would be and along middle of median lobe (Fig. 1B); mesonotal lobes coriaceous; notauli absent; prescutellar depression with about 9 carinae; scutellum width two times its median length, flattened, coriaceous (Fig. 1B); mesopleuron mostly coriaceous (Fig. 1D); subalar depression finally coriaceous and with some rugae, enclosing a coriaceous area under tegula; mesopleural sulcus thin, scrobiculate; precoxal sulcus thin, slightly scrobiculate, complete, and joining with the subalar depression anteriorly (Fig. 1D); venter of mesosoma coriaceous; propodeum rugose (Fig. 1C); basal median areas of propodeum absent; basal carina absente; dorsolateral carinae not clearly distinct, metapleuron vertically striate-rugose.

Wings. Fore wing length 1.74 mm (Fig. 1F); stigma 3.16 times longer than wide; r vein arising from basal 0.4 of stigma; 3RSa length equal the r vein length, 0.2 times the 3RSb length, and 1.5 the r-m length; M+CU slightly sinuate; 2RS partially almost not visible; first discal cell length 2.14 times its maximum width; 1cu-a distal to 1M, distance from 1cu-a to 1M 1.25 times 1cu-a length; 2cu-a absent, thus first subdiscal cell open at apex; vein 2CU slightly curved on its base, almost in line with vein 1CU; hind wing M+CU 1.4 times the 1M length; m-cu spectral.

Legs. Fore leg with coxa length 1.6 times its maximum width, smooth and shining; femur three times longer than maximum width (lateral view), coriaceous, with some short white setae, almost no long white setae present; tibia eight times longer than maximum width, coriaceous, with eight spines on the inner side, full of short setae; basitarsus 0.36 times tarsus length, tarsus covered of small setae; middle leg with coxa length 1.3 times its maximum width, smooth and shining; femur 3.54 times longer than maximum width, with some spaced white setae, coriaceous; tibia 7.5 times longer than maximum width (lateral view), coriaceous, with some spaced setae and four spines on its inner side; basitarsus 0.26 times tarsus length, tarsus with dense white setae; hind leg with coxa 1.6 times longer than maximum width (lateral view), coriaceous, dorsally with some white setae, ventrally with some short white setae, specially clustered close to the basoventral tubercle; basoventral tubercle present; femur 3.21 times longer than maximum width (lateral view), coriaceous, with some spaced setae; tibia 8.86 times longer than maximum width (lateral view), coriaceous, full of spaced setae, ventrally with a cluster of short white setae close to the apex; apex of tibia whit a roll of five spines and a fringe on the inner side; basitarsus 0.42 times tarsus length, tarsus full of short setae. 132

Metasoma. Length 1.09 the length of mesosoma and head combined (Fig. 1A); length of first tergite 1.15 times its apical width and 1.09 length of propodeum, rugulose, basally with two parallel carinae that do not reach the end of tergite, laterally with some white setae (Fig. 1E); dorsope absent; basal sternal plate 0.37 length of first tergite; length of second and third tergites combined 1.33 times second tergite basal width, second tergite basal width 0.57 times third tergite apical width; grove dividing second and third tergum shallow and straight; second tergite striate-rugose; third tergite striate-rugose anteriorly, smooth posteriorly (Fig. 1E); fourth and fifth tergite rugulose anteriorly and smooth posteriorly (Fig. 1E); sixth tergite coriaceous anteriorly and smooth posteriorly; seventh tergite finally coriaceous; eighth tergite rugulose; ovipositor and ovipositor sheath length 0.5 times the length of metasoma (Fig. 1A); ovipositor sheaths full of white setae. Male. Unknown. Biology. Unknown. Distribution. Mexico (Jalisco). Etymology. The specific name “birria” is a traditional Mexican dish often made with goat meat or mutton. It is typical from the state of Jalisco, where the holotype was collected, although it is popular along most part of the country.

Material examined. Holotype: “Mexico, Jalisco, Est. Biol. Chamela; 8.viii.2016; trampa de luz [Light trap], al lado de la oficina; A. Zaldívar, N. Delgado col.; CNIN3180” (CNIN IB-UNAM).

Comments. This species was treated as Platydoryctes sp. 6 in Gadelha et al. (In prep., Chapter 1) phylogenetic study.

