Blackwell Science, LtdOxford, UKZOJZoological Journal of the Linnean Society0024-4082The Lin- nean Society of London, 2004? 2004 1423 369404 Original Article S. A. BELOKOBYLSKIJ ET AL. PHYLOGENY OF THE (: )

Zoological Journal of the Linnean Society, 2004, 142, 369–404. With 12 figures

Phylogeny of the genera of the parasitic subfamily Doryctinae (Hymenoptera: Braconidae) based on morphological evidence

SERGEY A. BELOKOBYLSKIJ1,2, ALEJANDRO ZALDIVAR-RIVERÓN3,4* and DONALD L. J. QUICKE3,4

1Institute of Zoology, Russian Academy of Sciences, Universitetskaya nab. 1, St Petersburg 199034, Russia 2Museum and Institute of Zoology PAN, Wilcza 64, Warsaw, Poland 3Department of Biological Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK 4Department of Entomology, The Natural History Museum, London SW7 5BD, UK

Received September 2003; accepted for publication June 2004

The evolutionary relationships among most (143 genera) of the currently recognized genera of the braconid subfamily Doryctinae were investigated using maximum parsimony analysis, employing 100 characters from exter- nal morphology and four additional, less well-studied character systems (male genitalia, ovipositor structure, venom apparatus and larval cephalic structure). We investigated the ‘performance’ of characters from external morphology and the other character systems and the effects of abundant missing entries by comparing the data decisiveness, retention and consistency indices of four different character partitions. The results indicate that the performances of the different partitions are not related to the proportions of missing entries, but instead are negatively correlated to their proportion of informative characters, suggesting that the morphological information in this group is subject to high levels of homoplasy. The external morphological partition is significantly incongruent with respect to a data set comprising the other character systems based on the ILD test. Analyses supported neither the monophyly of the large tribes Doryctini and Hecabolini, nor the monophyly of the Spathiini and Heterospilini. Relationships obtained from successive approximation weighting analysis for the complete data differ considerably from the currently accepted tribal and subtribal classifications. The only exceptions were the Ypsistocerini and the Ecphylini, whose rec- ognized members were recovered in single clades. A close relationship between the Binaerini and Holcobraconini, and also Monarea, is consistently supported by venom apparatus and ovipositor structure characters but is not indi- cated by external morphological data. Low bootstrap values obtained for most of the recovered clades in all analyses do not allow us to propose a meaningful reclassification for the group at this time. A complete list of the recognized genera and their synonymies is given. © 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 142, 369–404.

ADDITIONAL KEYWORDS: classification – consistency index – data decisiveness – – retention index – systematics.

INTRODUCTION tion and are especially diverse in the New World tropics, where two thirds of the world’s described gen- The braconid wasp subfamily Doryctinae is a large, era occur (Shenefelt & Marsh, 1976; Belokobylskij, heterogeneous group currently known from more than 1992a; Marsh, 1993, 1997). Most are idiobiont 1000 described species in more than 150 genera ectoparasitoids of larvae of xylophagous or bark-bor- (Marsh, 1997, 2002; Belokobylskij, 2001). Doryctine ing Coleoptera, although several taxa attack the lar- wasps are mostly tropical and subtropical in distribu- vae of (especially leaf miners) and Symphyta (especially Xiphydriidae), and in unusual cases they are endoparasitoids of adults of Embioptera *Corresponding author. E-mail: alejandro.zaldivar- (Sericobracon Shaw) or phytophagous (e.g. Allorhogas [email protected] Gahan, Psenobolus Reinhard and possibly Donquick-

© 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 142, 369–404 369

370 S. A. BELOKOBYLSKIJ ET AL. eia Marsh) (Shaw & Edgerly, 1985; de Macêdo & Mon- (Table 1). More recently, Belokobylskij’s study (1992a) teiro, 1989; Belokobylskij, 1996; Ramírez & Marsh, reassessed the limits and composition of the Dorycti- 1996; Penteado-Dias, 1999). Furthermore, a few gen- nae and its tribes based on examination of the type era have been found living within termite nests (some specimens of almost all the included genera, as well as treated previously as Ypsistocerinae, but see Quicke a large amount of principally Palaearctic material. et al., 1992c), suggesting that they might possibly also This resulted in recognition of several putative generic present unusual biologies, although these still remain synonymies, and the creation of three new tribes and to be discovered (Brues, 1923; Cushman, 1923; Kist- 12 new subtribes, giving totals of 13 and 21 tribes ner, Jacobson & Elliot, 2000; Belokobylskij, 2002). and subtribes, respectively (Table 1). Following this, The most recent higher-level classifications of the Belokobylskij (1993) assessed the evolutionary rela- Doryctinae are those of Fischer (1981a) and Belokoby- tionships among the doryctine tribes based on appar- lskij (1992a, 1993). Following study of the external ent synapomorphies but without any formal analysis. morphology of 34 different genera, mainly from the However, most of these ‘synapomorphies’ are better tropics, Fischer (1981a) proposed nine tribes, with the regarded simply as trends rather than all-or-nothing Doryctini further subdivided into seven subtribes characters.

Table 1. Tribal and subtribal classifications of the Doryctinae proposed by Fischer (1981a) and Belokobylskij (1992a). For generic composition of these taxa see Appendix 1

Belokobylskij (1992a) Fischer (1981a)

Tribes Subtribes Tribes Subtribes

Binareini Acanthodoryctina Doryctini Binaerina Binaerina Dendrosotina Doryctini Caenophanina Doryctina Dendrosotina Heterospilina Doryctina1 Neoclinocentrina Doryctomorphina1 Pedinotina Rhaconotina Stenocorsina Ecphylini Ecphylini Evaniodini Evaniodini Hecabolini Hecabolina Hecabolini Pambolideina Histeromerini Percnobraconoidina Odontobraconini Stenocorsina Rhaconotini Heterospilini Spathiini Holcobraconini Holcobraconina Stephaniscini Ivondroviina Odontobraconina Labaniini Leptorhaconotini Percnobraconini Sericobraconini2 Siragrini3 Spathiini Psenobolina Ptesimogastrina Sisupalina Spathiina Spathiplitina Spathiostenina Trigonophasmina Stephaniscini Syngastrini

1Taxa with at least some of their genera currently placed in other subfamilies. 2Placed as a tribe of the Hecabolini by Beloko- bylskij (1995a). 3Proposed by Belokobylskij (1994).

© 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 142, 369–404

PHYLOGENY OF THE DORYCTINAE (HYMENOPTERA: BRACONIDAE) 371

As with the attempts at tribal classification, Fischer, Metaspathius Brues and Caenopachyella descriptions of many of the genera of Doryctinae con- Szépligeti), or within an enlarged concept of the tinue to be based largely on the possession of particu- (e.g. Doryctomorpha Ashmead) (Belshaw lar character combinations, and this in turn suggests et al., 1998, 2000; Belshaw & Quicke, 2002; Belokoby- that the external morphology of this group might be lskij, Iqbal & Austin, 2004; A. Zaldivar-Riverón & D. quite homoplastic. Although in recent years several L. J. Quicke, unpubl. data). internal character systems have been investigated Four characters systems were included: (1) adult and incorporated in phylogenetic analyses within external morphology; (2) male genitalia; (3) venom the Braconidae (e.g. Quicke & van Achterberg, 1990; apparatus; and (4) ovipositor structure, including the Whitfield, 1992; Quicke & Belshaw, 1999; Dowton microsculpture of the egg canal. Additionally, a single et al., 2002), these have been employed primarily to character of the cephalic larval structure was also investigate relationships at the subfamily level scored. In order to incorporate the observed intra- and because they are still known only for a small propor- interspecific variation within many of the genera, tion of the genera. However, surveys of these alterna- variable characters were coded as polymorphic. The tive character systems within the Doryctinae suggest character states coded for each terminal taxon are that they may provide additional valuable phyloge- given in Appendix 2. In most cases, the scoring of netic information (e.g. Rahman, Fitton & Quicke, external characters was based on examination of the 1998a, b; Quicke et al., 1992c). type species as well as additional taxa for each In the present work, all the available internal and (see Appendix 3). No specimens were available for 29 external morphological information for 143 of the 162 genera, although we could incorporate ten of these by currently recognized doryctine genera was used for extracting external character information from their the first time to investigate their phylogenetic rela- original descriptions and other references (see Refer- tionships using a comprehensive phylogenetic recon- ences in character list shown below). The remaining struction method. We also compared the phylogenetic 19 genera could not be included in this study because hypotheses obtained with the most recent tribe level their types are either lost or unavailable and their classification for this group and explored the perfor- descriptions are insufficiently detailed (see genera mance of analyses based on different character sys- included in Appendix 1). Data on male genitalia, ovi- tems and proportions of missing entries. positor structure, venom apparatus and cephalic lar- val structure were assembled from direct material examination and/or from several published surveys, MATERIAL AND METHODS most of them made by the present authors (see Refer- ences in character list below). TAXA AND CHARACTERS The monophyly of the Doryctinae was tested by in- In this study, we considered genera as the terminal cluding in the analyses several cyclostome braconid taxa, extracting information from specimens of one to genera belonging to the Exothecinae (Colastes Haliday), a few representative species for each genus (see below). Hormiinae (Hormius Nees), Rhyssalinae (Dolopsidea, Although this approach makes a priori assumptions Rhyssalus, Metaspathius), Rhysipolinae (Rhysipolis about the monophyly of the selected supraspecific taxa, Foerster), ( Wesmael, Clinocentrus an exemplar approach (sensu Yeates, 1995; Prendini, Haliday, and Stiropius Cameron) and Pambolinae 2001) would have been impractical owing to the very (Phaenodus Foerster), as well as the (treated small overlap between those species examined for as a single terminal taxon in our analyses). Additionally, external morphological characters and those examined we included the poorly known genus Monitoriella for other character systems such as venom apparatus Hedqvist, which was originally placed within the Hormi- and ovipositor microsculpture. inae, although, based on its overall resemblance, some One hundred characters were initially scored for authors have argued it could actually belong to the each of the 143 included doryctine genera. A list of Doryctinae (Wharton, 1993; Whitfield & Wharton, the genera recognized by the senior author, together 1997). The mesostoine genus Doryctomorpha (see above) with their synonyms is provided in Appendix 1. Sev- was designated as the outgroup because it is the least eral genera previously proposed by Belokobylskij morphologically aberrant of its subfamily as now con- (1992a) to form part of the Doryctinae were not con- stituted (Mesostoa van Achterberg, Praonopterus sidered within this group as a consequence of recent Tobias, Proavga Belokobylskij, Aspilodemon Fischer, molecular and morphological studies, which have Hydrangeocola Bréthes). The Mesostoinae, which confirmed that they actually belong either to the appear principally to be gall-associated, seems to be a separate, rather more basal cyclostome subfamily suitable outgroup because in molecular studies it con- Rhyssalinae (namely Rhyssalus Haliday, Onco- sistently comes out at the base of the cyclostome braconid phanes Foerster, Dolopsidea Hincks, Thoracoplites group (Belshaw & Quicke, 2002; Dowton et al., 2002).

© 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 142, 369–404

372 S. A. BELOKOBYLSKIJ ET AL.

CHARACTER SETS EXAMINED vis (2001) (QHS) for large data sets to try to recover One particular problem with the character systems the most parsimonious trees for each of the four char- others than external morphology is that they have not acter sets examined. The initial search with this strat- been explored for all doryctine genera, and hence the egy with equally weighted, unordered characters was available data contain a high proportion of missing carried out using 10 000 random additions with TBR entries. We have therefore explored the performance swapping, holding only one tree from each addition. of the adult external morphological characters vs. the The subsequent iterative searches used a variety of alternative character systems by analysing the follow- weighting functions (maximum and minimum values ing four character sets: (1) complete data, all taxa of retention and consistency indices). Owing to the (ALL DATA); (2) only external characters, all taxa computational constraints imposed by the data sets, (ONLY EXTERNAL; characters 1–63); (3) only taxa maxtrees was set at 30 000 and clade support was with ≥ 70% scored characters (> 70% DATA); and (4) evaluated using a nonparametric bootstrap (Hillis & characters other than those from external morphology, Bull, 1993) with 100 replicates and 100 random addi- including only taxa with ≥ 50% of scored characters tions holding only one tree (which was consequently (REPRODUCTIVE + LARVAL; characters 64–100). very conservative). Two successive approximations The genera included for the REPRODUCTIVE weighting (SAW) analyses (Farris, 1969; Carpenter, + LARVAL and the > 70% DATA partitions are indi- 1994) were performed for the ALL DATA set starting cated in Appendix 1. from the most parsimonious trees found by the QHS analyses, using the maximum and minimum retention indices separately as the reweighting function (MaRI PHYLOGENETIC ANALYSES and MiRI, respectively). We considered the strict con- All analyses were carried out using PAUP* v.4.0b10 sensus trees derived from the latter two analyses as (Swofford, 1998). Characters with two or more states our best phylogenetic hypotheses. The relationships were coded as polymorphic (sensu Wiens, 1995). Three recovered in the strict consensus of all analyses were different performance measures for the various char- compared with the previous tribal and subtribal clas- acter sets were compared: the consistency (CI; Kluge sification of the Doryctinae made by the senior author & Farris, 1969), retention (RI; Farris, 1989) and data (Belokobylskij, 1992a). Within this classification we decisiveness (DD; Goloboff, 1991) indices. It has been also considered the tribal and subtribal placements noted that the CI value is influenced strongly by the suggested for several genera that were described pos- number of taxa included, decreasing as the number of teriorly (Belokobylskij, 1992b, 1994, 1995b, 1998a, taxa increase (Kitching et al., 1998). On the other 2000, 2001, 2002; Belokobylskij & Quicke, 2000). hand, the DD has been argued to be a better indicator The Wilcoxon signed-ranks test (Templeton, 1983; of phylogenetic signal because of its independence Felsenstein, 1985) was used to test significance of dif- from the number of characters used (Davis et al., 1998; ferences between a randomly chosen sample of 100 of Kitching et al., 1998). Also, DD apparently reflects the both the most parsimonious trees found for the four intrinsic attributes of the different character sets character sets analysed and those found in alternative (Davis et al., 1998). Because autapomorphic states can analyses constraining the two largest tribes, Doryctini lead to overestimation of the CI (Davis et al., 1998; and Hecabolini (sensu Belokobylskij, 1992a), each to Kitching et al., 1998), all the performance measures be monophyletic (one-tailed probability is presented). were calculated by substituting autapomorphic states Alternative phylogenetic hypotheses were obtained with missing entries using MACCLADE v.4.0 (Mad- using the QHS strategy as described above. dison & Maddison, 2000). An approximation of the mean length of all possible trees, necessary for calcu- lation of DD, was obtained from 100 000 randomly CHARACTERS generated trees (using the equiprobable model). External morphology The incongruence between the external and the Terminology follows that of Sharkey & Wharton remaining character systems was assessed comparing (1997) except for wing vein terminology, which follows the ONLY EXTERNAL against the REPRODUCTIVE Tobias (1976) [van Achterberg’s (1979) wing venation + LARVAL data sets using the incongruence length terminology is included in parentheses]. References difference (ILD; Farris et al., 1994) test with 500 for the genera whose specimens were not available for replicates and 100 random additions. The test examination of external morphological characters are: was run using only those taxa contained in the Ashmead (1900); Cushman (1923); Beardsley (1961); REPRODUCTIVE + LARVAL data set. Fischer (1981b); Marsh (1983); Quicke & van Achter- Preliminary analyses showed the data set to be par- berg (1990); van Achterberg, 1995); Barbalho, ticularly difficult to analyse in terms of time, so we Penteado-Dias & Marsh (1999); Barbalho & Penteado- employed the search strategy of Quicke, Taylor & Pur- Dias, 2002); Kistner et al. (2000).