Platydoryctes patacones Gadelha & Zaldívar-Riverón n. sp. (Figs. 2A–F, 3A–F) Diagnosis. Platydoryctes patacones n. sp., can be distinguished from other species of Platydoryctes by its frons and vertex entirely coriaceous (Fig. 2B) (smooth in P. duckensis and slightly rugose behind the ocelli in P. vianai n. sp.); coxa with distinct basal tubercle (absent in P. soaresi, P. duckensis and P. rapadura n. sp.); propodeum slightly striate-rugose medially (Fig. 2D) (entirely striate-rugose in P. rafaeli and P. werneri, foveolate in P. vianai n. sp.); mesoscutum basal median area striate- rugose (Fig. 2B) (rugose in P. soaresi and P. birria n. sp.); hind wing vein m-cu basal to r-m vein (m-cu in line with r-m in P. werneri and P. birria n. sp., m-cu absent in P. soaresi, P. duckensis, P. rafaeli and P. rapadura n. sp.) Description. Holotype. Female. Body length about 3.54 mm (Fig. 2A). Color. Head brown; antennae honey yellow, last three flagellomeres dark brown; palpi first and second segments light brown, last two segments brown; mesosoma mostly brown, striate-rugose posteromedian area of 133 mesoscutum slightly darker; metasoma mostly dark brown, first, second and eighth tergites honey yellow; ovipositor sheaths dark brown, ovipositor brown, with black apex; fore and middle legs with coxa, trochanter, trochantellus and femur brown, tibia and apex of fifth tarsomere dark brown; tarsomeres whitish yellow; hind leg mostly dark brown, tarsomeres 1–4 whitish yellow; fore wing mostly infuscate, covered by dark setae, except on the two white stripes, one passing along basal third of basal cell and the second one passing along the basal half of first submarginal cell and distal half of first discal cell; stigma dark brown; veins brown, except at the white stripes and the r-m vein which is spectral; hind wing hyaline with brown veins. Head. Height 0.76 its length (lateral view), width 1.8 times its median length (dorsal view), 0.96 the width of mesoscutum; dorsal length of eye 2.3 times the temple length (dorsal view); frons coriaceous; vertex coriaceous (Fig. 2B); ocelli in triangle, with base length 1.62 times its sides; POL 2.33 times Od and 0.87 the OOL; upper half of temple smooth close to the eye, coriaceous close to the occipital carina, lower half of temple smooth; eyes high 0.81 its width; malar space smooth and shining, height 0.41 times height of eye, and 1.8 times the basal width of mandible; face medially horizontally striate-rugose, smooth close to the eyes; minimum width of face 1.14 times height of eye and 1.67 times height of face and clypeus combined; clypeus margined dorsally by a carina; hypoclypeal depression width 0.82 times distance from edge of depression to eye, 0.36 times width of face; head below eyes (front view) slightly narrowed; antennae filiform, 19 segments; scape coriaceous, 1.57 times longer than its maximum width; first flagellar segment five times longer than its apical width, 1.15 times longer than second segment. Mesosoma. Flattened, its length 3.75 times maximum height; pronotum length 1.27 scutellum length (dorsal view), rugulose, with a transversal slightly rugose and shining groove (Fig. 1B); pronotal groove smooth and slightly scrobiculate; lateral area of pronotum coriaceous; propleuron finally coriaceous; maximum width of mesoscutum 1.26 times its length (dorsal view); mesoscutum with a wide posteromedian striate-rugose area; mesonotal lobes coriaceous; notauli absent; prescutellar depression with about 13 carinae; scutellum width 2.33 times its median length, flattened, coriaceous (Fig. 2D); mesopleuron mostly coriaceous (Fig. 1C); subalar depression finally coriaceous, enclosing a coriaceous area under tegula; mesopleural sulcus thin, scrobiculate; precoxal sulcus thin, slightly scrobiculate, complete, and joining with the subalar depression anteriorly (Fig. 2C); venter of mesosoma coriaceous; propodeum slightly striate-rugose medially, rugose laterally (Fig. 2D); basal median areas of propodeum, basal carina and dorsolateral carinae not distinguishable; metapleuron vertically striate-rugose. Wings. Fore wing length 1.81 mm (Fig. 2E); stigma 3.16 times longer than wide; r vein arising from basal 0.42 of stigma; 3RSa length 1.22 the r vein length, 0.22 times the 3RSb length, and 1.22 the r-m length; M+CU slightly sinuate; m-cu in line with 2RS; first discal cell length 2.54 times its 134 maximum width; 1cu-a distal to 1M, distance from 1cu-a to 1M 1.66 times 1cu-a length; 2cu-a absent, thus first subdiscal cell open at apex; vein 2CU almost in line with vein 1CU; hind wing M+CU 1.78 times the 1M length; m-cu spectral, almost not visible. Legs. Fore leg with coxa length 1.43 times its maximum width, smooth and shining; femur 3.12 times longer than maximum width (lateral view), coriaceous, with some short white setae, almost no long white setae present; tibia 6.83 times longer than maximum width, coriaceous, with seven spines on the inner side, full of short setae, specially ventrally; basitarsus 0.36 times tarsus length, tarsus full of small setae; middle leg with coxa length 1.6 times its maximum width, smooth and shining; femur 3.33 times longer than maximum width, with some spaced white setae, coriaceous; tibia six times longer than maximum width (lateral view), coriaceous, with some spaced setae dorsally, ventrally full of setae; basitarsus 0.23 times tarsus length, tarsus with dense white setae; hind leg with coxa 1.7 times longer than maximum width (lateral view), coriaceous, with some spaced white setae, ventrally with some short white setae, specially clustered close to the basoventral tubercle; basoventral tubercle present; femur 3.07 times longer than maximum width (lateral view), coriaceous, with some spaced long setae; tibia 7.5 times longer than maximum width (lateral view), coriaceous, full of spaced long setae, ventrally with a cluster of short white setae close to the apex; apex of tibia whit a roll of five spines and a fringe on the inner side; basitarsus 0.40 times tarsus length, tarsus full of short setae. Metasoma. Length 1.16 the length of mesosoma and head combined (Fig. 2A); length of first tergite equal its apical width and equal the length of propodeum, striate-rugose, laterally with some white setae (Fig. 2F); dorsope absent; basal sternal plate 0.3 length of first tergite; length of second and third tergites combined 1.07 times second tergite basal width, second tergite basal width 0.67 times third tergite apical width; grove dividing second and third tergum shallow and sinuous (Fig. 2F); second tergite striate-rugose; third tergite striate-rugose anteriorly, smooth posteriorly; fourth tergite rugulose anteriorly, smooth posteriorly; fifth and sixth tergites coriaceous anteriorly and smooth posteriorly; seventh tergite finally coriaceous; eighth tergite coriaceous; ovipositor and ovipositor sheath length 0.5 times the length of metasoma (Fig. 2A); ovipositor sheaths full of white setae. Male. Similar to the female except on what follows. Body length about 3.03 mm (Fig. 3A). Color. Body mostly dark brown; head brown; antennae honey yellow, last five flagellomeres dark brown; palpi first and second segments light brown, last two segments brown; pronotum and anterior mesoscutum brown; second tergite yellow; legs mostly dark brown, with tarsomeres 1-4 honey yellow; fore wing banded as in the female; hind wing hyaline with brown veins and stigma. Head. Height 0.72 its length (lateral view), width 1.58 times its median length (dorsal view), equal width of mesoscutum (Fig. 3E); dorsal length of eye two times the temple length (dorsal view); 135 ocelli in triangle, with base length 1.71 times its sides; POL four times Od and 1.33 the OOL; upper half of temple coriaceous, lower half of temple smooth; eyes high 0.75 its width; malar space 1.5 times the basal width of mandible; face medially horizontally striate-rugose, smooth close to the eyes; minimum width of face 1.33 times height of eye; hypoclypeal depression width 0.9 times distance from edge of depression to eye, 0.39 times width of face; head below eyes (front view) slightly narrowed; antennae with scape two times longer than its maximum width; first flagellar segment four times longer than its apical width, 1.14 times longer than second segment. Mesosoma. Flattened, its length 4.28 times maximum height (Fig. 3A); pronotum length 1.67 scutellum length (dorsal view), rugulose (Fig. 3E); pronotal groove smooth and slightly scrobiculate; lateral area of pronotum coriaceous; propleuron finally coriaceous; maximum width of mesoscutum 1.2 times its length (dorsal view); prescutellar depression with about 12 carinae; scutellum width three times its median length; propodeum rugose (Fig. 3C). Wings. Fore wing length 1.74 mm (Fig. 3F); stigma 2.5 times longer than wide; r vein arising from basal 0.45 of stigma; 3RSa length 1.6 the r vein length, 0.30 times the 3RSb length, and 1.6 the r-m length; M+CU slightly sinuate; m-cu in line with 2RS; first discal cell length 2.4 times its maximum width; 1cu-a distal to 1M, distance from 1cu-a to 1M equal to 1cu-a length; 2cu-a absent, thus first subdiscal cell open at apex; vein 2CU almost in line with vein 1CU; hind wing with stigma (Fig. 3F). Legs. Fore leg with coxa length 2.14 times its maximum width; femur 2.69 times longer than maximum width (Lateral view); tibia eight times longer than maximum width, with six spines on the inner side; basitarsus 0.4 times tarsus length; middle leg with coxa length 1.36 times its maximum width; femur 3.18 times longer than maximum width; tibia seven times longer than maximum width (lateral view); basitarsus 0.23 times tarsus length; hind leg with coxa 1.77 times longer than maximum width (lateral view); basoventral tubercle discreet ; femur 2.86 times longer than maximum width (lateral view); tibia 8.14 times longer than maximum width (lateral view; basitarsus 0.42 times tarsus length. Metasoma. Length 1.53 the length of mesosoma and head combined; length of first tergite 1.17 its apical width and 1.25 the length of propodeum; basal sternal plate 0.37 length of first tergite; length of second and third tergites combined 1.32 times second tergite basal width, second tergite basal width 0.73 times third tergite apical width; grove dividing second and third tergum shallow and slightly sinuous (Fig. 3B). Biology. Unknown. Distribution. Colombia (Magdalena). 136

Etymology. The specific name “patacones” is in reference to a traditional dish, which is made of fried green plantains. This dish is eaten in various countries from Latin America, including Colombia, where the type specimens were collected. Type material. Holotype. “Colombia, Magdalena, PNN Tayrona Neguanje; 11°20’N 74°2’W, 10m; 20.iv-4.v.2001; Malaise; R. Henriquez, leg. M1599; CNIN3276;” (CNIN IB-UNAM). Paratype. One Male. Same label as holotype; CNIN3295; (CNIN IB-UNAM). Comments. This species was treated as Platydoryctes sp. 7 in Gadelha et al. (In prep., Chapter 1) phylogenetic study.

Platydoryctes rapadura Gadelha & Zaldívar-Riverón n. sp. (Figs. 4A–F)

Diagnosis. Platydoryctes rapadura n. sp., can be distinguished from other species of Platydoryctes by its frons and vertex entirely coriaceous (Fig. 4C) (smooth in P. duckensis and slightly rugose behind the ocelli in P. vianai n. sp.); temple entirely smooth and shinning (at least partially coriaceous in P. rafaeli, P. vianai n. sp., P. patacones n. sp., P. birria n. sp.); coxa without distinct basal tubercle (presente in P. rafaeli, P. werneri, P. vianai n. sp., P. patacones n. sp., P. birria n. sp.); propleuron anteriorly cariaceous (totally smooth in P. soaresi); first metasomal tergite rugose (Fig. 4B) (striate in P. soaresi and P. rafaeli, costate-rugose in P. werneri, basaly foveolate, apicaly striate-rugose in P. vianai n. sp. and striate-rugose in P. patacones n. sp.); venter of mesosoma smooth (coriaceous in P. werneri, P. vianai n. sp., P. patacones n. sp. and P. birria n. sp.) Description. Holotype. Female. Body length about 3.87 mm (Fig. 4A). Color. Head brown; antennae brown with last seven flagellomeres dark brown; palpi brown; striate-rugose posteromedian area of mesoscutum, posterior half of mesopleuron, scutellum and propodeum dark brown, reminder of mesosoma brown; metasoma mostly dark brown, meeting of first and second tergites brown, eighth tergite yellow; ovipositor sheaths dark brown, ovipositor brown, with black apex; fore leg mostly brown, tibia and fifth tarsomere dark brown; middle leg mostly dark brown, trochanter and trochantellus white, tarsomeres 1–4 light yellow; hind leg mostly dark brown, trochanter and trochantellus white, tarsomeres 1–4 brown; fore wing mostly infuscate, covered by dark setae, except for two white stripes, one passing along basal third of basal cell and the second one passing along the basal half of first submarginal cell and distal half of first discal cell; stigma brown; veins brown, except at the white stripes and the r-m vein which is spectral; hind wing hyaline with brown veins. Head. Height 0.68 its length (lateral view), width 1.71 times its median length (dorsal view) (Fig. 4C), equal to the width of mesoscutum; dorsal length of eye 2.45 times the temple length (dorsal view); frons coriaceous; vertex coriaceous (Fig. 4C); ocelli in triangle, with base length 1.2 times its 137 sides; POL two times Od and 0.6 the OOL; temple smooth; eyes high 0.78 its width; malar space smooth and shining, height 0.41 times height of eye, and 2.75 times the basal width of mandible; face medially horizontally striate-rugose, smooth close to the eyes; minimum width of face 1.15 times height of eye and 2.13 times height of face and clypeus combined; clypeus margined dorsally by a carina; hypoclypeal depression width 0.71 times distance from edge of depression to eye, 0.31 times width of face; head below eyes (front view) slightly narrowed; antennae filiform, 25 segments; scape coriaceous, 1.6 times longer than its maximum width; first flagellar segment 5.25 times longer than its apical width, 1.16 times longer than second segment. Mesosoma. Flattened, its length five times maximum height (Fig. 4A); pronotum length 1.57 scutellum length (dorsal view), rugose, pronotal groove smooth and slightly scrobiculate (Fig. 4D); lateral area of pronotum coriaceous; propleuron coriaceous anteriorly, smooth posteriorly; maximum width of mesoscutum 1.12 times its length (dorsal view); mesoscutum with a wide striate-rugose area medially, mesonotal lobes coriaceous; notauli present only anteriorly, smooth and slightly scrobiculate; prescutellar depression with about 11 carinae; scutellum width 1.91 times its median length, flattened, coriaceous; mesopleuron mostly smooth; subalar depression smooth, enclosing a triangular coriaceous area under tegula; mesopleural sulcus scrobiculate; precoxal sulcus thin, slightly scrobiculate, complete, and joining with the subalar depression anteriorly; venter of mesosoma smooth; propodeum striate-rugose (Fig. 4E); basal median areas of propodeum absent; basal carina absente; dorsolateral carinae not clearly distinct, metapleuron rugose-areolate. Wings. Fore wing length 2.26 mm (Fig. 4F); stigma 3.44 times longer than wide; r vein arising from basal 0.48 of stigma; 3RSa length 1.83 times the r vein, 0.27 times the 3RSb length, and 1.37 the r-m length; M+CU slightly sinuate; m-cu basal to 2RS, thus RS+Mb present, length about 0.3 times m-cu length; first discal cell length 2.05 times its maximum width; 1cu-a distal to 1M, distance from 1cu-a to 1M 1.25 times 1cu-a length; 2cu-a absent, thus first subdiscal cell open at apex; vein 2CU slightly curved on its base, almost in line with vein 1CU; hind wing M+CU 1.24 times the 1M length; m-cu absent. Legs. Fore leg with coxa length 1.67 times its maximum width, smooth and shining; femur 3.36 times longer than maximum width (lateral view), coriaceous, with some short white setae basally and some long white setae apically; tibia 7.16 times longer than maximum width, slightly coriaceous, with six spines on the inner side, full of short setae ventrally and dorsally with some long white setae; basitarsus 0.34 times tarsus length, tarsus full of small white setae; middle leg with coxa length 1.38 times its maximum width, smooth and shining; femur 3.75 times longer than maximum width, with some spaced white long setae, coriaceous; tibia 7.86 times longer than maximum width (lateral view), coriaceous, with some spaced setae and two spines on its inner side; basitarsus 0.3 times tarsus length, tarsus with dense white setae; hind leg with coxa two times longer than maximum width (lateral 138 view), dorsally with some long white and rugose, ventrally with some short white setae and smooth; basoventral tubercle absent; femur 2.82 times longer than maximum width (lateral view), coriaceous, full of spaced long setae; tibia 7.09 times longer than maximum width (lateral view), coriaceous, full of spaced long setae, ventrally with a cluster of short white setae close to the apex; apex of tibia whit a roll of six spines; basitarsus 0.41 times tarsus length, tarsus full of short setae. Metasoma. Length equal to mesosoma and head combined (Fig. 4A); length of first tergite 1.5 times its apical width and 1.05 length of propodeum, rugose, laterally with some long white setae; dorsope absent; basal sternal plate 0.66 length of first tergite; length of second and third tergites combined 1.67 times second tergite basal width, second tergite basal width 0.6 times third tergite apical width; grove dividing second and third tergum shallow and straight (Fig. 4B)d; second tergite striate-rugose; third tergite striate-rugose anteriorly, smooth posteriorly; fourth tergite slightly striate- rugose anteriorly and smooth posteriorly; fifth and sixth tergites coriaceous anteriorly and smooth posteriorly; seventh tergite finally coriaceous; eighth tergite smooth; ovipositor and ovipositor sheath length 0.48 times the length of metasoma; ovipositor sheaths full of white setae. Male. Unknown. Biology. Unknown. Distribution. Brazil (Ceará). Etymology. The specific name “rapadura” is a sweet made of unrefined cane sugar and is typical from Latin America. The state of Ceará in Brazil, where the holotype was collected, is the biggest producer of this sweet in the country. Type material. Holotype. “Brasil, Ceará, Meruoca, 20-21.vi.2015; Malaise; D. Nogueira col.; CNIN2241” (INPA) Comments. This species was treated as Platydoryctes sp. 5 in Gadelha et al. (In prep., Chapter 1) phylogenetic study.