© 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 142, 369–404

PHYLOGENY OF THE DORYCTINAE (HYMENOPTERA: BRACONIDAE) 373

1. Scape: 0 = less than two times longer than 3. Apical lobe of scape, if present, then: 0 = simple maximally wide (e.g. Fig. 1G); 1 = two or more (e.g. Fig. 1H, J); 1 = compound, with a distinct times longer than maximally wide. The char- process margined by strong lateral carinae (e.g. acter ‘scape with or without transformations’ Belokobylskij, 1994: fig. 4). The presence of an was included in a previously study (Belokobyl- apical lobe of scape with a distinct process mar- skij, 1993); however, modifications of the scape gined by strong lateral carinae was previously are complex and therefore here we have sub- proposed as one of the characters that define the divided that character into three separate tribe Siragrini (Belokobylskij, 1994). ones. 4. Dense cluster of setae on apical margin of 2. Scape: 0 = without apical lobe (e.g. Fig. 1G, L); scape and pedicel: 0 = absent (e.g. Fig. 1H, J); 1 = with apical lobe (e.g. Fig. 1H, J). 1 = present (e.g. Fig. 1I, K).

A B C

D E F

G

H I

J K

L

M N

Figure 1. External morphological features in the Doryctinae. A–C, head, dorsal view; D–F, head, frontal view; G–N, basal and apical segments of antenna (dorsal and lateral views). A, Rhoptrocentrus cleopatrae Belokobylskij; B, M, N, Sonanus senzuensis Belokobylskij & Konishi; C, Bracodoryctes tergalis Belokobylskij & Quicke; D, Doryctes germanicus Belokoby- lskij; E, Stephanospathius ornatipes (Kieffer); F, Schlettereriella rufithorax (Szépligeti); G, Platyspathius hospitus Beloko- bylskij & Ku; H, J, Synspilus nitidus Belokobylskij & Quicke; I, K, Binarea spinicollis Brullé; L, Ecphylus brevitergum Belokobylskij.

© 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 142, 369–404 374 S. A. BELOKOBYLSKIJ ET AL.

5. First flagellar segment: 0 = longer than second bylskij, 1992a: fig. 20; Fig. 2A). Spines or tuber- (e.g. Fig. 1H, I); 1 = equal to or shorter than sec- cules on the pronotum and the strongly enlarged ond (e.g. Fig. 1L). An equal or shorter first flagel- submedial cell of hind wing were considered by lar segment, secondary lost of basoventral Belokobylskij (1992a, 1993) as synapomorphies tubercle on hind coxa, absence of dorsope on the that distinguish members of the tribe Binareini. first tergite, and presence of a propodeal bridge 16. Pronotum: 0 = dorsally without modifications or were proposed by Belokobylskij (1993) as puta- with spines or tubercles; 1 = with convex lobe tive synapomorphies for the Stephaniscini. (e.g. Marsh, 1988: fig. 22) (1). 6. First flagellar segment: 0 = regularly smooth or 17. Notauli: 0 = complete or at least partly present finely sculptured (e.g. Fig. 1H, K); 1 = smooth (e.g. Marsh, 1993: fig. 14; Fig. 2F); 1 = entirely dorsally, strongly sculptured ventrally (e.g. absent (e.g. Belokobylskij & Quicke, 2000: Fig. 1M, N). fig. 86). 7. Maxillary palpi: 0 = six-segmented; 1 = five- 18. Prescutellar depression (scutellar sulcus): segmented; 2 = four-segmented; 3 = three-seg- 0 = long and narrow or of medium length; mented (e.g. van Achterberg, 1995: fig. 46); 1 = considerably shortened (e.g. Achterberg, 4 = two-segmented (e.g. van Achterberg, 1995: 1995: figs 35, 55). fig. 56); 5 = one-segmented. Reductions in the 19. Prepectal carina: 0 = present (e.g. Fig. 2D); number of palpar segments appear to be a wide- 1 = absent (e.g. Fig. 2B). spread trend in ichneumonoids (Tobias, 1967; 20. Propodeal bridge between abdominal and coxal van Achterberg, 1988). Within the Doryctinae, a foramina: 0 = absent; 1 = present (e.g. Fig. 2G). maxillary labial palp formula 5 + 3 has been used The presence of a propodeal bridge between to define the Ecphylini (Belokobylskij, 1993). abdominal and coxal foramina was mentioned as 8. Labial palpi: 0 = four-segmented; 1 = three- a putative synapomorphy for the Percnobraco- segmented; 2 = two-segmented (e.g. van Achter- nini, Stephaniscini and Evaniodini (Belokobyl- berg, 1995: fig. 46); 3 = one-segmented; 4 = skij, 1993). It is also associated with the absent (e.g. van Achterberg, 1995: fig. 56). See transformation of abdominal tergite 1 into a pet- character 7. iole and elevation of the metasomal insertion (as 9. Third labial palp segment: 0 = as long as or in Evaniodini). longer than second; 1 = distinctly shorter than 21. Propodeal bridge between abdominal and coxal second (e.g. Belokobylskij & Quicke, 2000: foramina (if present): 0 = narrow (e.g. Fig. 2G); fig. 113). 1 = very wide so metasoma is inserted near the 10. Malar suture: 0 = absent (e.g. Fig. 1E, F); top of propodeum. A wide propodeal bridge 1 = present (e.g. 1D). Reference: Belokobylskij between abdominal and coxal foramina was (1993). stated by Belokobylskij (1993) as a synapomor- 11. Frons: 0 = without lateral protuberances (e.g. phy for the members of the Evaniodini. Fig. 1D, E); 1 = with lateral protuberances (e.g. 22. Propodeum: 0 = completely or partly sculptured 1F). (e.g. Fig. 2E); 1 = almost entirely smooth. 12. Occipital carina: 0 = present (e.g. Fig. 1A, B); 23. Propodeal carinated areas: 0 = present at least 1 = absent (e.g. Fig. 1C). The complete absence of basally (e.g. Fig. 2E); 1 = completely absent. an occipital carina was for a long time considered 24. Radial (marginal) cell of fore wing: 0 = distally as a synapomorphy that distinguishes the Bra- closed (e.g. Fig. 3A–E); 1 = open (e.g. Figs 3F, 4A). coninae from the Doryctinae (Quicke & van Acht- An open radial cell was proposed as an autapo- erberg, 1990). However, this condition is also morphy for the Labaniini (Belokobylskij, 1993). present in members of the (e.g. Desmio- However, this condition is also present in other stoma Fischer), as well as in a few members of doryctine genera. other cyclostome subfamilies, including several 25. Second radiomedial vein (r-m) of fore wing: Doryctinae. 0 = present (e.g. Fig. 3A–E); 1 = absent (e.g. 13. Vertex: 0 = not striate (e.g. Fig. 1B, C); 1 = striate Figs 3F, 4C, E, G). Absence of the second radio- (e.g. Fig. 1A). medial vein together with a short cuspis of the 14. Vertex, if not striate: 0 = not granulate or rugu- volsella are trends that were employed by lose-granulate (e.g. Fig. 1C); 1 = granulate or Belokobylskij (1993) to define the members of the rugulose-granulate (e.g. Fig. 1B). Scored as ‘?’ if Hecabolini. vertex striate. 26. Second radiomedial vein (r-m) of fore wing, when 15. Pronotum: 0 = dorsally without modifications present: 0 = with wide bulla (e.g. Fig. 3A–E); or with convex lobe (e.g. Marsh, 1988: fig. 22); 1 = largely tubular (e.g. Fig. 4H; Marsh, 1997: 1 = with pointed spines or tubercles (e.g. Beloko- figs 16, 18, 30).

© 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 142, 369–404 PHYLOGENY OF THE DORYCTINAE (HYMENOPTERA: BRACONIDAE) 375

A B

C D

E F G

H I

J K Figure 2. External morphological features in the Doryctinae. A, anterior part of mesosoma, lateral view; B–D, mesosoma, lateral view; E, areas of propodeum; F, mesonotum; G, propodeum, view from behind; H–K, stigma-like enlargement of the hind wing in male. A, Binarea spinicollis Brullé; B, Bracodoryctes tergalis Belokobylskij & Quicke; C, Evaniodes areolaris Szépligeti; D, E, Doryctes germanicus Belokobylskij; F, Fijibracon insularis Belokobylskij; G, Stephanospathius ornatipes (Kieffer); H, Dendrosoter middendorffi (Ratzeburg); I, orientalis Belokobylskij; Leluthia asiatica (Tobias); J, K, H. separatus Fischer.

27. Second radiomedial vein (r-m) of fore wing, if 28. First radiomedial vein (2-SR) of fore wing: largely tubular: 0 = with posterior bulla only (e.g. 0 = present (e.g. Fig. 3E, F); 1 = absent or Marsh, 1997: fig. 18); 1 = with two bullae (e.g. strongly unsclerotized for the most part (e.g. Marsh, 1997: fig. 30); 2 = totally sclerotized (e.g. Figs 3B, D, 4A, E, G). An absent or weakly scle- Fig. 4H; Marsh, 1997: fig. 16). rotized first radiomedial vein together with a

© 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 142, 369–404 376 S. A. BELOKOBYLSKIJ ET AL.

A B

C D

F E

Figure 3. External morphological features in the Doryctinae. Wing venation characters, fore and hind wings. A, Holco- fulvus Cameron; B, Caenophanes luculentus Belokobylskij; C, Acanthodoryctes morleyi (Froggatt); D, Heterospilus tirnax Papp; E, Neurocrassus fabimaculatus Belokobylskij; F, Pambolidea yuma Ashmead.

shortened basal ring of male genitalia were like swelling on the hind wing of males, the features proposed by Belokobylskij (1993) as absence of the volsellar apodema of male genita- defining the Heterospilini. lia, and the complete or partial transition to 29. Recurrent vein (m-cu) of fore wing: 0 = postfurcal unique hosts are useful trends suggesting a close (e.g. Figs 3E, 4D, H); 1 = antefurcal or interstitial relationship between the Hecabolini and the Het- (e.g. Fig. 3A, C). erospilini. Furthermore, the first of these charac- 30. Nervellus (cu-a) of fore wing: 0 = postfurcal or ters, together with hind wing vein R1 being interstitial (e.g. Fig. 3A–F); 1 = antefurcal (e.g. completely or nearly absent, were proposed by Fig. 4E). Belokobylskij (1993) as trends that group the 31. Parallel vein (CU1a) relative to cubital vein (2- Labanini + Sericobraconini, although the latter CU1) of fore wing: 0 = not interstitial, arising was subsequently synonymized with the Hecabo- behind middle of distal vein of brachial cell (e.g. lini (Belokobylskij, 1995a). Fig. 4D); 1 = interstitial (e.g. Fig. 4F); 2 = not 33. Fore wing of male: 0 = without sclerotized interstitial, arising before or from middle of dis- enlargement, including veins 1-m and 1-SR + m tal vein of brachial cell (e.g. Fig. 3C, E). Scored as (e.g. Fig. 3A–D); 1 = with sclerotized enlarge- missing data if brachial cell opens distally (see ment (e.g. Fig. 3E). Two genera, Neurocrassus character 32, state 1). Snoflak and Bulvonervus Shenefelt, have the 32. Brachial (1st subdiscal) cell of fore wing: anterior parts of the first abscissa of medial 0 = distally closed (e.g. Fig. 4B, D, F, H); 1 = open veins of the fore wing evidently widened and (e.g. Fig. 4A, C). Belokobylskij (1993) proposed sclerotized. that an open brachial cell together with a stigma- 34. Number of distal hamuli: 0 = four to eight;

© 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 142, 369–404 PHYLOGENY OF THE DORYCTINAE (HYMENOPTERA: BRACONIDAE) 377

A B

C

D

E F

G

H

Figure 4. External morphological features in the Doryctinae. Wing venation characters, fore and hind wings. A, Labania straminea Hedqvist; B, Doryctes fulviceps Reinhard; C, Percnobracon secundus Muesebeck; D, Dendrosoter hartigi (Rat- zeburg); E, Fijibracon insularis Belokobylskij; F, Rhaconotus insularis Belokobylskij; G, Nipponecphylus matsumurai Belokobylskij & Konishi; H, Doryctophasmus ferrugineiceps Enderlein.

1 = three. Hamuli are hook-like setae on the 35. Transverse vein (r) of radial cell of hind wing: anterior margin of the hind wing, which interlock 0 = absent (e.g. Fig. 3B, F); 1 = present (e.g. with the recurved posterior edge of the forewing Marsh, 1997: fig. 12). in the Hymenoptera during flight (Basibuyuk & 36. Recurrent vein (m-cu) of hind wing: 0 = present Quicke, 1997). The number of basal hamuli has (e.g. Figs 3A, F, 4C); 1 = absent (e.g. Fig. 3C). been shown to be size related in Braconinae 37. Recurrent vein (m-cu) of hind wing (if present): (Quicke, 1981) and therefore the number of distal 0 = not curved strongly towards apex of wing (e.g. hamuli may also be. Fig. 4A–D); 1 = strongly curved to apex of wing

© 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 142, 369–404 378 S. A. BELOKOBYLSKIJ ET AL.

(e.g. Fig. 3A). A strong curvature of the recurrent marginal parts (e.g. Fig. 2H–K). See character vein towards the apex of the hind wing together 32. with male parameres narrowed along their 40. Stigma-like enlargement in hind wing of male, if entire length have previously been suggested a present then: 0 = formed only as widening of the synapomorphies that define the Holcobraconini distal part of costal (1-SC + R) vein (e.g. Fig. 2H); (= Odontobraconini) (Marsh, 1970; Belokobylskij, 1 = including distal parts of costal (1-SC + R), 1992a). mediocubital (M + CU, 1-M), and basal (1r-m) 38. Nervellus (cu-a) of hind wing: 0 = present (e.g. veins (e.g. Fig. 2I–K). Figs 3E, 4B); 1 = absent (e.g. Fig. 4A, E). Loss of 41. Submedial (subbasal) cell of hind wing: 0 = small nervellus in the hind wing was suggested by or medium sized, first abscissa of M + CU 0.2–1.0 Belokobylskij (1993) as a synapomorphy for the times as long as second abscissa (1-m) (e.g. Labaniini, Percnobraconini, Ecphylini and Seri- Fig. 3B, D); 1 = distinctly enlarged, first abscissa cobraconini, although it is also lost in a number of M + CU 1.5–2.0 times as long as second of other cyclostome braconids such as Acrisis, abscissa (e.g. Fig. 3A, C). See character 15. Chremylomorpha, Cedria, and Austrohormius, as 42. Medial (basal) cell of hind wing: 0 = closed (e.g. well as in many Aphidiinae. Fig. 3E); 1 = widely open antero-distally (e.g. 39. Stigma-like enlargement in hind wing of male: Fig. 4G). 0 = absent (e.g. Fig. 3A, C); 1 = present in distal 43. Fore tibial spines: 0 = absent; 1 = present (e.g. part of costal (1-SC + R) vein, without incurved Fig. 5G; Marsh, 1997: figs 65–67). The presence

C

A

D

B F E

H

G I

J

Figure 5. External morphological features in the Doryctinae. A–D, Hind coxa; E, hind coxa, trochanter, trochantellus and femur; F, fore femur; G, fore femur, tibia and basitarsus; H, I, J, hind tibia. A, J, Bracodoryctes tergalis Belokobylskij & Quicke; B, I, Sonanus senzuensis Belokobylskij & Konishi; C, Priosphys denticulata Enderlein; D, Liodoryctes australiensis (Szépligeti); E, F, Termitospathius sumatranus Belokobylskij; G, Ceylonspathius nixoni Belokobylskij; Rhoptrocentrus cleo- patrae Belokobylskij.

© 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 142, 369–404 PHYLOGENY OF THE DORYCTINAE (HYMENOPTERA: BRACONIDAE) 379

of a row of spines on the outer face of the fore 52. Laterotergites: 0 = not separated from each other; tibia has been considered as an apomorphic, 1 = separated from each other for at least second diagnostic condition that distinguishes the sub- and third tergites. family Doryctinae, including also the Ypsistocer- 53. Laterotergites, if separated: 0 = separated only at ini (Marsh, 1965; van Achterberg, 1984). second and third tergites; 1 = separated at all However, several presumably specialized genera tergites. lack them (e.g. Sericobracon Shaw, Embobracon 54. Second metasomal tergite: 0 = without apical len- van Achterberg, Leptorhaconotus Granger, and ticulate area (e.g. Fig. 6B, E); 1 = with apical len- some species of Halycaea Cameron; van Achter- ticulate area (e.g. Fig. 6F, I). berg, 1995; Quicke, 1996). Additionally, at least 55. Second metasomal tergite: 0 = without basal area weak spines forming a row are present in some (e.g. Fig. 6B, F); 1 = with basal area (e.g. Fig. 6G– braconines, rhyssalines (Rhyssalus Haliday) and J). An oval raised area on the second metasomal in the rogadine genus Yelicones Cameron (van tergite is a variable character but it is shared Achterberg, 1995; Chishti & Quicke, 1995; by most of the members of the Holcobraconini Quicke & Kruft, 1995; Belokobylskij, 1998b). (= Odontobraconini) (Marsh, 1970). 44. Fore tibial spines, if present: 0 = more or less 56. Basal area of second tergite (if present): numerous and dispersed (e.g. Fig. 5G); 0 = connected with second suture (e.g. Fig. 6G, 1 = usually few and forming a single row (e.g. H); 1 = separate from second suture (e.g. Fig. 6I). Marsh, 1997: figs 65–67). See character 43. 57. Basal area of second tergite (if present and joined 45. Subapical teeth on fore and middle femora: ven- with second suture): 0 = posteriorly wide, width of trally 0 = absent; 1 = present (e.g. Fig. 5F, G). its apical part subequal to or slightly less than 46. Dorsal spines of hind tibia: 0 = absent (e.g. basal width (e.g. Fig. 6G, J); 1 = narrow, width of Fig. 5H, J); 1 = present (e.g. Fig. 5I). its apical part significantly less than basal width 47. Basoventral tooth of hind coxa: 0 = absent (e.g. (e.g. Fig. 7A, B). An oval raised area on the second Fig. 5B–D; Marsh, 1997: fig. 64); 1 = present (e.g. metasomal tergite is present in most of the mem- Fig. 5A; Marsh, 1997: fig. 63)(1). The presence of bers of the Holcobraconini (= Odontobraconini; a basoventral tooth on the hind coxa was an Marsh, 1970). important feature employed by Marsh (1997, 58. Third metasoma tergite: 0 = without any trans- 2002) in his identification keys for the New World verse narrow depression (e.g. Fig. 6B, F, G); and Costa Rican doryctine genera. However, in 1 = with a distinct transverse narrow depression Belokobylskij’s (1992a) classification this charac- (furrow) usually between its anterior third and ter is variable within most of his proposed tribes. the middle (e.g. Fig. 6H). 48. Hind coxa: 0 = dorsally without teeth (e.g. 59. Second metasomal suture: 0 = present (e.g. Fig. 5A, B, E); 1 = with one to several teeth (e.g. Fig. 7C, D, F); 1 = largely or entirely absent (e.g. Fig. 5C, D). Figs 6B, E, 7E). 49. Dorsope of first metasomal tergite: 0 = present 60. Second metasomal suture: 0 = straight or and more or less distinct; 1 = very small or indis- evenly curved (e.g. Fig. 7F); 1 = with more or tinct. A distinctive dorsope was mentioned by less distinct lateral angulations (e.g. Fig. 6H, Barbalho et al. (1999) as one of the features that J); 2 = with distinct median bend (e.g. Marsh, distinguish the Heterospilini from the Spathiini. 1997: fig. 72). 50. Acrosternite of first metasomal tergite: 0 = short, 61. Fifth or sixth metasomal tergites: 0 = not nearly 0.2–0.25 as long as tergite, not fused with enlarged, not covering succeeding tergites and ventral margins of tergite, petiole absent (e.g. entirely smooth (e.g. Fig. 7A, B); 1 = more or less Fig. 6F); 1 = long, 0.3–0.5 as long as tergite and distinctly enlarged, covering succeeding tergites fused with its ventral margin anteriorly, petiole and sculptured at least basally (e.g. Fig. 7C, D, F). present, but incomplete (e.g. Fig. 6D, E); 2 = very 62. Fourth-sixth metasomal tergites of males: long, 0.6–0.85 as long as tergite and entirely 0 = simple; 1 = with crenulate basal furrows (e.g. fused with it ventral margin, petiole present and Fig. 7B). long (Fig. 6A, B). An elongated acrosternite is the 63. Fourth-sixth metasomal tergites of male: typical condition found in the Spathiini, Stepha- 0 = simple; 1 = with submarginal lateral carinae niscini, Evaniodini, Leptorhaconotini and Perc- (e.g. Fig. 7E). nobraconini (Belokobylskij, 1993). 51. First and second tergites: 0 = not fused (e.g. Male genitalia Fig. 5G–J); 1 = fused (e.g. Belokobylskij, 2000: References: Tobias (1961, 1967); Quicke & van Acht- figs 10, 11, 23, 24; Barbalho & Penteado-Dias, erberg, 1990); Belokobylskij (1987); Quicke (1996); 2002: fig. 4). Kistner et al. (2000).

© 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 142, 369–404 380 S. A. BELOKOBYLSKIJ ET AL.

C D

A

E F

B

G H I J

Figure 6. External morphological features in the Doryctinae. A, C, first metasomal tergite, lateral view; B, F–J, metasoma, dorsal view; D, first tergite, ventral view; E, first-third metasomal tergites, dorsal view. A, B, wusheensis Beloko- bylskij; C–E, Fijibracon insularis Belokobylskij; F, Heterospilus hemitestaceus Belokobylskij; G, Liodoryctes australiensis (Szépligeti); H, Glyptocolastes rugulosus (Cresson); I, Bathycentor kraesselini Saussure; J, Siragra nitida Cameron.

64. Basal ring (gonobase): 0 = short (e.g. Fig. 8C, D); 66. Dorsal bridge of basal ring: 0 = wide; 1 = very 1 = medium sized (e.g. Fig. 8A); 2 = markedly elon- narrow (e.g. Fig. 8A, C). gated (e.g. Fig. 8H). See comment in character 28. 67. Basal lobe of basal ring: 0 = absent (e.g. Fig. 8A, 65. Dorsal bridge of basal ring: 0 = closed (e.g. C); 1 = present (e.g. Fig. 7B, G). Fig. 8A, B); 1 = open (e.g. Fig. 8D). 68. Parameres: 0 = wide and roundly triangular;

© 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 142, 369–404 PHYLOGENY OF THE DORYCTINAE (HYMENOPTERA: BRACONIDAE) 381

B

C A D

G E F

Figure 7. External morphological features in the Doryctinae. A, C, D, F, G, female; B, E, male. A–F, metasoma, dorsal view; G, metasoma, lateral view. A, B, Halycaea rubata Belokobylskij; C, Rhaconotus ceylonicus Belokobylskij; D, R. excavatus Belokobylskij; E, Dendrosoter hartigii (Ratzeburg); F, G, Arhaconotus papuanus Belokobylskij.

© 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 142, 369–404 382 S. A. BELOKOBYLSKIJ ET AL.

A B C

D E F

G H I

Figure 8. Male genitalia in the Doryctinae. A, Doryctes striatellus (Nees); B, Hecabolus sulcatus Curtis; C, Euscelinus sarawacus Westwood; D, Monarea sp.; E, Zombrus bicolor Enderlein; F, Acanthodoryctes morleyi (Froggatt); G, Syngaster lepidus Brullé; H, Ecphylus silesiacus (Ratzerburg); I, Dendrosoter protuberans Wesmael.

1 = partly narrowed distally (e.g. Fig. 8A, I); 70. Setosity of parameres: 0 = dense (e.g. Fig. 8D); 2 = considerably narrowed along whole length 1 = sparse (e.g. Fig. 8C). (e.g. Fig. 8E). See comment of character 37. 71. Volsellar apodemes: 0 = present; 1 = absent. See 69. Parameres: 0 = well developed (e.g. Fig. 8E); character 32. 1 = very short, not reaching the middle of digitus 72. Cuspis of volsella: 0 = long; 1 = short. See com- (e.g. Fig. 8I). ment of character 25.