Platydoryctes vianai Gadelha & Martínez n. sp. (Figs. 5A–G)

Diagnosis. Platydoryctes vianai n. sp., can be distinguished from other species of Platydoryctes by its vertex slightly rugose behind the ocelli (Fig. 5B) (smooth in P. duckensis and entirely coriaceous in all other species); coxa with distinct basal tubercle (absent in P. soaresi, P. duckensis and P. rapadura n. sp.); propodeum foveolated (Fig. 5G) (striate-rugose in P. werneri, P. rafaeli and P. rapadura n. sp., medially slightly striate-rugose in P. patacones n. sp., rugose in P. birria n. sp., P. soaresi and P. duckensis); mesoscutum basal median area striate-rugose (Fig. 5D) (rugose in P. soaresi and P. birria n. sp.). 139

Description. Holotype. Female. Body length about 2.6 mm (Fig. 5A). Color. Head mostly dark yellow, ocellar triangle dark brown, vertex with a brow longitudinal stripe behind the ocellar triangle; antennae yellow with last five flagellomeres dark brown; palpi yellow; mesosoma mostly brown, center of mesoscutum dark brown; first and second metasomal tergites yellow, remaining tergites brown with dark brown edges; ovipositor sheaths dark brown, ovipositor basal half brown, apical half dark brown; fore leg and middle leg with coxa, trochanter and trochantellus yellow; femur dark yellow; tibia brown; hind leg coxa, femur and tibia brow; trochanter and trochantellus yellow; tarsomeres 1-4 and base of tibia pale yellow, last tarsomere brown; fore wing mostly infuscate, covered by dark setae, except for two white stripes, one passing along basal third of basal cell and the second one passing along the basal half of first submarginal cell and distal half of first discal cell; stigma brown; veins brown, except at the white stripes and the r-m vein which is also white; hind wing hyaline with brown veins. Head. Height 0.80 its length (lateral view), width 1.44 times its median length (dorsal view), equal to the width of mesoscutum; dorsal length of eye 2.4 times the temple length (dorsal view); frons slightly rugose, slightly excavated; vertex mostly coriaceous, slightly rugose behind the ocelli (Fig. 5B); ocelli in triangle, with base length 1.44 times its sides; POL 2.33 times Od and equal to OOL; temple coriaceous (Fig. 5C); eyes high 0.85 its width; malar space smooth and shining, height 0.45 times height of eye, and 2.25 times the basal width of mandible; face horizontally striate-rugose, minimum width 1.30 times height of eye and 1.53 times height of face and clypeus combined; clypeus margined dorsally by a carina; hypoclypeal depression width 0.72 times distance from edge of depression to eye, 0.31 times width of face; head below eyes (front view) slightly narrowed; antennae filiform, 18 segmented; scape 1.09 times longer than its maximum width; first flagellar segment 3.75 times longer than its apical width, 1.25 times longer than second segment. Mesosoma. Slightly flattened, its length 2.93 times maximum height (Fig. 5C); pronotum length 1.11 scutellum length (dorsal view), coriaceous, with a scrobiculate transversal groove (Fig. 5D); pronotal groove scrobiculate and lateral area of pronotum coriaceous on the upper half and rugose on the lower half; propleuron coriaceous; maximum width of mesoscutum 1.25 times its length (dorsal view); mesoscutum with a striate-rugose area medially, mesonotal lobes coriaceous (Fig. 5D); notauli absent; prescutellar depression with about 14 carinae; scutellum width 2.11 times its median length, flattened, coriaceous (Fig. 5D); mesopleuron coriaceous (Fig. 5C); subalar depression coriaceous and slightly rugose, enclosing a triangular coriaceous area; mesopleural sulcus thin, almost absent, and with a few rugae; precoxal sulcus thin, coriaceous and complete and joining with the subalar depression anteriorly (Fig. 5C); venter of mesosoma coriaceous; propodeum foveolate (dorsal view) (Fig. 5G); basal median areas of propodeum absent; basal carina absente; dorsolateral carinae not clearly distinct, metapleuron rugose. 140

Wings. Fore wing length 1.73 mm (Fig. 5E); stigma 3.22 times longer than wide; r vein arising from basal 0.37 of stigma; 3RSa length 1.85 times the r vein, 0.41 times the 3RSb length, and 1.62 the r-m length; M+CU slightly sinuate; m-cu in line with 2RS, thus RS+Mb absent; first discal cell length 1.78 times its maximum width; 1cu-a distal to 1M, distance from 1cu-a to 1M 1.33 times 1cu- a length; 2cu-a absent, thus first subdiscal cell open at apex. Hind wing M+CU 2.77 times the 1M length; m-cu present with the tip curved towards the wing tip, and basal to r-m. Legs. Fore leg with coxa length 1.67 times its maximum width, smooth and shining; femur 3.60 times longer than maximum width (lateral view), coriaceous; tibia 7 times longer than maximum width, coriaceous, with about six spines on the inner side, full of setae dorsally and ventrally; basitarsus 0.50 times tarsus length, tarsus with dense white setae; middle leg with coxa length 1.27 times its maximum width, smooth and shining; femur 3.63 times longer than maximum width, with some spaced long setae, coriaceous; tibia 7.83 times longer than maximum width (lateral view), coriaceous, with some spaced setae; basitarsus 0.25 times tarsus length, tarsus with dense white setae; hind leg with coxa 1.67 times longer than maximum width (lateral view), with some long setae, coriaceous; basoventral tubercle present; femur 2.33 times longer than maximum width (lateral view), coriaceous, full of spaced long setae; tibia 5.89 times longer than maximum width (lateral view), coriaceous, full of spaced long setae; basitarsus 0.45 times tarsus length, tarsus with dense short white setae. Metasoma. Length equal to mesosoma and head combined (Fig. 5A); length of first tergite 0.90 times its apical width and 1.11 length of propodeum, basaly foveolate, apically striate-rugose, two parallel median carina present but almost indistinguishable, laterally with some setae (Fig. 5F); dorsope discreet; basal sternal plate about 0.20 length of first tergite; length of second and third tergites combined 0.92 times second tergite basal width; second tergite basal width 0.73 times third tergite apical width; grove dividing second and third tergum shallow, almost not visible (Fig. 5F); second tergite striate; third tergite striate with apical edge smooth; fourth tergites striate-rugose basally and smooth apically; fifth tergite coriaceous basally and smooth apically (Fig. 5F); remaining tergites coriaceous; ovipositor and ovipositor sheath length 0.70 times the length of metasoma; ovipositor sheaths full of white setae. Variation. Body length about 2.13–3 mm. Head. Vertex rugose area, behind the ocelli sometimes reaching the occipital carina. Mesosoma. Length 2.93–3.12 times maximum height; maximum width of mesoscutum 1.25– 1.42 times its length (dorsal view); prescutellar depression with 11–14 carinae; scutellum width 2– 2.11 times its median length; subalar depression coriaceous and slightly rugose to rugose. Wings. Fore wing length 1.73–1.80 mm; stigma 3.22 times longer than wide; r vein arising from basal 0.37 of stigma; 3RSa length 1.42–1.85 times the r vein, 0.37–0.41 times the 3RSb length, 141 and 1.43–1.62 the r-m length; first discal cell length 1.78–1.90 times its maximum width; hind wing M+CU 2.30-2.77 times the 1M length. Metasoma. Length of first tergite 0.75–0.90 times its apical width and 1–1.11 length of propodeum, striate-rugose only apically to total striate-rugose; dorsope discrete to strongly marked; basal sternal plate about 0.20–0.33 length of first tergite; length of second and third tergites combined 0.92–0.94 times second tergite basal width, second tergite basal width 0.73–0.75 times third tergite apical width; second tergite striate; ovipositor and ovipositor sheath length 0.50-0.70 times the length of metasoma. Male. Unknown Biology. Unknown Distribution. Argentina (San Geronimo). Etymology. The name of the species is a reference to the collector of the type specimen. Material examined. Holotype. Argentina, San Luis, San Geronimo, xii.1975, M. J. Viana [col.]; (MACN) Paratypes. Two Females. Argentina, San Luis, San Gerónimo, i-1972; M. J. Viana; (MACN)

Acknowledgements

We thank Cristina Mayorga and Guillermina Ortega for their assistance at the CNIN IB-UNAM, Dr. Robert Kula for allowing examination of the holotype of P. werneri (Marsh) deposited at the USNMNH, Dr. Marcelo Teixeira Tavares for allowing examination of specimens deposited UFES. This work was funded by grants given by UNAM DGAPA (PAPIIT Convocatoria 2019, Proyecto IN201119) to AZR; by scholarship given by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) to SSG, and by the CNPq productivity bursary, Brazil (306100/2016–9) to MLO.

142

References

Barbalho, S.M. & Penteado-Dias, A.M. (2000) Platydoryctes, a new Doryctinae genus from Brazil (Hymenoptera: Braconidae). Entomological news, 111, 25–31.

Braet, Y. (2016) Key to the genera of Doryctinae of the world. Available from: http://www.doryctinaekey.myspecies.info (accessed 16 January 2019).

Gadelha, S.S., Zaldívar-Riverón, A. & Oliveira, M.L. (2018) Molecular phylogenetics of the doryctine parasitoid wasp genus Callihormius (Hymenoptera: Braconidae) and related genera. In prep., Cap II.

Gadelha, S.S., Zaldívar-Riverón, A. & Oliveira, M.L. (2018) Molecular phylogenetics of the doryctine parasitoid wasp genus Callihormius (Hymenoptera: Braconidae) and related genera. In prep., Cap III.

Harris, R.A. (1979) A glossary of surface sculpturing. California Department of Food and Agriculture, Bureau of Entomology. Occasional Papers in Entomology, 28, 1–31.

Hebert, P.D., Ratnasingham, S. & de Waard, J.R. (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London B: Biological Sciences, 270, 96–99.

Kula, R.R., Knight, K.S., Rebbeck, J., Bauer, L.S, Cappaert, D.L. & Gandhi, K.J.K. (2010) Leluthia astigma (Ashmead) (Hymenoptera: Braconidae: Doryctinae) as a Parasitoid of Agrilus planipennis Fairmaire (Coleoptera: Buprestidae: Agrilinae), with an Assessment of host Associations for Nearctic Species of Leluthia Cameron. BioOne, 112, 246–257. https://doi.org/10.4289/0013-8797-112.2.246

Marsh, P.M. (1966) The Nearctic Doryctinae, III. The genus Callihormius Ashmead (Hymenoptera: Braconidae). Proceedings of the Entomological Society of Washington, 68, 240–246.

Marsh, P.M. (2002) The Doryctinae of Costa Rica (excluding the genus Heterospilus). Memoirs of The American Entomological Institute, 70, 1–319.

Sharkey, M.J. & Wharton, R.A. (1997) Morphology and terminology. In: Wharton, R.A., Marsh, P.M. & Sharkey, M.J. (Eds.) Manual of the New World genera of the family Braconidae (Hymenoptera). Special Publication No 1. International Society of Hymenopterists, Washington, pp. 21–40. 143

Van Achterberg, C. (1983) Three new Palaearctic genera of Braconinae (Hymenoptera: Braconidae). Scandinavian Entomology, 14, 69–76.

Wharton, R.A. (2006) The species of Sternaulopius Fischer (Hymenoptera: Braconidae: Opiinae) and the braconid sternaulus. Journal of Hymenoptera Research, 17, 317–347.

Yu, D.S., Achterberg, C. & Horstmann, K. (2012) World Ichneumonoidea 2011: taxonomy, biology and distribution. Vancouver: Taxapad, 2011. Available from: http://www.taxapad.com (accessed 16 January 2019).

144

Figures

FIGURE 1. Platydoryctes birria Gadelha & Zaldívar-Riverón n. sp. (holotype) A. lateral habitus, B. dorsal head and mesonotum, C. dorsolateral propodeum, D. lateral mesosoma, E. dorsolateral metasoma, F. fore wing. 145

FIGURE 2. Platydoryctes patacones Gadelha & Zaldívar-Riverón n. sp. (holotype) A. lateral habitus, B. dorsal head and mesonotum, C. lateral mesosoma, D. Dorsal propodeum, E. wings, F. dorsal metasoma. 146

FIGURE 3. Platydoryctes patacones Gadelha & Zaldívar-Riverón n. sp. (male paratype) A. lateral habitus, B. dorsal metasoma, C. dorsal propodeum, D. lateral mesosoma, E. dorsal head and mesonotum, F. wings. 147

FIGURE 4. Platydoryctes rapadura Gadelha & Zaldívar-Riveron n. sp. (holotype) A. lateral habitus, B. dorsal metasoma, C. dorsal head, D. dorsal mesonotum, E. dorsal propodeum, F. fore wing. 148

FIGURE 5. Platydoryctes vianai Gadelha & Zaldívar-Riverón n. sp. (holotype) A. lateral habitus, B. dorsal head and pronotum, C. lateral head and mesosoma, D. dorsal mesonotum, E. wings, F. dorsal metasoma, G. dorsal propodeum and first metasomal tergite.

149

SÍNTESE

De acordo com a analise filogenética molecular realizada, Callihormius “sensu lato” é polifilético, e após examinar a morfologia externa, o gênero foi redefinido e sete espécies que pertenciam a ele foram realocadas para um dos quatro novos gêneros descritos neste trabalho, além de Dimitriohormius que foi elevado do estatus de subgênero a gênero. Callihormius “sensu stricto”, na forma como foi redefinido, passa a ter nove espécies válidas. As duas espécies de Aphelopsia utilizadas na análise filogenética não foram recuperadas como um grupo monofilético. Apesar disso, as duas espécies compartilham alguns caracteres morfológicos importantes, e a falta de três genes na matriz pode ter levado a perda de sinal filogenético, impedindo que a monofilia do gênero fosse recuperada. Desta forma, as duas espécies de Aphelopsia foram mantidas no gênero, e após a redescrição da espécie tipo, uma nova espécie foi adicionada totalizando três espécies validas para o gênero. Platydoryctes também foi recuperado como parafilético, porém, a única espécie (Platydoryctes sp.2) recuperada fora de seu clado não foi bem suportada na filogenia, além de possuir todas as características que definem o gênero e por isso ela foi considerada como parte de Platydoryctes. No entanto, uma nova diagnose foi proposta pois sua principal característica, o achatamento dorso ventral do corpo, também está presente em outros gêneros confundindo a identificação do mesmo. Quatro novas espécies de Platydoryctes também foram descritas elevando seu numero de espécies validas para oito. Estes três gêneros fazem parte de um clado maior que também inclui Histeromeroides, Iare, Leluthia e Stenocorse, além dos cinco novos gêneros propostos neste trabalho: Macrometasoma n. gen., Caputlenis n. gen., Platyhormius n. gen., Caputrugosus n. gen e Dimitriohormius n. stat. Apesar de não ter sido possível encontrar um conjunto de caracteristicas morfológicas que possam definir este grupo, ele foi fortemente suportado em nossa fiilogenia molecular e possivelmente passou por um evento de rápida irradiação em um curto espaço de tempo que o tornou muito diverso. Futuros estudos buscando outros tipos de informação acerca deste grupo, como sua biologia, poderão ajudar a definir essa possível tribo de Doryctinae.

150

REFERÊNCIAS BIBLIOGRÁFICAS

Ashmead, W.H. 1892. Three new pambolids from the United States. Psyche, 6: 289–290.

Ashmead, W.H. 1900. Classification of the Ichneumon flies, or the superfamily Ichneumonoidea. Proceedings of the United States National Museum, 23: 1–220.

Austin, A.D.; Quicke, D.L.J.; Marsh, P.M. 1994. The hymenopterous parasitoids of eucalypt longicorn beetles, Phoracantha spp. (Coleoptera: Cerambycidae) in Australia. Bulletin of Entomological Research, 84: 145–174.