© 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 142, 369–404 PHYLOGENY OF THE DORYCTINAE (HYMENOPTERA: BRACONIDAE) 383

Venom apparatus bly secondarily lost in some species of Spathius References: Quicke & van Achterberg, 1990); Quicke Nees and Heterospilus Haliday (Quicke & Marsh, et al. (1992c); Quicke (1996); Zaldivar-Riveron et al., 1992). It is also present in several xoridine ich- 2004). neumonids, in the genus Mesostoa, and in few opiines (Quicke et al., 1992a; Kimani-Njogu & 73. Venom reservoir: 0 undivided (e.g. Fig. 9B); = Wharton, 2002). 1 divided (e.g. Fig. 9A). = 83. Number of valvilli: 0 two or more; 1 one or 74. If venom reservoir divided, then comprising: = = zero (e.g. Rahman et al., 1998b: fig. 1c, e). 0 two parts (e.g. Fig. 9A); 1 three parts. = = 84. Ovipositor apex: 0 weakly or not sclerotized; 75. If reservoir undivided, then: 0 ovoid; = = 1 heavily sclerotized and typically black 1 tubular (e.g. Fig. 9B). Some genera of Holco- = = (Quicke et al., 1992a: figs 26–28). A sclerotized and the two genera of Binareini have apex is found in virtually all members of the an elongated, more or less parallel-sided and Doryctinae, including Termitobracon Brues finely sculptured venom reservoir (Quicke et al., (Quicke et al., 1992a). It also occurs in New World 1992c) members of the rogadine genus Yelicones (Quicke 76. Posterior of venom gland: 0 narrow; 1 wide = = & Kruft, 1995). and hemispherical. 85. Valvillus of lower ovipositor valve: 0 present 77. Spiral sculpture of venom reservoir: 0 normal; = = and well developed; 1 reduced and very thin; 1 posteriorly much courser than anteriorly. = = 2 absent. 78. Base of secondary venom duct: 0 simple = = 86. Position of the valvillar insertion: 0 medial; (e.g. Fig. 9C, D); 1 swollen, horn-shaped (e.g. = = 1 close to the dorsal edge of the egg canal (e.g. Fig. 9E). = Rahman et al., 1998b: fig. 2d, e). 79. Number of separate insertions of the venom gland 87. Bars posterior to valvillus or valvillar zone: on to the reservoir or primary duct: 0 one (e.g. = 0 absent; 1 present. Fig. 9C); 1 two (e.g. Fig. 9D, E) (1); 2 more = = = = 88. Bars anterior to valvillus or valvillar zone: than two (Quicke et al., 1992c: fig. 1a). 0 absent; 1 present. The presence of bars 80. Pair of blind-ended protuberances from the pri- = = anterior to the valvillus has been found only in mary duct arising just posterior to the insertions Doryctes and Neodoryctes and is a putative syn- of the venom glands: 0 absent (e.g. Fig. 9D); = apomorphy for them (Rahman et al., 1998b). 1 present. = 89. Tips of bars: 0 not forming spines; 1 formed 81. Primary venom duct and base of reservoir: = = into spines (e.g. Rahman et al., 1998b: fig. 2b). 0 with spiral or ‘hexagonal-like’ sculpture; = 90. Ctenidia: 0 minor type only (e.g. Rahman et al., 1 glandular, with simple ductules (e.g. Fig. 9F); = = 1998b: figs 1h, 3a–f); 1 major type present (e.g. 2 glandular, with vase-shaped ductules. The = = Rahman et al., 1998b: fig. 4b–d). The egg canal of primary duct and base of the reservoir of all all the doryctines has ctenidia, two types of which doryctines and braconines lack spiral sculpture are distinguished. In major ctenidia, the rows and instead is densely supplied with secretory extend between dorsal and ventral edges of the ductules; however, whereas in all the braconines egg canal, whereas in minor ctenidia the rows are these ductules open into a vase-shaped chamber, shorter and there may be several separate ones in all the doryctines they are much simpler within the width of the egg canal wall (Rahman (Quicke et al., 1992c). et al., 1998b). 91. Broad-based, robust spines in egg canal, posterior to valvillar zone: 0 absent; 1 present (e.g. Ovipositor system = = Rahman et al., 1998b: fig. 1h). References: Quicke, Ficken & Fitton (1992a); Quicke, 92. Subctenidial setae: 0 simple (e.g. Rahman Ingram & Fitton (1992b); Quicke, Fitton & Harris = et al., 1998b: fig. 3a); 1 bifurcate (e.g. Rahman (1995); Quicke (1996); Rahman et al. (1998a, b). = et al., 1998b: fig. 3d); 2 = trifurcate or more 82. Ovipositor nodus: 0 = single (e.g. Quicke et al., divided (e.g. Rahman et al., 1998b: fig. 3e). 1992a: figs 9–11); 1 = double, with a second node 93. Subctenidial setae: 0 = not or hardly flattened; weakly developed (e.g. Quicke et al., 1992a: 1 = distinctly flattened; 2 = strongly flattened. fig. 12); 2 = double, with both nodus well devel- (e.g. Rahman et al., 1998b: fig. 4a); 3 = formed oped (e.g. Quicke et al., 1992a: figs 1–8). A double into extremely thin, flattened leaflets. (e.g. Rah- nodus was suggested by Quicke et al. (1992a) as a man et al., 1998b: fig. 4b). In their study of the uniquely derived, diagnostic feature for the ovipositor internal microsculpture in several Doryctinae, including Ypsistocerus Cushman, representative Doryctinae genera, Rahman et al. though it has been suggested that it was proba- (1998b) found that the examined specimens

© 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 142, 369–404 384 S. A. BELOKOBYLSKIJ ET AL.

A B

C D

E F

Figure 9. Selected features of the venom apparatus in the Doryctinae. A, Megaloproctus sp.; B, Nervellius sp.; C, Aleiodes pulchripes Wesmael; D, Halycaea sp.; E, Hecabolus sp.; F, Syngaster sp. v, venom reservoir; p, primary venom duct; s, sec- ondary venom duct.

© 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 142, 369–404 PHYLOGENY OF THE DORYCTINAE (HYMENOPTERA: BRACONIDAE) 385

belonging to the Holcobraconini, Binareini and we did to find the most parsimonious trees (see Gauth- the genus Monarea have extremely flattened sub- ier et al., 2000). ctenidial setae, producing overlapping leaflet-like The different attributes and performance measures structures. evaluated for the different data partitions are 94. Posterior ovipositor lower valve fans formed from presented in Table 2. In general, the performance groups of leaflets: 0 = absent; 1 = present (e.g. values for all the analyses are relatively low. The Rahman et al., 1998b: fig. 1a, b). Some doryctinae REPRODUCTIVE + LARVAL character set, which genera have very enlarged leaflets, which are was the character set with the second highest propor- erect and project into the egg canal lumen (Rah- tion of missing entries, produced trees with the high- man et al., 1998b). est CI, RI and DD, while the two partitions with the 95. Basal most ovipositor lower valve setae: lowest proportions of missing entries give trees with 0 = small; 1 = larger than subsequent ones; the lowest performance values. Whereas the ONLY 2 = modified into a pseudovalvillus. EXTERNAL character set has the lowest CI, the >70% 96. Single, large crescentic bar-like structure just dis- DATA has the lowest DD and RI. On the other hand, tal to valvillus: 0 = absent (e.g. Rahman et al., the character sets with the lowest proportions of 1998b: fig. 2c, f); 1 = present (e.g. Rahman et al., informative characters (ONLY EXTERNAL and 1998b: fig. 2e). Some genera possess a single, REPRODUCTIVE + LARVAL) yielded the highest crescentic bar or abrupt excavation extending performance values. Comparison between the exter- across the whole width of the egg canal just distal nal morphological and the remaining alternative to the valvillus (Rahman et al., 1998b) character systems using the ILD test reveals that 97. Transverse bars near valvillus: 0 = straight, these data partitions are significantly incongruent rather thin, not strongly raised; 1 = formed (P < 0.001). of thickened, curved and strongly raised The QHS result for the ALL DATA character set arches. gave an initial tree with length of 796 after 10 000 98. Pre-apical zone of the rachies: 0 = without very random additions. By repeatedly applying the various dense and strong scale-like microsculpture; reweighting functions we finally yielded trees with 1 = with very dense and strong scale-like length of 790, indicating that this is a particularly microsculpture. hard data set to search. The strict consensus of the 99. One or more ancillary teeth near the tip of the ovi- most parsimonious trees from the ALL DATA charac- positor: 0 = absent; 1 = present, not distinct and ter set is mostly unresolved but includes a number of in the form of well developed distal grooves; small clades with from two to thirteen genera each 2 = very distinct present as isolated tooth-like (Fig. 10). The largest of these (clade 1) includes several processes. Ancillary teeth are present in the vast members of the Hecabolini together with five previ- majority of doryctines and have been suggested ously unplaced genera (Mimodoryctes Belokobylskij, as a synapomorphy for the subfamily (Quicke Whartonius Marsh, Janzenia Marsh, Hemispathius et al., 1992a, 1995). Belokobylskij & Quicke, and Aphelopsia Marsh). The Hecabolini components were also diverse, represent- ing three of its four subtribes. The second largest clade Larval cephalic structure (clade 2) contains all members of the Doryctiini sub- Reference: Capek, (1970). tribes Rhaconotina and Caenophanina together with 100. Epistoma of final larval instar head capsule: Platyspathius Viereck of the Spathiina and Chelon- 0 = present and complete (e.g. Capek, 1970: odoryctes Belokobylskij & Quicke. The original fig. 54); 1 = absent or reduced (e.g. Capek, 1970: description of the latter stated that it might belong to fig. 55). the Doryctini (Belokobylskij & Quicke, 2000). The third largest clade (clade 3) comprises the Holcobra- conini and Binareini (except Ivondrovia Shenefelt & Marsh), but also includes Monarea Szépligeti [placed RESULTS by Belokobylskij (1992a) in the Doryctina]. All unweighted analyses reached the computational Among the most relevant smaller clades, one (clade limit of 30 000 most parsimonious trees, and the strict 4) contains a subclade with the three members of the consensus trees for the four character sets are poorly Ecphylini, but also Pambolidea of the Pambolideina resolved (Figs 10–12). Most of the clades recovered in and three previously unplaced genera (Achterbergia these analyses are weakly supported as indicated by Marsh, Masonius Marsh, Fritziella Marsh). Another their bootstrap values, although these are potentially two (clades 7 and 9) comprise several members of the underestimated because it was not practicable to Doryctina, though one of them (clade 7) also contains search each of the pseudoreplicates as thoroughly as the monotypic Trigonophasmina (Trigonophasmus

© 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 142, 369–404 386 S. A. BELOKOBYLSKIJ ET AL.

Mimodoryctes Whartonius Percnobraconoides Polystenus Tera te Pareucorystes Hecabalodes Percnobraconoidina Callihormius Hemispathius Hecabolina (in part) Janzenia Polystenoides Stenocorsina (in part) Aphelopsia 1 Hecabolus Doryctophasmus Euscelinus Dendrosotinus Caenophanes Caenophanina Chelonodoryctes Rhaconotus Rhaconotina Aptenobracon Platyspathius Spathiina (Platyspathius) 2 Arhaconotus Ipodoryctes Mimipodoryctes Monarea Nervellius Odontobracon Zombrus HOLCOBRACONINI Holcobracon Liodoryctes BINAREINI Acanthodoryctes 82 Binarea Doryctina (Monarea) Liobracon 3 Antidoryctes 57 Aivalykus 66 Bohartiellus Ecphylus ECPHYLINI Achterbergia Masonius Pambolideina Pambolidea 4 Fritziella Caigangia Glyptocolastes Afrospathius Acrophasmus Leluthia Shawius Coiba 5 Asiaheterospilus Synspilus Johnsonius Sericobracon Semirhytus Tripteria 6 Gymnobracon Syngaster SIRAGRINI Siragra Pseudodoryctes Doryctina (in part) Hybodoryctes Trigonophasmus Trigonophasmina 7 Labania Mononeuron LABANIINI, PERCNOBRACONINI Ecphylopsis Mononeuron Fijibracon Stenocorsina ( ) Percnobracon Ecphylopsis 8 Odontodoryctes Heterospilini ( ) Paradoryctes Sharkeyella Osmophila Doryctina (in part) 9 Pedinotus Pseudorhoptrocentrus Whitfieldiellus Verae Amazondoryctes 10 79 Termitobracon Ypsistocerus Embobracon YPSISTOCERINI 11 Bulbonervus Neurocrassus 77 Ceylonspathius Termitospathius Doryctes Neodoryctes 71 Evaniodes Pariodes 71 Leptospathius Schlettereriella

All remaining taxa forming a polytomy

Figure 10. Strict consensus of 30 000 most parsimonious trees (length 790) produced by the QHS strategy using all the available information for all taxa (ALL DATA). Only resolved clades of Doryctinae are shown. Numbers above branches show bootstrap values ≥ 50. Numbers below branches refer to the major clades recovered (see text).

Enderlein) and Siragrini (Siragra Cameron). A fourth separate clade (clade 11) is formed by the three genera clade (clade 8) comprises both known genera of the of the Ypsistocerini, Ypsistocerus, Embobracon and Percnobraconini, which form a sister group of a sub- Termitobracon. clade with Ecphylopsis Ashmead of the Heterospilini, The topologies derived from the strict consensus of Mononeuron Fischer of the Stenocorsina and the most parsimonious trees obtained with the Labania Hedqvist of the Labaniini. Finally, a small other partitions are largely unresolved (Fig. 11A–C).

© 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 142, 369–404 PHYLOGENY OF THE DORYCTINAE (HYMENOPTERA: BRACONIDAE) 387

A ONLY EXTERNAL B > 70% DATA C REPROD. + LARVAL Amazondoryctes Pioscelus Holcobracon 59 Acanthodoryctes Ivondrovia Liodoryctes Gymnobracon Liodoryctes Siragra Monarea Braconinae Monarea Pseudodoryctes Nervellius Syngaster Nervellius Hybodoryctes Odontobracon Odontobracon Osmophila 78 Zombrus Pedinotus Bracodoryctes 82 Binarea 72 Zombrus Cryptodoryctes Cyphodoryctes Liobracon Binarea Neodoryctes Liobracon 83 Ter mitobracon Acanthodoryctes Ypsistocerus Ivondrovia Ivondrovia Embobracon Labania Pioscelus Rhoptrocentrus Leptodoryctes Mononeuron 62 Gymnobracon Pioscelus Fijibracon Nipponecphylus Syngaster Semirhytus Micrommatus Trigonophasmus Masonius Leptospathius Percnobracon Pseudodoryctes Fritziella Schlettereriella Osmophila Odontodoryctes Siragra Paradoryctes Pedinotus Priosphys Dendrosoter Acanthorhogas Sharkeyella Tripteria Tripteria Aivalykus 57 Leptospathius Bohartiellus Megaloproctus 61 Ecphylus Schlettereriella Achterbergia Siragra Paraspathius Dendrosoter Leptospathius Halycaea Hypodoryctes Stephanospathius Schlettereriella Ipodoryctes Platyspathius Trigonophasmus Halycaea Rhaconotus Doryctophasmus Hemispathius Caenophanes Janzenia Halycaea Polystenoides Dendrosotinus Sharkeyella Aivalykus Euscelinus Spathiostenus Ecphylus Holcobracon Paraspathius Liodoryctes Whartonius Nervellius Spathius Odontobracon Curtisella Zombrus Toka 86 Binarea Hecabolus Liobracon Platyspathius Acanthodoryctes Doryctophasmus Doryctes Antidoryctes Arhaconotus 77 Aivalykus Neodoryctes Mimipodoryctes Ipodoryctes Ecphylus Osmophila Bathycentor Curtisella Dendrosoter Sharkeyella Leluthia Hemidoryctes Shawius Subcurtisella Callihormius Dicarynoryctes Heterospilus Ptesimogastroides All remaining taxa forming a polytomy Platydoryctes Hecabalodes Ecphylopsis Doryctophasmus Pareucorystes Sonanus Hemidoryctes Afrospathius Heterospilus Jataiella Glyptocolastes Waitaca Percnobraconoides 61 Asiaheterospilus Synspilus Polystenus Bulbonervus Neurocrassus Semirhytus Caigangia Whitfieldiellus Tripteria 74 Ceylonspathius Termitospathius 59 Evaniodes All remaining taxa forming a polytomy Pariodes Heterospathius Notiospathius Megaloproctus Monarea Parana Toka

All remaining taxa forming a polytomy

Figure 11. Strict consensus of the 30 000 most parsimonious trees obtained from each of three different character sets examined in this study following the QHS strategy. Numbers above branches show bootstrap values ≥ 50. A, strict con- sensus (length 502) including only the external characters for all taxa (ONLY EXTERNAL); B, strict consensus (length 556) including only taxa with ≥ 70% scored characters (> 70% DATA); C, strict consensus (length 180) including only characters systems others than external morphology and taxa with ≥ 50% of scored characters (REPRODUCTIVE + LARVAL).

© 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 142, 369–404 388 S. A. BELOKOBYLSKIJ ET AL.

Labania Mononeuron Ecphylopsis Fijibracon Percnobracon LABANIINI Leptodoryctes Nipponecphylus ECPHYLINI Ter mitobracon Ypsistocerus PERCNOBRACONINI Embobracon Micrommatus YPSISTOCERINI Aivalykus Bohartiellus HETEROSPILINI (Ecphylopsis) Ecphylus Achterbergia Pambolideina Masonius Pambolidea Fritziella Spathiostenina Ptesimogastroides Spathiostenus Hecabollina (in part) Platydoryctes Monolexis Stenocorsina (in part) Allorhogas Iare Spathiospilus Stenocorse Parallorhogas Canchim A Donquickea Rhacontsira Guaygata Hemidoryctes Sonanus Pseudorhoptrocentrus Verae Amazondoryctes Paraspathius Sisupala Spathius Ceylonspathius Ter mitospathius Rhoptrocentrus STEPHANISCINI Leptospathius Schlettereriella Spathiina (in part) Stephanospathius Dicarynoryctes Sisupalina Megaloproctus Cryptodoryctes Doryctina (in part) Priosphys Dendrosoter Dendrosotina Halycaea Ontsira Stenocorsina (Pseudorhoptrocentrus) Spathiomorpha Bulbonervus Neurocrassus Hypodoryctes Jarra B Mimodoryctes Whartonius Percnobraconoides Polystenus Tera te Pareucorystes Hecabalodes Callihormius Hemispathius Janzenia Polystenoides EVANIODINI Whitfieldiellus Aphelopsia HETEROSPILINI (Heterospilus) Hecabolus Heterospilus Hecabolina (in part) Jataiella Waitaca Stenocorsina (in part) Caigangia Glyptocolastes Afrospathius Percnobraconoidina Acrophasmus Afrospathius Leluthia Psenobolina ( ) Shawius Coiba Evaniodes C Pariodes Monarea Odontobracon Nervellius Zombrus Holcobracon Liodoryctes Acanthodoryctes Binarea HOLCOBRACONINI Liobracon Antidoryctes BINAREINI Ivondrovia Ploscelus Spathioplitina Spathioplites Odontodoryctes Heterospilini (Pioscelus) Paradoryctes Sharkeyella Osmophila SIRAGRINI Pedinotus Gymnobracon Trigonophasmina Syngaster Siragra Doryctina (in part) Pseudodoryctes Hybodoryctes Trigonophasmus Bracodoryctes Doryctes D Neodoryctes Cyphodoryctes Asiaheterospilus Synspilus HETEROSPILINI (in part) Johnsonius Sericobracon Semirhytus Spathiina (in part) Tripteria Acanthorhogas Ptesimogastrina Heterospathius Notiospathius Psenobolina (in part) Tarasco Subcurtisella Stenocorsina (Tripteria) Ptesimogaster E Curtisella Doryctina (in part) Bathycentor Doryctophasmus SERICOBRACONINI Euscelinus Dendrosotinus Caenophanes Caenophanina Chelonodoryctes Rhaconotus Rhaconotina Ipodoryctes Mimipodoryctes Doryctina (Chelonodoryctes) Arhaconotus F Aptenobracon Psenobolina (Psenobolus) Platyspathius Parana Spathiina (in part) Psenobolus Toka Leptorhaconotus LEPTORHACONITINI Other subfamilies G

© 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 142, 369–404 PHYLOGENY OF THE DORYCTINAE (HYMENOPTERA: BRACONIDAE) 389

Figure 12. Strict consensus of the 8438 most parsimonious trees produced by successive approximations weighting employing the minimum retention index, starting from the most parsimonious trees found with the QHS strategy using all available information for all taxa (ALL DATA). Only ingroup relationships are shown. Letters below branches refer to the major clades recovered (see text).

Table 2. Attributes and performance measures of the four character sets and their MPTs examined in this study

Character set PIC NIT NIC PMD ITL FTL CI RI DD

ALL DATA 0.63 156 99 30.7 796 790 0.139 0.574 0.516 ONLY EXTERNAL 0.4 156 63 16.1 506 502 0.131 0.597 0.545 > 70% DATA 1.0 91 92 18.2 557 556 0.185 0.568 0.503 REPRODUCTIVE + LARVAL 0.43 84 36 20.7 181 180 0.238 0.697 0.685

PIC, proportion of informative characters with respect to number of included taxa; NIT, number of included taxa; NIC, num- ber of informative characters; PMD, percentage of missing data (including polymorphic characters with all their states present); ITL, initial tree length (tree length obtained after 10 000 random replicates holding one tree from each addition); FTL, final tree length (tree length obtained after applying the QHS strategy); CI, consistency index; RI, retention index; DD, data decisiveness index. Specific features for each character set are mentioned in the text.

However, the > 70% DATA and the REPRODUCTIVE the Percnobraconoidina (Percnobraconoides Marsh), + LARVAL data sets also recover a clade comprising the two Evaniodini genera, Heterospilus of the the Holcobraconini + Binareini. In addition, the ONLY Heterospilini, and six unplaced genera. The EXTERNAL data partition also shows the Ypsistocer- Holcobraconini + Binareini + Monarea clade is placed ini and the Ecphylini as monophyletic. within a larger clade (clade D) that also includes The strict consensus trees of the SAW analyses for Ivondrovia, 12 genera belonging to the Doryctina, the ALL DATA character set employing MaRI and the single members of the Trigonophasmina (Trigo- MiRI (lengths 386.52 and 386.19, respectively) applied nophasmus Enderlein), Siragrini (Siragra Cameron) separately are identical to one another and much bet- and Spathioplitina (Spathioplites Fischer), Piocelus ter resolved (Fig. 12; relationships among members of Muesebeck & Walkley of the Heterospilini, and the the other subfamilies are not shown). The Doryctinae unplaced Cyphodoryctes Marsh. Finally, the remain- appears monophyletic with the exclusion of Hister- ing two clades (clades E and G) are represented by a omeroides Marsh, which comes out among the out- few genera belonging to various subtribes as well as groups. Furthermore, Monitoriella is also nested with some unplaced genera. the outgroups, whereas the aberrant Madagascan Most of the results of the Wilcoxon signed-ranks Leptorhaconotus Granger appears at the base of the tests comparing the hypotheses obtained from the four Doryctinae. data sets with the alternative hypotheses of mono- The topology recovered from the SAW analyses phyly constructed for the tribes Doryctini and Hecabo- reveals seven larger clades (indicated in Fig. 12 by let- lini sensu Belokobylskij (1992a) were not significant ter), which include most of the resolved assemblages (Table 3). However, constraining the Doryctini to present in the unweighted consensus tree (Fig. 10). Of be monophyletic with the > 70% DATA and the these, however, clade F was the only one that was INTERNAL + LARVAL data partitions resulted in exactly the same in generic composition between the significant differences (P < 0.03). aforementioned topologies. The clades with the mem- bers of the Ecphylini and Ypsistocerini are recovered in the clade A, which also includes representatives of several of the smaller tribes and subtribes. Clade B DISCUSSION contains a subclade composed by the members of the RELATIVE PERFORMANCE OF CHARACTER Stephaniscini, the single members of the Dendroso- PARTITIONS IN ANALYSES tina and Sisupalina, Pseudorhoptocentrus Granger of the Stenocorsina, and several genera of the Doryctina. Addition of taxa and/or characters with abundant Clade C comprises the same genera recovered in clade missing data has been traditionally avoided in phylo- 1 of the unweighted analysis, together with additional genetic analyses because they are considered to be a genera of the Hecabolini, the only member of nuisance factor that can lead to multiple shortest

© 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 142, 369–404 390 S. A. BELOKOBYLSKIJ ET AL.

Table 3. Results of the Wilcoxon signed-ranks tests comparing 100 randomly chosen trees from the analyses performed for the four different character partitions and those obtained from alternative hypotheses constraining the members of the Doryctini and Hecabolini (sensu Belokobylskij, 1992a) to be monophyletic

Alternative hypotheses and data sets LT NZ P

Doryctini monophyletic ALL DATA 824 63 -1.674 to -1.568 P > 0.1 > 70% DATA 623 43–44 -2.342 to -2.201 P < 0.03* ONLY EXTERNAL 528 40–42 -1.319 to -1.259 P > 0.2 REPRODUCTIVE + LARVAL 206 24 -2.36 P < 0.02* Hecabolini monophyletic ALL DATA 816 51–52 -1.295 to -1.256 P > 0.1 > 70% DATA 610 43–45 -1.458 to -1.352 P > 0.1 ONLY EXTERNAL 527 30–32 -0.215 to -0.206 P > 0.2 REPRODUCTIVE + LARVAL 191 18–20 -1.466 to -1.249 P > 0.1

LT, length of the 100 randomly chosen trees of the alternative hypotheses; N, number of positive differences; Z, normal approximation showed in the Wilcoxon signed-ranks test for N = 25 *Significant difference between the hypotheses obtained in this study and the alternative hypotheses with one-tailed probability. trees and a poorly resolved consensus tree (see Wiens nificant incongruence found in our study between the & Reeder, 1995; Wilkinson, 1995; Wiens, 1998 for external morphological and the reproductive and lar- reviews of this subject). However, based on computer val character systems suggests that the same may simulations, Wiens (2003) demonstrated that it is not apply to the Doryctinae, and it is not surprising there- so much the presence of too many missing data cells, fore that their inclusion here has revealed previously but rather the inclusion of few complete characters unsuspected relationships. More extensive scoring of that lead to a reduction in accuracy in phylogenetic these internal features might therefore be expected to analyses. Therefore, he proposed that the level of com- improve our understanding of the group, but unfortu- pleteness alone should not guide the exclusion of taxa. nately many genera are known from too few speci- In this study we also observed that the incorporation mens to permit this at present. of characters or taxa with a high proportion of missing data results in largely unresolved topologies; however, similar to the results obtained by Wiens (2003), we did TAXONOMIC IMPLICATIONS not find an evident correlation between the proportion One of the principal reasons for the extensive confu- of missing data in the character sets and their analy- sion in the higher level classification of the Doryctinae sis performances as measured by the CI, RI, or DD is the procedure that numerous authors have followed (Table 2). Instead, there was a negative correlation in how they define genera. These have traditionally between the performance values of the data sets made use of combinations of characters or trends examined and the proportions of informative charac- present in different tribes, mainly because of a lack of ters in them. This effect can be explained by the obvious autapomorphies (Marsh, 1993, 2002; Beloko- apparent extensive homoplasy contained in our data, bylskij, 1998a; Barbalho & Penteado-Dias, 2000, which increases with the inclusion of more informa- 2002). For example, Barbalho et al. (1999) erected the tive characters. genera Heterospathius Barbalho & Penteado-Dias and Several previous attempts at a tribal classification Spathiospilus Marsh (based on combined parts of the of the Doryctinae have argued that traditionally used names Spathius and Heterospilus) to include some external morphological characters are insufficient to new species that do not possess any apparent uniquely resolve their higher level relationships in a clear way derived feature, but instead present a mixture of (e.g. Marsh, 1965; Shenefelt & Marsh, 1976; Fischer, features characteristic of the members of the 1981a; Belokobylskij, 1992a, 1993). On the other Heterospilini (fore wing vein 2RS absent or not hand, reproductive, internal and larval character sys- sclerotized) and Spathiini (metasoma petiolate). Thus, tems have often proved to be helpful for resolving the characters used are not necessarily suitable for higher level relationships within the Hymenoptera creating monophyletic groups or even for cladistic (e.g. Heraty, Wooley & Darling, 1994; Vilhelmsen, argumentation. Unfortunately, the high levels of 2001, 2003) and indeed in most insect orders. The sig- homoplasy shown by many of the included characters