Banks, J.C.; Whitfield, J.B. 2006. Dissecting the ancient rapid radiation of microgastrine wasp genera using additional nuclear genes. Molecular Phylogenetics and Evolution, 41: 690–703.

Barbalho, S.M.; Penteado-Dias, A.M. 2000. Platydoryctes, a new Doryctinae genus from Brazil (Hymenoptera: Braconidae). Entomological news: 111: 25–31.

Barbalho, S.M.; Penteado-Dias, A.M. 2002. A new genus and species of Doryctinae (Hymenoptera: Braconidae) with fused first and second metasomal terga. Entomological News, 113: 179–182.

Belokobylskij, S.A. 1992. On the classification and phylogeny of the braconid wasp of subfamilies Doryctinae and Exothecinae (Hymenoptera, Braconidae). Part I. On the classification, 1. Entomologicheskoe obozrenie, 71: 900–928.

Belokobylskij, S.A. 2002. Two new Oriental genera of Doryctinae (Hymenoptera, Braconidae) from termite nests. Journal of Natural History, 36: 953–962.

Belokobylskij, S.A. 2004. New genus and new subgenus of subfamily Doryctinae (Hymenoptera: Braconidae) from the Old World fauna. Annales de la Société Entomologique de France, 40: 199–204.

Belokobylskij, S.A.; Zaldivar-Riverón, A.; Quicke, D.L.J. 2004. Phylogeny of the genera of the parasitic wasps subfamily Doryctinae (Hymenoptera: Braconidae) based on morphological evidence. Zoological Journal of the Linnean Society, 142: 369–404.

Belokobylskij, S.A.; Zaldivar-Riverón, A.; Coronado-Blanco, J.M. 2014. Phylogenetic affinities of Monarea Szépligeti, 1904 (Hymenoptera: Braconidae, Doryctinae) with description of a new species from Mexico. Zootaxa, 3795: 421–430. 151

Belokobylskij, S.A.; Zaldivar-Riverón, A.; Coronado-Blanco, J.M. 2014. A new subgenus of the genus Callihormius Ashmead, 1900 (Hymenoptera: Braconidae: Doryctinae) from Mexico. Proceedings of the Russian Entomological Society. St Petersburg, 85: 151–156.

Belokobylskij, S.A.; Samancá, E.; Zaldivar-riverón, A. 2015. Mexiare gen. nov., a new Doryctinae genus (Hymenoptera: Braconidae) from Mexico with fused first and second metasomal tergites. Zootaxa, 3914: 122–130.

Belshaw, R.; Grafen, A.; Quicke, D. L. J. 2003. Inferring life history from ovipositor morphology in parasitoid wasps using phylogenetic regression and discriminant analysis. Zoological Journal of the Linnean Society, 139: 213-228.

Betz, O. 2002. Performance and adaptive value of tarsal morphology in rove beetles of the genus Stenus (Coleoptera, Staphylinidae). The journal of experimental Biology, 205: 1097–1113.

Braet, Y. 2016. Key to the genera of Doryctinae of the world. (http://www.doryctinaekey.myspecies.info). Acesso 16/01/2019.

Braet, Y.; van Achterberg, C. 2001. New taxa of the subfamily Doryctinae Foerster (Hymenoptera: Braconidae) from French Guiana and Brazil. Zoologische Mededelingen (Leiden), 75: 119–136.

Braet, Y.; Barbalho S.M.; van Achterberg, C. 2003. Description of four new genera and nine new species of Doryctinae (Hymenoptera: Braconidae) from French Guyana. Zoologische Mededelingen (Leiden), 77: 93–125.

Braet, Y.; Ceccarelli, F.S.; Zaldívar-Riverón, A. 2012. Two new species of EvaniodesSzépligeti (Hymenoptera: Braconidae: Doryctinae) from French Guiana. Zootaxa, 3247: 52–60.

Briceño, G.R.A.; Zaldívar-Riverón, A.; Márquez, J.L. 2013. Diversidad de lasubfamilia Doryctinae (Hymenoptera: Braconidae) enel Parque Nacional Cerro Saroche, estado Lara, Venezuela. Entomotropica, 28: 17–26.

Brullé, M.A. 1846. Des Hyménoptères. Les Ichneumonides. In: Saint-Fargeau, A.L. (eds.). Histoire Naturelles des Insectes. Tome Quatrième. Paris. p. 56–521.

Ceccarelli, F.S.; Sharkey, M.J.; Zaldívar-Riverón, A. 2012. Species identification in the taxonomically neglected, highly diverse, neotropical parasitoid wasp genus Notiospathius (Braconidae: Doryctinae) based on an integrative molecular and morphological approach. Molecular Phylogenetics and Evolution, 62: 485–495. 152

Ceccarelli, F.S.; Zaldívar-Riverón, A. 2013. Broad polyphyly and historical biogeography of the Neotropical wasp genus Notiospathius (Braconidae: Doryctinae). Molecular Phylogenetics and Evolution, 69: 142–152.

Cirelli, K.R.N.; Penteado-Dias, A.M. 2003. Análise da riqueza da fauna de Braconidae (Hymenoptera, Ichneumonoidea) em remanescentes naturais da Área de Proteção Ambiental (APA) de Descalvado, SP. Revista Brasileira de Entomologia, 47: 89–98.

Collins, R.A.; Boykin, L.M.; Cruickshank, R.H.; Armstrong, K.F. 2012. Barcoding’s next top model: an evaluation of nucleotide substitution models for specimen identification. Methods in Ecology and Evolution, 3: 457–465.

Condamine, F.L.; Sperling, F.A.H.; Wahlberg, N.; Rasplus, J.Y.; Kergoat, G.J. 2012. What causes latitudinal gradients in species diversity? Evolutionary processes and ecological constraints on swallowtail biodiversity. Ecology Letters, 15: 267–277.

De Man, E.; Van Simaeys, S. 2004. Late Oligocene Warming Event in the southern North Sea Basin: benthic foraminifera as paleotemperature proxies. Netherlands Journal of Geosciences, 83: 227–239.

Drummond, A.J.; Suchard, M.A.; Xie, D.; Rambaut, A. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29: 1969–1973.

Forshage, M.; Hanssen, O.; Staverlokk, A. 2016. Platyceraphron Kieffer, 1906 (Hymenoptera, Megaspilidae) in the Nordic countries. Norwegian Journal of Entomology, 63: 125–129.

Gadelha, S.S.; Nunes, J.F.; Oliveira, M.L. 2016. New genera, species and records of Doryctinae (Hymenoptera: Braconidae) from Brazil. Zootaxa, 4083: 359–370.

Gadelha, S.S.; Nunes, J.F.; Zaldívar-Riverón, A.; Oliveira, M. L. 2016. Venifurca, a new genus of neotropical Doryctinae (Hymenoptera: Braconidae), and its phylogenetic placement. Journal of Hymenoptera Research, 51: 91–100.

Gadelha, S.S.; Zaldívar-Riverón, A.; Oliveira, M.L. 2018. Revisionary Taxonomy of the American Doryctine Wasp Genus Callihormius Ashmead, 1900 (Hymenoptera: Braconidae). Annales Zoologici, 68: 211–235.

Gillott, C. 2005. Entomology. Springer Science & Business Media. 831pp. 153

Godfray, H.C.J. 1994. Parasitoids: behavioral and evolutionary ecology. Princeton University Press. New Jersey, 473pp.

González, H.D.; Ruíz, D.B. 2000. Los Braconidos (Hymenoptera: Braconidae) como grupo parametro de biodiversidad en las selvas deciduas del Tropico: Una discusion acerca de su posible uso. ActaZoológica Mexicana, 79: 43-56.