© 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 142, 369–404 PHYLOGENY OF THE DORYCTINAE (HYMENOPTERA: BRACONIDAE) 391 and the difficulty of measuring the nodal support in ically very derived doryctine genus (although its name the different topologies do not allow us to propose a indicates convergent similarity to Histeromerus Wes- meaningful new higher level classification, even after mael, it is now known to be near the Rhyssalinae: formal analysis of all available morphological data. Belshaw et al., 1998; Dowton et al., 2002), and its Nevertheless, there are several interesting relation- recovery with the outgroup reflects this. Moreover, ships recovered by the different analyses performed, Leptorhaconotus, which was recovered at the base of but only a few of these agree with the groups proposed the Doryctinae, lacks the ovipositor characters pro- by Belokobylskij, 1992a) higher classification of the posed by Quicke et al. (1992a) as Doryctinae synapo- subfamily. morphies, except by having a well-developed accessory Several authors have questioned the monophyly of tooth on the lower valve. However, its ovipositor is the Doryctinae in the current sense. The traditional highly modified, dorsoventrally depressed and morphological characters used to define this subfamily strongly upcurved, thus clearly showing that this (cubical head, complete occipital carina and a row of taxon does not attack wood-borer hosts. Additionally, fore tibial pegs) have all been shown to be homoplastic this genus also lacks the glandular sculpture in the and all are potentially symplesiomorphies (Quicke insertion of the secondary venom ducts (character 81), et al., 1992a). Although a row of fore tibial pegs is one which is a condition observed in most of the rest of the of the most reliable characters used, it is also found in Doryctinae; however, it does have two separate inser- several other cyclostome genera (Yelicones Cameron of tions of the secondary duct (fig. 10 in Quicke, 1996). the Rogadinae and some Braconinae and Rhyssalinae: Leptorhaconotus is also a highly morphologically aber- Chishti & Quicke, 1995; van Achterberg, 1995; Quicke rant genus, included by van Achterberg (1984) in a & Kruft, 1995) and in a recently described genus of tribe of its own, and only tentatively placed within the the noncyclostome subfamily Orgilinae [Doryctorgilus Doryctinae. Whether this is because it really does not Braet & van Achterberg (Braet & van Achterberg, belong there or is just a consequence of its derived 2003)], and these pegs are probably an adaptation to structure, will probably not be resolved using mor- aid egress from a concealed pupation site (Eggleton, phology alone. 1989; Quicke, 1997). Indeed, the cubical head of many The validities of the small doryctine tribes doryctines probably reflects strong mandibular mus- Ecphylini, Labaniini, Ypsistocerini, Percnobraconini, cles and is therefore also associated with a need for the Leptorhaconotini and Stephaniscini need to be tested newly emerged adult to make its way out. More further, because in our trees most of them appear as recently, in an attempt to find more reliable synapo- derived taxa within more inclusive groups, rather morphies for the Doryctinae, Quicke et al. (1992a) than as separate, independent lineages. However, identified three probable synapomorphies from the although they are supported by inconsistent synapo- ovipositor system (presence of a heavily sclerotized morphies (character numbers 8, 32, 63, 64, 66, 78, 84, ovipositor apex, a double nodus on the upper valve and 86), three of the four proposed genera of the Ecphylini a modified serration structure on the lower valve). were nested in a clade with Achterbergia Marsh at the However, even these were undoubtedly lost second- base, suggesting the monophyly of this group. Of these arily in some taxa (e.g. some Spathius Nees and Het- synapomorphies, the presence of a markedly elon- erospilus species: Quicke & Marsh, 1992; Quicke et al., gated basal ring in the male genitalia (RI = 0.48; e.g. 1992a). Our results suggest only one consistent puta- Fig. 8I) appears to be the most reliable for its diagno- tive synapomorphy for the Doryctinae (inclusive of sis. The Ypsistocerini also appears as monophyletic Ypsistocerinae): the separate insertion of the two sec- but its validity is still unclear because it is supported ondary venom gland ducts into the primary duct only by inconsistent synapomorphies (character num- (character 79; RI = 1.0). This condition is present in all bers 17, 25, and 38). Moreover, these supposed syna- the doryctines for which venom apparatus has been pomorphies involve reduction in wing venation and investigated, but is not known in any other cyclostome mesosoma sculpture, which probably are related to the taxon studied to date. Unfortunately, Monitoriella termitophylic habits of at least some of the members of lacks venom glands and reservoir, as does Mesostoa this tribe, and so could easily be products of conver- (D. L. J. Quicke, unpubl. observ.), probably because gent evolution. both are primary gall formers (Infante, Hanson & All our analyses, except the one with the ONLY Wharton, 1995; Dangerfield & Austin, 1998) and pos- EXTERNAL data set, group the Holcobraconini and sibly gall formation is induced by larval secretion. Binareini together along with Monarea, the latter In the SAW analyses, Histeromeroides was recov- having previously been included in the Doryctini ered among the outgroup taxa despite the fact it pos- (Belokobylskij, 1992a). The consistent synapomor- sesses a row of spines on the outer surface of the fore phies that support this clade are found in the venom tibia and has a double nodus on the dorsal valve of the apparatus (venom reservoir tubular; character 75, ovipositor. This is probably because it is a morpholog- state 1; RI = 0.89; e.g. Fig. 9B) and ovipositor struc-

© 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 142, 369–404 392 S. A. BELOKOBYLSKIJ ET AL. ture (presence of a major type ctenidia; character 90, vein, with incurved marginal parts; character 39 state state 1; RI = 1.0); however, although most are large 1; RI = 0.81; e.g. Fig. 2J, K). tropical species, they barely resemble one another in The non-monophyly of the Spathiini and its sub- terms of external morphology. Therefore, it is not sur- tribes Spathiina and Psenobolina is probably also the prising that workers dealing only with external mor- consequence of erecting these taxa only on the basis of phology have not suspected this grouping. variable trends. The Spathiina were distinguished by None of our analyses show any of the large doryctine having setose eyes, a malar suture present and fore tribes, namely Doryctini, Hecabolini or Spathiini, to wing brachial cell closed distally (Belokobylskij, 1993), be monophyletic [tribes defined both sensu Fischer the last two of these characters probably being sym- (1981a) and sensu Belokobylskij (1992a)], and two of plesiomorphies. On the other hand, the only trait the four posterior statistical comparisons with the employed by Belokobylskij (1993) to differentiate the alternative most parsimonious hypotheses reject the Psenobolina from the Spathiina was the brachial cell monophyly of the Doryctini at the 5% level (Table 3). being open distally, a condition present in many other Fischer (1981a) defined the Doryctini as having the doryctine genera as well in the Braconidae as a whole. fifth tergite not well developed, smaller than the pre- ceding one and with the sixth and the following ones CONCLUDING REMARKS not retracted under it (character 61). However, this condition is evidently a symplesiomorphy. On the The present study represents the first attempt to other hand, the features used by Belokobylskij (1992a, investigate the evolutionary relationships among the 1993) to define the Doryctini consist only of four com- doryctine genera following a strict phylogenetic recon- mon trends and only one supposed synapomorphy, struction method. Unfortunately, we have shown that namely ‘a trend’ towards use of non-Coleoptera hosts, the currently available morphological data do not pro- and it is not surprising therefore that they were not vide strong enough signals for resolving most of the found to be monophyletic here. relationships, and hence, we are not able, at this stage, Based on the SAW trees, the genera that comprise to propose a meaningful higher classification of the the subtribe Doryctina sensu Belokobylskij (1992a) group. However, our results do indicate that character do not form a monophyletic group but they do systems others than the external morphology add comprise two separate clusters that are each more valuable phylogenetic information, and their investi- related to other doryctine genera. One of these is gation in currently unscored genera could consider- placed within a larger clade together with the ably improve the accuracy of the hypothesis obtained. Holcobraconini + Binareini (clade D), whereas the sec- Even so, it seems likely that the phylogenetic relation- ond one is closer to members of the Spathiina (clade ships among doryctine genera will be found to differ B). In Belokobylskij’s (1992a) classification, the Doryc- considerably from the current tribal and subtribal tina were distinguished from the other Doryctini sub- classification, which we suggest should be abandoned. tribes based on a single trend, i.e. the parallel vein The morphological hypothesis presented here will (CU1a) originating from the posterior third to sixth of serve as a basis for further molecular phylogenetic the brachial cell (character 31, state 2). However, this studies within the group, which will help us to under- is also present in several other genera within the stand with more certainty not only the relationships Doryctinae not included by Belokobylskij (1992a) in amongst the doryctine genera, but also the evolution the Doryctini; therefore, failure to recover this sub- of their morphological characteristics and their life- tribe is to be expected. history strategies. The various subtribes of the Hecabolini mostly appear not to be monophyletic; the Hecabolina (except ACKNOWLEDGEMENTS Monolexis Foerster) is the only one whose members were largely recovered in a single clade. The clade con- We thank the following people for allowing the exam- taining the Hecabolina also comprises several mem- ination of museum specimens: J. Casevitz-Weulersse, bers of the other Hecabolini subtribes and some K. J. Hedqvist, T. Huddleston, E. Kierich, F. Koch, P. members of the Heterospilini (including Heterospilus M. Marsh, J. P. O’Connor, J. Papp, and A. Taeger. Yves Haliday) and Spathiina, and the two members of the Braet kindly examined the type species of Dycarino- Evaniodini. However, there are no consistent synapo- ryctes and Ptesimogastroides for us. This work was morphies supporting this grouping. A close relation- supported in part by the Russian Foundation for Basic ship between the Hecabolini and Heterospilini was Research (grant nos. 01-04-49655, 04-04-48018) to previously proposed based on four trends (Belokobyl- SAB, and by a PhD scholarship from CONACyT (Con- skij, 1993), one of which supported the aforementioned sejo Nacional de Ciencia y Tecnología, Mexico) and the clade in our SAW analyses (hind wing of males with a Central Research Fund grant given by the University stigma-like structure present in distal part of costal of London to AZR.

© 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 142, 369–404 PHYLOGENY OF THE DORYCTINAE (HYMENOPTERA: BRACONIDAE) 393