Hanson, P.E.; Gauld, I.D. 1995.The Hymenoptera of Costa Rica.The Natural History Museum, London. Oxford University Press, Oxford, 893pp.

Hanson, P.E.; Gauld, I.D. 2006. Hymenoptera de la región neotropical. Vol 77. Memoirs of the American Entomological Institute.The American Entomological Institute, Florida, Gainsville, 994pp.

Harris, R.A. 1979. A glossary of surface sculpturing. California Department of Food and Agriculture, Bureau of Entomology. Occasional Papers in Entomology, 28: 1–31.

Hebert, P.D.; Ratnasingham, S.; deWaard, J.R. 2003. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London B: Biological Sciences, 270: 96–99.

Hines, H.M. 2008. Historical Biogeography, Divergence Times, and Diversification Patterns of Bumble Bees (Hymenoptera: Apidae: Bombus). Sistematic Biology, 57: 58–75.

Hoorn, C.; Wesselingh, F.P.; ter Steege, H.; Bermudez, M.A.; Mora, A.; Sevink, J.; Sanmartín, I.; Sanchez-Meseguer, A.; Anderson, C.L.; Figueiredo, J.P.; Jaramillo, C.; Riff, D.; Negri, F.R.; Hooghiemstra, H.; Lundberg, J.; Stadler, T.; Särkinen, T.; Antonelli, A. 2010. Amazonia Through Time: Andean Uplift, Climate Change, Landscape Evolution, and Biodiversity. Science, 330: 927–931.

Kass, R.E.; Raftery, A.E. 1995. Bayes factors. Journal of the American Statistical Association, 90: 773–795.

Kula, R.R.; Knight, K.S.; Rebbeck, J.; Bauer, L.S; Cappaert, D.L.; Gandhi, K.J.K. 2010. Leluthia astigma (Ashmead) (Hymenoptera: Braconidae: Doryctinae) as a Parasitoid of Agrilus planipennis Fairmaire (Coleoptera: Buprestidae: Agrilinae), with an Assessment of host Associations for Nearctic Species of Leluthia Cameron. BioOne, 112: 246–257.

Lanfear, R.; Calcott, B.; Ho, S.Y.W.; Guindon, S. 2012. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29: 1695–1701. 154

López-Estrada, E.K.; Briceño, R.G.; Smith, M.A.; Nunes, J.F.; Penteado-Dias, A.M.; Ceccarelli, F.S.; Clebsch, H.; Zaldivar-Riverón, A. 2012. Seven new species of Notiospathius (Hymenoptera, Braconidae, Doryctinae) from Northwest Venezuela. Journal of Hymenoptera Research, 29: 37-67.

Marsh, P.M. 1965. The Nearctic Doryctinae I. A review of the subfamily with a taxonomic revision of the tribe Hecabolini (Hymenoptera: Braconidae). Annals of the Entomological Society of America, 58: 668–699.

Marsh, P.M. 1966. The Nearctic Doryctinae, III. The genus Callihormius Ashmead (Hymenoptera: Braconidae). Proceedings of the Entomological Society of Washington, 68: 240–246.

Marsh, P.M. 1968. Nearctic Doryctinae. 6. Genera Acrophasmus, Glyptocolastes, Doryctinus and a new genus Stenocorse (Hymenoptera Braconidae). Proceedings of the entomological Society of Washington, 70: 101–113.

Marsh, P.M. 1991. Description of a phytophagous doryctine braconid from Brasil (Hymenoptera: Braconidae). Proceedings of the Entomological Society of Washington, 93: 92–95.

Marsh, P.M. 1993. Descriptions of new Western Hemisphere genera of the subfamily Doryctinae (Hymenoptera: Braconidae). Contributions of the American Entomological Institute, 28: 1–58.

Marsh, P.M. 1997. Doryctinae. In: Wharton, R.A.; Marsh, P.M.; Sharkey, M.J. (eds.). Manual of the New World genera of the family Braconidae (Hymenoptera). Special Publication No 1. International Society of Hymenopterists, Washington. p. 211–237.

Marsh, P.M. 2002. The Doryctinae of Costa Rica (excluding the genus Heterospilus). Memoirs of The American Entomological Institute, 70: 1–319.

Marsh, P.M.; Macêdo, M.V.; Pimental, M.C.P. 2000. Descriptions and biological notes on two new phytophagous species of the genus Allorhogas from Brazil (Hymenoptera: Braconidae: Doryctinae). Journal of Hymenoptera Research, 9: 292–297.

Marsh, P.M.; Wild, A.L.; Whitfield, J.B. 2013. The Doryctinae (Braconidae) of Costa Rica: genera and species of the tribe Heterospilini. Zookeys, 347: 1–474.

Martínez, J.J.; Ceccarelli, F.S.; Zaldívar-Riverón, A. 2010. The genus Iare Barbalho and Penteado- Dias (Hymenoptera: Braconidae: Doryctinae) in Mexico, with the description of two new species. Zootaxa, 2685: 30–38. 155

Martínez, J.J.; Lázaro, R.N.M; Pedraza-Lara, C.; Zaldívar-Riverón, A. 2016. Sergey gen. n., a new doryctine genus from temperate forests of Mexico and Cuba (Hymenoptera, Braconidae). Zookeys, 589: 143–164.

Matthews, R.W. 1974. Biology of Braconidae.Annual Review of Entomology. 19: 15–32.

Melo, G.A.R.; Aguiar, A.P.; Garcete-Barrett, B.R. 2012. HYMENOPTERA. In: Rafael, J.A.; Melo, G.A.R.; Carvalho, C.J.B.; Casari, S.A.; Constantino, R. (eds.). Insetos do Brasil: Diversidade e Taxonomia. Editora Holos, São Paulo, Ribeirão Preto, p. 553–612.

Miller, M.A.; Pfeiffer, W.; Schwartz, T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Gateway Computing Environments Workshop (GCE), IEEE, 1–8.

Muesebeck, C.F.W. 1960. A fossil braconid wasp of the genus Ecphylus (Hymenoptera). Journal of Paleontology, 34: 495–496.

Nettleton, G.E. 1938. A change of name in Hymenoptera. Bulletin of the Brooklyn Society, 33: 9.

Nunes, J.F.; Zaldívar-Riverón, A.; Castro, C.S.; Marsh, P.M.; Penteado-Dias, A.M.; Briceño, R.; Martínez, J.J. 2012. Doryctopambolus Nunes & Zaldívar-Riverón (Braconidae), a new neotropical doryctine wasp genus with propodeal spines. Zookeys, 223: 53–67.

Nunes, J. F.; Castro, C.S.; Ruiz, S.S. 2014. Doryctinae (Hymenoptera: Braconidae) from Estação Ecológica de Caetetus, a seasonal semideciduous forest in Gália, São Paulo. Brazil. Ciência et Praxis, 7: 27–30.

O’Dea, A.; Lessios, H.A.; Coates, A.G. et al. 2016. Formation of the Isthmus of Panama. Science Advances, 2: 1–11.

Padial, J.M.; Miralles, A.; De la Riva, I.; Vences, M. 2010. The integrative future of taxonomy. Frontiers in Zoology, 7: 1–14.

Parra, J.R.P.; Botelho, P.S.M.; Corrêa-Ferreira, B.S.; Bento, J.M.S. 2002. Controle biológico no Brasil: parasitóides e predadores. Editora Manole Ltda, São Paulo, 635pp.

Quicke, D.L.J. 2015. Biology, Systematics, Evolution and Ecology of Braconid and Ichneumonid Parasitoid Wasps. Wiley Blackwell, Chichester, UK, 752pp.