REFERENCES tinae from Papua New Guinea (Hymenoptera: Braconidae). Zoosystematica Rossica 3: 141–145. van Achterberg C. 1979. A. revision of the subfamily Zelinae Belokobylskij SA. 1995a. Main evolutionary transformations auct. (Hymenoptera, Braconidae). Tidjschrift voor Entomol- of the morphological structures in the subfamilies Dorycti- ogie 122: 241–479. nae and Exothecinae (Hymenoptera, Braconidae). Entomo- van Achterberg C. 1984. Essay on the phylogeny of Bra- logicheskoe Obozrenie 74: 153–176 (in Russian). conidae (Hymenoptera: Ichneumunoidea). Entomologisk Belokobylskij SA. 1995b. Two new genera and two new sub- Tidskrift 105: 41–58. genera of the subfamilies Exothecinae and Doryctinae from van Achterberg C. 1988. Parallelisms in the Braconidae the Old World (Hymenoptera: Braconidae). Zoologische Med- (Hymenoptera) with special reference to the biology. In: edelingen 69: 37–52. Gupta VK, ed. Advances in parasitic Hymenoptera research. Belokobylskij SA. 1996. Parasitism on the Proceedings of the II conference on the and biology (Coleoptera) as important stage in the evolution of braconid of parasitic wasps Gainesville, FL: EJ Brill, 85–115. wasps (Hymenoptera, Braconidae). Part I. Entomolog- van Achterberg C. 1995. Generic revision of the subfamily icheskoe Obozrenie 75: 660–676 (in Russian). Betylobraconinae (Hymenoptera: Braconidae) and other Belokobylskij SA. 1998a. Three new genera of the Bra- groups with modified fore tarsus. Zoologische Verhandelin- conidae (Hymenoptera) from East Asia. Far Eastern Ento- gen 298: 1–242. mologist 5: 1–14. Ashmead WH. 1900. Classification of the ichneumon flies, or Belokobylskij SA. 1998b. Subfam. Doryctinae. In: Lehr PA, the superfamily . Proceedings of the United ed. Keys to the of the Russian Far East 4. Vladivostok: States National Museum 23: 1–220. Dal’nauka, 50–109 (in Russian). Barbalho S, Penteado-Dias A. 2000. Platydoryctes, a new Belokobylskij SA. 2000. Two new Oriental-Australian Doryctinae genus from Brazil (Hymenoptera: Braconidae). genera of Doryctinae (Hymenoptera: Braconidae) with Entomological News 111: 25–31. immovably fused first three metasomal tergites. Russian Barbalho S, Penteado-Dias A. 2002. A new genus and spe- Entomological Journal 9: 345–351. cies of Doryctinae (Hymenoptera. Braconidae) with fused Belokobylskij SA. 2001. New species of the genera Rhacono- first and second metasomal terga. Entomological News 113: tus Ruthe, Ipodoryctes Granger and Arhaconotus Blkb. from 179–182. the Oriental region (Hymenoptera: Braconidae: Doryctinae). Barbalho S, Penteado-Dias A, Marsh PM. 1999. Descrip- Zoosystematica Rossica 10: 101–162. tions of new genera from Brazil in the tribes Heterospilini Belokobylskij SA. 2002. Two new Oriental genera of Doryc- and Spathiini with similar wing venation (Hymenoptera: tinae (Hymenoptera, Braconidae) from termite nests. Jour- Braconidae). Journal of Hymenoptera Research 8: 139–153. nal of Natural History 36: 953–962. Basibuyuk HH, Quicke DLJ. 1997. Hamuli in the Belokobylskij SA, Quicke DLJ. 2000. Seven new genera of Hymenoptera (Insecta) and their phylogenetic implications. the subfamily Doryctinae (Hymenoptera: Braconidae) from Journal of Natural History 31: 1563–1585. the Old World. Journal of Hymenoptera Research 9: 111–141. Beardsley JW. 1961. A review of the Hawaiian Braconidae Belokobylskij S, Iqbal M, Austin A. 2004. Systematics, dis- (Hymenoptera). Proceedings of the Hawaiian Entomological tribution and diversity of the Australian doryctine wasps Society 17: 333–366. (Hymenoptera, Braconidae, Doryctinae). Records of the Belokobylskij SA. 1987. Structure of genitalia of males of South Australian Museum. Monographs series 8: 1–150. Braconidae of the subfam. Doryctinae (Hymenoptera, Bra- Belshaw R, Quicke DLJ. 2002. Robustness of ancestral state conidae), their evolution, and importance for the classifica- estimates: evolution of life history strategy in ichneumonoid tion of the group. Trudy Vsesoyuznogo Entomologicheskogo . Systematic Biology 51: 450–477. Obshchestva 69: 209–219 (in Russian). Belshaw R, Dowton M, Quicke DLJ, Austin A. 2000. Esti- Belokobylskij SA. 1992a. On the classification and phylog- mating ancestral geographic distributions: a Gondwanan eny of the Braconid wasps subfamilies Doryctinae and origin for aphid parasitoids? Proceedings of the Royal Society Exothecinae (Hymenoptera, Braconidae). I. Classification, 1. of London B 267: 491–496. Entomologicheskoe Obozrenie 71: 900–928 (in Russian); Belshaw R, Herniou E, Gimeno C, Fitton MG, Quicke Entomological Review 72: 109–137 (English translation, DLJ. 1998. Molecular phylogeny of the Ichneumonoidea 1993). (Hymenoptera) based on D2 expansion region of 28S rDNA. Belokobylskij SA. 1992b. Notes on the taxonomy of the Systematic Entomology 23: 109–123. Doryctinae with description of a genus and three new species Braet Y, van Achterberg C. 2003. Doryctorgilus gen. nov. & from the Oriental region (Hymenoptera: Braconidae). Zoo- other new taxa, with a study of the internal microsculpture systematica Rossica 1: 89–96. of the ovipositor in the subfamily Orgilinae Ashmead Belokobylskij SA. 1993. On the classification and phylogeny (Hymenoptera: Braconidae). Zoologische Mededelingen 77: of the Braconid wasps subfamilies Doryctinae and Exotheci- 127–152. nae (Hymenoptera, Braconidae). II. Phylogeny. Entomolog- Brues CT. 1923. Termitobracon, a termitophilous braconid icheskoe Obozrenie 72: 891–914 (in Russian); Entomological from British Guiana. Zoologica 3: 426–432. Review 73: 1–27 (English translation, 1993). Capek M. 1970. A new classification of the Braconidae Belokobylskij SA. 1994. A new tribe of the subfamily Doryc- (Hymenoptera) based on the cephalic structures of the final

© 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 142, 369–404 394 S. A. BELOKOBYLSKIJ ET AL.

instar and biological evidence. Canadian Entomologist genus Monitoriella (Hymenoptera: Braconidae) with descrip- 102: 846–875. tion of new species. Annals of the Entomological Society of Carpenter JM. 1994. Successive weighting, reliability and America 88: 406–415. evidence. Cladistics 10: 215–220. Kimani-Njogu SW, Wharton RA. 2002. Two new species of Chishti MJK, Quicke DLJ. 1995. A new genus and phyloge- Opiinae (Hymenoptera: Braconidae) attacking fruit infest- netic analysis of the Bathyaulacini and Glyptomorphini ing (Diptera) in western Kenya. Proceedings of (Hymenoptera: Braconidae: Braconinae). Systematic Ento- the Entomological Society of Washington 104: 79–90. mology 20: 73–84. Kistner DH, Jacobson RJ, Elliot DE. 2000. Some interest- Cushman RA. 1923. A new subfamily of the Braconidae ing Braconidae that live with termites and their behavior (Hymenoptera) from termite nests. Procceedings of the Ento- (Hymenoptera; Isoptera: Termitidae, Nasutitermitinae). mological Society of Washington 25: 54–55. Sociobiology 36: 257–264. Dangerfield PC, Austin AD. 1998. Biology of Mesostoa Kitching IJ, Forey PL, Humpries CJ, Williams DM. 1998. kerri (Insecta: Hymenoptera: Braconidae: Mesostoinae), an Cladistics. The theory and practice of parsimony analyses. endemic Australian wasp that causes stem galls of The Systematic Association publication 11. New York: marginata. Australian Journal of Botany 46: 559–569. Oxford University Press. Davis JI, Simmons MP, Stevenson DW, Wendel JF. 1998. Kluge AG, Farris JS. 1969. Quantitative phyletics and evo- Data decisiveness, data quality, and incongruence in phylo- lution of anurans. Systematic Zoology 18: 1–32. genetic analysis: an example from the monocotyledons using de Macêdo MV, Monteiro RT. 1989. Seed predation by a mitochondrial atp A sequences. Systematic Biology 47: 282– braconid wasp, Allorhogas sp. (Hymenoptera). Journal of the 310. New York Entomological Society 97: 358–362. Dowton M, Belshaw R, Austin AD, Quicke DLJ. 2002. Maddison WP, Maddison DR. 2000. Macclade, analysis of Simultaneous molecular and morphological analysis of bra- phylogeny and character evolution, v.4. Sunderland, MA: conid relationships (Insecta: Hymenoptera: Braconidae) indi- Sinauer Associates. cates independent mt-tRNA gene inversions within a single Marsh PM. 1965. The Nearctic Doryctinae, I. A review of the wasp family. Journal of Molecular Evolution 54: 210–226. subfamily with a taxonomic revision of the tribe Hecabolini. Eggleton P. 1989. The phylogeny and evolutionary biology Annals of the Entomological Society of America 58: 688–699. of the Pimplinae (Hymenoptera: ). Unpubl. Marsh P. 1970. The Nearctic Doryctinae, IX. The genus Odon- DPhil thesis. University of London. tobracon and notes on related genera. Pacific Entomologist Farris JS. 1969. A successive approximations approach to 46: 275–283. character weighting. Systematic Zoology 18: 374–385. Marsh PM. 1983. Bohartiellus, a new genus of Doryctinae Farris JS. 1989. The retention index and the rescaled consis- from South America (Hymenoptera: Braconidae). Pan-Pacific tency index. Cladistics 5: 417–419. Entomologist 59: 148–151. Farris JS, Källersjö M, Kluge AG, Bult C. 1994. Testing sig- Marsh PM. 1988. Revision of the tribe Odontobraconini in the nificance of incongruence. Cladistics 10: 315–319. Western Hemisphere (Hymenoptera: Braconidae: Dorycti- Felsenstein J. 1985. Confidence limits on phylogenies with a nae). Systematic Entomology 13: 443–464. molecular clock. Systematic Zoology 34: 152–161. Marsh PM. 1993. Descriptions of new Western Hemisphere Fischer M. 1981a. Versuch einer systematischen gliederung genera of the subfamily Doryctinae (Hymenoptera: Bra- der Doryctinae, insbesondere der Doryctini, und redeskrip- conidae). Contributions of the American Entomological Insti- tion nach material aus den Naturwissenschaftlichen tute 28: 1–58. Museum in Budapest (Hymenoptera, Braconidae). Polskie Marsh PM. 1997. Doryctinae. In: Wharton RA, Marsh PM, Pismo Entomologiczne 51: 41–99. Sharkey MJ, eds. Manual of the New World genera of the Fischer M. 1981b. Mononeuron, ein neues doryctinen-genus family Braconidae (Hymenoptera). ISH Special Publication aus Brasilien (Hymenoptera, Braconidae). Zeitschrift der 1. Washington: International Society of Hymenopterists, Arbeitsgemeinschaft Osterreichen Entomologen 33: 47–51. 207–233. Gauthier N, LaSalle J, Quicke DLJ, Godfray HCJ. 2000. Marsh PM. 2002. The Doryctinae of Costa Rica (excluding the Phylogeny of (Hymenoptera: Chalcidoidea), with genus Heterospilus). Memoirs of the American Entomological a reclassification of Eulophinae and the recognition that Institute 70: 1–319. Elasmidae are derived eulophids. Systematic Entomology 25: Penteado-Dias AM. 1999. Biological notes and larval mor- 521–539. phology of Donquickeia (Hymenoptera: Braconidae: Dorycti- Goloboff PA. 1991. Homoplasy and the choice among cla- nae). In: Austin A, Dowton M, eds. Hymenoptera: evolution, dograms. Cladistics 7: 215–232. biodiversity and biological control. Canberra: CSIRO, 296–299. Heraty JM, Woolley JB, Darling DC. 1994. Phylogenetic Prendini L. 2001. Species or supraspecific taxa as terminals implications of the mesofurca and mesopostnotum in in cladistic analysis? Groundplans versus exemplars revis- Hymenoptera. Journal of Hymenoptera Research 3: 241–277. ited. Systematic Biology 50: 290–300. Hillis DM, Bull JJ. 1993. An empirical test of bootstrapping Quicke DLJ. 1981. Hamuli number in the Braconinae as a method for assessing confidence in phylogenetic analy- (Hymenoptera: Braconidae): an inter and intraspecific, size- sis. Systematic Biology 42: 182–192. dependent, taxonomic character. Oriental Insects 15: 235– Infante I, Hanson P, Wharton RA. 1995. Phytophagy in the 240.

© 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 142, 369–404 PHYLOGENY OF THE DORYCTINAE (HYMENOPTERA: BRACONIDAE) 395