Rambaut, A.; Suchard, M.A.; Xie, D.; Drummond, A.J. 2014. Tracer v1.6. URL (http://beast.bio.ed.ac.uk/Tracer). Acesso 16/01/2019. 156

Ribera, I.; Nilsson, A.N. 1995. Morphometric patterns among diving beetles (Coleoptera: Noteridae, Hygrobiidae, and Dytiscidae). Canadian Journal of Zoology, 73: 2343–2360.

Riley, C.V.; Ashmead, W.H.; Howard, L.O. 1894. Report upon the parasitic Hymenoptera of the island of St. Vincent. Linnean Society's Journal – Zoology, 25: 56–254.

Ronquist, F.; Teslenko, M.; Van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. 2012. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61: 539–542.

Samacá-Sáenz, E.; Belokobylskij, S.A.; Quicke, D.L.J.; Zaldívar-Riverón, A. 2016. Systematics of the Neotropical braconid wasps of the Pedinotus genus group (Doryctinae). Systematic Entomology, 41: 481–491.

Sharkey, M.J.; Wahl, D.B. 1992. Cladistics of the Ichneumonoidea (Hymenoptera). Journal of Hymenoptera Research, 1: 15–14.

Sharkey, M.J.; Wharton, R.A. 1997. Morphology and terminology. In: Wharton, R.A.; Marsh, P.M.; Sharkey, M.J. (eds.). Manual of the New World genera of the family Braconidae (Hymenoptera). Special Publication No 1. International Society of Hymenopterists, Washington. p. 21–40.

Shaw, S.R.; Edgerly, J.S. 1985. A new braconid genus (Hymenoptera) parasitizing webspinners (Embiidina) in trinidad. Psyche, 92: 505–511.

Shenefelt, R.D.; Marsh, P.M. 1976. Braconidae 9. Doryctinae. In: van der Vecht and Shenefelt, R. D. (eds). Hymenopterorum Catalogus (nova editio). Pars 13. p.1263–1424.

Swofford, D.L. 2002. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.

Thorp, R.W. 1979. Structural, Behavioral, and Physiological Adaptations of Bees (Apoidea) for collecting pollen. Annals of the Missouri Botanical Garden, 66: 788–812.

Van Achterberg, C. 1983. Three new Palaearctic genera of Braconinae (Hymenoptera: Braconidae). Scandinavian Entomology, 14: 69–76.

Villa, G.; Perisco, D. 2006. Late Oligocene climatic changes: Evidence from calcareous nannofossils at Kerguelen Plateau Site 748 (Southern Ocean). Palaeogeography, Palaeoclimatology, Palaeoecology, 231: 110–76. 157

Wasserthal, L.T. 1997. The Pollinators of the Malagasy Star Orchids Angraecum sesquipedale, A. sororium and A. compactum and the Evolution of Extremely Long Spurs by Pollinator Shift. Botanica Acta, 110: 343–359.

Wharton, R.A. 2006. The species of Sternaulopius Fischer (Hymenoptera: Braconidae: Opiinae) and the braconid sternaulus. Journal of Hymenoptera Research, 17: 317–347.

Wharton, R.A., Marsh, P.M.; Sharkey, M.J. 1997. Manual of the New Worldgenera of the family Braconidae (Hymenoptera). The International Society of Hymenopterists, Special Publications 1, Washington, DC, 439pp.

Whitfield, J.B.; Kjer, K.M. 2008. Ancient Rapid Radiations of Insects: Challenges for Phylogenetic Analysis. Annual Review of Entomology, 53: 449–472. DOI

Zaldivar-Riverón, A.; Mori, M.; Quicke, D.L.J. 2006. Systematics of the cyclostome subfamilies of braconid parasitic wasps (Hymenoptera: Ichneumonoidea): A simultaneous molecular and morphological Bayesian approach. Molecular Phylogenetics and Evolution, 38: 130–145.

Zaldivar-Riverón, A.; Belokobylskij, S.A.; León-Regagnon, V.; Martínez, J.J.; Briceño, R.; Quicke, D.L.J. 2007. A single origin of gall association in a group of parasitic wasps with disparate morphologies. Molecular Phylogenetics and Evolution, 44: 981–992.

Zaldivar-Riverón, A.; Belokobylskij, S.A.; León-Regagnon, V.; Briceño-G, R.; Quicke, D.L.J. 2008. Molecular phylogeny and historical biogeography of the cosmopolitan parasitic wasp subfamily Doryctinae (Hymenoptera: Braconidae). Invertebrate Systematics, 22: 345–363.

Zaldívar-Riveron, A.; Martínez, J.J.; Ceccarelli, F.S.; Shaw, S.R. 2012. Five new species of the genera Heerz Marsh, Lissopsius Marsh and Ondigus Braet, Barbalho and van Achterberg (Braconidae, Doryctinae) from the Chamela-Cuixmala biosphere reserve in Jalisco, Mexico. Zookeys, 164: 1–23.

Zaldívar-Riverón, A.; Rodríguez-Jiménez, A.; Sarmiento, C.E.; Pedraza-Lara, C.; López-Estrada, E.K. 2013. Phylogenetic relationships and description of Bolivar, a new genus of Neotropical doryctine wasps (Hymenoptera: Braconidae). Invertebrate Systematics, 27: 673–688.

Zaldívar-Riverón, A.; Martínez, J.J.; Belokobylskij, S.A.; Pedraza-Lara, C.; Shaw, S.R.; Hanson, P.E.; Varela-Hernández, F. 2014. Systematics and evolution of gall formationin in the plant- associated genera of the wasp subfamily Doryctinae (Hymenoptera: Braconidae). Systematic Entomology, 39: 633–659. 158

Xie, W.; Lewis, P.O.; Fan, Y.; Kuo, L.; Chen, M.H. 2011. Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Systematic Biology, 60: 150–160.

Yu, D.S.; Achterberg, C.; Horstmann, K. 2012. World Ichneumonoidea 2011: taxonomy, biology and distribution. Vancouver: Taxapad, 2011 (http://www.taxapad.com). Acesso: 16/01/2019.

You, Y.; Huber, M.; Müller, R.D.; Poulsen, C.J.; Ribbe, J. 2009. Simulation of the Middle Miocene Climate Optimum. Geophysical Research Letters, 36: 1–5.

Zuparko, R.L.; Poinar Jr., G.O. 1997. Aivalykus dominicanus (Hymenoptera: Braconidae), a new species from Dominican amber. Proceedings of the Entomological Society of Washington, 99: 744–747.

159

ANEXOS

Anexo I. Artigo Publicado. 160

Anexo III. Terminologia para morfologia externa de Braconidae proposta por Sharkey & Wharton (1997). Cabeça em vista lateral (A). Cabeça em vista frontal (B). Cabeça em vista dorsal (C). Mesossoma em vista lateral (D). Mesossoma em vista dorsal (E). Perna em vista latera (F). Imagens modificadas de Sharkey & Wharton (1997). 161

Anexo IIII. Terminologia para morfologia externa de Braconidae proposta por Sharkey & Wharton (1997). Mesossoma lateral de Caputrugosus glebecafejedi Gadelha & Zaldívar-Riverón n. sp. com destaque para esculturações do pronoto e mesopleura (A). Metassoma em vista dorsal de Caputlenis capixaba Gadelha & Zaldívar-Riverón n. sp. (B), e propodeo em vista dorsolateral, com destaque para esculturações do propodeo (C). Vista ventral do primeiro tergo metassomal de Platydoryctes duckensis Marsh com destaque para o “basal sternal plate”, imagen editada de Marsh (2002) (D).

162

Anexo IVV. Terminologia das asas de Braconidae proposta por Sharkey & Wharton (1997). Asas anterior e posterior de um Braconidae genérico simplificadas (A). Asas anterior e posterior de um Braconidae genérico com todas as veias conhecidas (B). Imagens modificadas de Sharkey & Wharton (1997).