Quicke DLJ. 1996. First record of Leptorhaconotus Granger Shenefelt RD, Marsh PM. 1976. Pars 13. Braconidae 9, (Hymenoptera: Braconidae) from South Africa, with the Doryctinae. In: Vecht J Van der, Shenefelt RD, eds. description of a remarkable new species and a discussion of Hymenopterorum Catalogus (nova edito). The Hague: Dr W. the subfamilial placement of the genus. African Entomology Junk, 1263–1424. 4: 111–116. Swofford DL. 1988. PAUP*: phylogenetic analysis using Quicke DLJ. 1997. Parasitic wasps. London: Chapman & parsimony (*and other methods), v.4.0b10. Sunderland, MA: Hall. Sinauer Associates. Quicke DLJ, van Achterberg C. 1990. Phylogeny of the sub- Templeton AR. 1983. Phylogenetic inference from restriction families of the family Braconidae (Hymenoptera). Zoolo- endonuclease cleavage site maps with particular reference to gische Verhandelingen 258: 1–95. the evolution of humans and the apes. Evolution 37: 221– Quicke DLJ, Belshaw R. 1999. Incongruence between 244. morphological data sets: an example from the evolution of Tobias VI. 1961. A new genus of Doryctini (Hymenoptera, endoparasitism among parasitic wasps (Hymenoptera: Bra- Braconidae) and its taxonomic importance. Zoologicheskii conidae). Systematic Biology 48: 436–454. Zhurnal 40: 529–535 (In Russian). Quicke DLJ, Kruft RA. 1995. Species of Yelicones Tobias VI. 1967. Essay on the classification, phylogeny and (Hymenoptera: Braconidae: Rogadinae) in North America evolution of the family Braconidae (Hymenoptera). Entomo- with descriptions of two new species. Annals of the Entomo- logicheskoe Obozrenie 46: 645–669 (in Russian). logical Society of America 88: 129–138. Tobias VI. 1976. Braconidae (Hymenoptera) of Caucasus. Len- Quicke DLJ, Marsh PM. 1992. Two new Neotropical species ingrad: Nauka (in Russian). of braconid wasps (Hymenoptera: Braconidae: Braconinae Vilhelmsen L. 2001. Phylogeny and classification of the and Doryctinae) with remarkable ovipositors. Proceedings of extant basal lineages of the Hymenoptera (Insecta). Zoolog- the Entomological Society of Washington 94: 559–567. ical Journal of the Linnean Society 131: 393–442. Quicke DLJ, Ficken L, Fitton MG. 1992a. New diagnostic Vilhelmsen L. 2003. Phylogeny and classification of the ovipositor characters for doryctine wasps (Hymenoptera, (Insecta: Hymenoptera), a basal parasitic wasp Braconidae). Journal of Natural History 26: 1035–1046. taxon. Zoological Journal of the Linnean Society 139: 337– Quicke DLJ, Fitton MG, Harris J. 1995. Ovipositor steering 418. mechanisms in braconid wasps. Journal of Hymenoptera Wharton RA. 1993. Review of the Hormiini (Hymenoptera: Research 4: 110–120. Braconidae) with a description of new taxa. Journal of Nat- Quicke DLJ, Ingram SN, Fitton MG. 1992b. Phylogenetic ural History 27: 107–171. implications of the structure and distribution of valvilli in Whitfield JB. 1992. The polyphyletic origin of endoparasitism the Hymenoptera. Journal of Natural History 26: 587–608. in the cyclostome lineages of Braconidae (Hymenoptera). Quicke DLJ, Taylor J, Purvis A. 2001. Changing the land- Systematic Entomology 17: 273–286. scape: a new strategy for estimating large phylogenies. Sys- Whitfield JB, Wharton RA. 1997. Hormiinae. In: Wharton tematic Biology 50: 60–66. RA, Marsh PM, Sharkey MJ, eds. Manual of the New World Quicke DLJ, Tunstead J, Falco JV, Marsh PM. 1992c. genera of the family Braconidae (Hymenoptera). ISH Venom gland apparatus in cyclostome braconid wasps Special Publication 1. Washington: International Society of with special reference to the subfamily Doryctinae (Insecta, Hymenopterists, 287–301. Hymenoptera, Braconidae). Zoologica Scripta 21: 403–416. Wiens JJ. 1995. Polymorphic characters in phylogenetic sys- Rahman H, Fitton MG, Quicke DLJ. 1998a. Ovipositor tematics. Systematic Biology 44: 482–500. internal microsculpture in the Braconidae (Insecta, Wiens JJ. 1998. Does adding characters with missing data Hymenoptera). Zoologica Scripta 27: 319–331. increase or decrease phylogenetic accuracy? Systematic Biol- Rahman H, Fitton MG, Quicke DLJ. 1998b. Ovipositor ogy 47: 625–640. internal microsculpture and other features in doryctine Wiens JJ. 2003. Missing data, incomplete taxa, and phyloge- wasps (Insecta, Hymenoptera, Braconidae). Zoologica netic accuracy. Systematic Biology 52: 528–538. Scripta 27: 333–343. Wiens JJ, Reeder TW. 1995. Combining data sets with dif- Ramírez WB, Marsh PM. 1996. A review of the genus Pse- ferent numbers of taxa for phylogenetic analysis. Systematic nobolus (Hymenoptera: Braconidae) from Costa Rica, an Biology 44: 548–558. inquiline fig wasp with brachypterous males, with descrip- Wilkinson M. 1995. Coping with abundant missing entries in tion of two new species. Journal of Hymenoptera Research 5: phylogenetic inference using parsimony. Systematic Biology 64–72. 44: 501–514. Sharkey MJ, Wharton RA. 1997. Morphology and terminol- Yeates DK. 1995. Groundplans and exemplars: paths to the ogy. In: Wharton RA, Marsh PM, Sharkey MJ, eds. Manual tree of life. Cladistics 11: 343–357. of the New World genera of the family Braconidae Zaldivar-Riverón A, Areekul B, Shaw MR, Quicke DLJ. (Hymenoptera). ISH Special Publication 1. Washington: 2004. Comparative morphology of the venom apparatus International Society of Hymenopterists, 19–37. in the braconid wasp subfamily Rogadinae (Insecta, Shaw SR, Edgerly JS. 1985. A new braconid genus Hymenoptera, Braconidae) and related taxa. Zoologica (Hymenoptera) parasitising webspinners (Embiidina) in Scripta 33: 223–237. Trinidad. Psyche 92: 505–511.

© 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 142, 369–404 396 S. A. BELOKOBYLSKIJ ET AL.

APPENDIX 1 Callihormius Ashmead, 1900 (BSN; FN)†‡ Canchim Barbalho & Penteado-Dias, 1999 List of valid doryctine genera and their synonyms. Cecidospathius Kieffer & Jorgensen, 1910* Generic composition of tribes and subtribes based on Celereon Say, 1836* Belokobylskij’s (1992a) classification and subsequent Ceylonspathius Belokobylskij, 2002 (BS) studies made by the same author. Does not include 12 Chelonodoryctes Belokobylskij & Quicke, 2000 genera recently described from Australia by Beloko- Coiba Marsh, 1993†‡ bylskij et al. (2004). Binaerini: Binareina (BB), Acan- Cryptodoryctes Belokobylskij & Quicke, 2000 (BDO) thodoryctina (BA); Doryctini: Caenophanina (BC), Curtisella Spinola, 1853 (BSN)†‡ Dendrosotina (BDE), Doryctina (BDO), Rhaconotina =Neorhyssa Szépligeti, 1902 (BR); Ecphylini (BE); Evaniodini (BEV); Hecabolini: =Lissophrymnus Cameron, 1911 Hecabolina (BHEC), Pambolideina (BP), Percnobra- Curtiselloides Marsh, 2002* conoidina (BPE), Stenocorsina (BSN); Heterospilini Cyphodoryctes Marsh, 1997 (BHE); Holcobraconini: Holcobraconina (BH), Ivon- =Cyrtonion Marsh, 1993†‡ drovina (BI), Odontobraconina (BO); Labanini (BL); Dapsilitas Braet, Barbalho & van Achterberg, 2003* Leptorhaconotini (BLE); Sericobraconini (BSE); Sira- Dendrosoter Wesmael, 1838 (BDE; FD)†‡ grini (BSIR); Spathiini: Psenobolina (BPS), Ptesimo- =Eurybolus Ratzeburg, 1848 gastrina (BPT), Sisupalina (BSI), Spathiina (BS), =Caenopachys Foerster, 1862 Spathioplitina (BSA), Spathiostenina (BSO), Trigo- Dendrosotinus Telenga, 1941 (BC)†‡ nophasmina (BT); Stephaniscini (BST); Percnobraco- =Gildoria Hedqvist, 1974 nini (BPN). Generic composition of tribes and Dicarinoryctes Braet & van Achterberg, 2001 subtribes based on Fischer’s (1981a) classification. Donquickeia Marsh, 1997 Doryctini: Binareina (FB), Dendrosotina (FD), Doryc- =Quickia Marsh, 1993 tina (FDO), Heterospilina (FHE), Neoclinocentrina Doryctes Haliday, 1836 (BDO; FDO)†‡ (FN), Pedinotina (FP), Stenocorsina (FST); Ecphylini =Ischiogonus Wesmael, 1838 (FE); Evaniodini (FEV); Hecabolini (FH); Odontobra- =Udamolcus Enderlein, 1920 conini (FO); Rhaconotini (FR); Spathiini (FS). =Pristodoryctes Kieffer, 1921 =Plyctes Fischer, 1980 Acanthodoryctes Turner, 1918 (BA)†‡ Doryctophasmus Enderlein, 1912 (BS)†‡ Acanthorhogas Szépligeti, 1906 (BDO; FB) Ecphylopsis Ashmead, 1900 (BHE) Achterbergia Marsh, 1993 Ecphylus Foerster, 1862 (BE; FE)†‡ Acrophasmus Enderlein, 1912 (BSN; FP)†‡ =Terenusa Marshall, 1885 =Concurtisella Roman, 1924 =Paraecphylus Ashmead, 1900 Afrospathius Belokobylskij & Quicke, 2000 (BPS)†‡ =Sactopus Ashmead, 1900 Aivalykus Nixon, 1938 (BE)†‡ =Sycosoter Picard & Lichtenstein, 1917 =Ecphyloides Marsh, 1993 Embobracon Achterberg, 1995 Allorhogas Gahan, 1912 (BSN; FST)†‡ Esterella Pagliano & Scaramozzino, 1990 (BC)* =Catolestes Bréthes, 1922 =Prolatus Sharma & Gupta, 1985 Amazondoryctes Barbalho & Penteado-Dias, 1999 Euscelinus Westwood, 1882 (BC)†‡ Angelica Marsh, 2002* =Sbeitla Wilkinson, 1934 Antidoryctes Belokobylskij & Quicke, 2000 (BB) Evaniodes Szépligeti, 1901 (BEV; FEV)†‡ Aphelopsia Marsh, 1993 Fijibracon Belokobylskij, 1995 (BPN) Aptenobracon Marsh, 1965 (BR) Fritziella Marsh, 1993†‡ Araucania Marsh, 1993 Glyptocolastes Ashmead, 1900 (BSN; FDO)†‡ Arhaconotus Belokobylskij, 2000 (BR) =Glyptodoryctes Ashmead, 1900 Asiaheterospilus Belokobylskij & Konishi, 2001 (BHE) =Doryctinus Roman, 1910 Barbalhoa Marsh, 2002* Guaygata Marsh, 1993 Bathycentor Saussure, 1892 (BDO) Gymnobracon Szépligeti, 1902 (BDO; FP)†‡ Binarea Brullé, 1846 (BB; FB)† =Rutheia Szépligeti, 1908 Bohartiellus Marsh, 1983 =Ipospathius Enderlein, 1920 Bracodoryctes Belokobylskij & Quicke, 2000 (BDO) Halycaea Cameron, 1903 †‡ (BDO) Bulbonervus Shenefelt, 1969 (BDO; FDO) =Cendebeus Cameron, 1905 Caenophanes Foerster, 1862 (BC)† Hansonorum Marsh, 2002* =Synodus Ratzeburg, 1848 Hecabalodes Wilkinson, 1929 (BHEC)†‡ =Eurybolus Thomson, 1892 Hecabolus Curtis, 1834 (BHEC; FH)†‡ Caingangia Marsh, 1993 =Anisopelma Wesmael, 1838

© 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 142, 369–404 PHYLOGENY OF THE DORYCTINAE (HYMENOPTERA: BRACONIDAE) 397

Heerz Marsh, 1993 Monarea Szépligeti, 1904 (BDO)†‡ Hemidoryctes Belokobylskij, 1993 (BSN)†‡ Monolexis Foerster, 1862 (BHEC)†‡ =Atopodoryctes Marsh, 1993 Mononeuron Fischer, 1981 (BSN) Hemispathius Belokobylskij & Quicke, 2000 Neodoryctes Szépligeti, 1914 (BDO)†‡ Heredius Marsh, 2002* Neostaphius Braet, Barbalho & van Achterberg, 2003* Heterospathius Barbalho & Penteado-Dias, 1999 Nervellius Roman, 1924 (BH)†‡ Heterospilus Haliday, 1836 (BHE; FHE)†‡ Neurocrassus Snoflak, 1945 (BDO)†‡ =Telebolus Marshall, 1888 Nipponecphylus Belokobylskij & Konishi, 2001 =Kareba Cameron, 1905 Notiospathius Matthews & Marsh, 1973 (BPS)†‡ =Anocatostigma Enderlein, 1920 Odontobracon Cameron, 1887 (BO; FO)†‡ =Harpagolaccus Enderlein, 1920 Odontodoryctes Granger, 1949 (BDO) Histeromeroides Marsh, 1993 Ondigus Braet, Barbalho & van Achterberg, 2003* Holcobracon Cameron, 1905 (BH)† Ontsira Cameron, 1900 (BDO; FDO)†‡ Hormiopius Blanchard, 1962* =Wachsmannia Szépligeti, 1900 Hybodoryctes Szépligeti, 1906 (BDO; FP) =Doryctodes Hellen, 1927 Hypodoryctes Kokujev, 1900 (BDO; FDO)†‡ Osmophila Szépligeti, 1902 (BDO)†‡ =Mixtec Marsh, 1993 Pambolidea Ashmead, 1900 (BP)†‡ Iare Barbalho & Penteado-Dias, 2002 Pannuceus Marsh, 2002* Ipodoryctes Granger, 1949 (BR; FD)†‡ Paradoryctes Granger, 1949 (BDO) =Epirhacon Belokobylskij, 1990 Parallorhogas Marsh, 1993†‡ Ivondrovia Shenefelt & Marsh, 1976 (BI)†‡ Parana Nixon, 1943 (BS) =Lophogaster Granger, 1949 Paraspathius Nixon, 1943 (BS)†‡ Janzenia Marsh, 1993 Pareucorystes Tobias, 1961 (BHEC)†‡ Jarra Marsh & Austin, 1994† Pariodes Fischer, 1981 (BEV; FEV) Jataiella Barbalho & Penteado-Dias, 1999 Pedinotus Szépligeti, 1902 (BDO; FP)† Johnsonius Marsh, 1993 =Goniogmus Enderlein, 1920 Labania Hedqvist, 1963 (BL) Percnobracon Kieffer, 1910 (BPN)†‡ Lamquetia Braet, Barbalho & van Achterberg, 2003 * Percnobraconoides Marsh, 1989 (BPE)†‡ Leluthia Cameron, 1887 (BHEC)†‡ Pioscelus Muesebeck & Walkley, 1951 (BHE; FHE)†‡ =Doryctosoma Picard, 1938 Platydoryctes Barbalho & Penteado-Dias, 2000 =Russellia Muesebeck, 1950 Platyspathius Viereck, 1911 (BS)†‡ =Russellella Muesebeck & Walkley, 1951 =Spathiohormius Enderlein, 1912 =Euhecabolodes Tobias, 1962 Polystenoides Muesebeck, 1950 (BSN) =Panama Marsh, 1993 syn. nov. Polystenus Foerster, 1862 (BHEC)†‡ Leptodoryctes Barbalho & Penteado-Dias, 1999 (BE) =Corystes Reinhard, 1865 Leptorhaconotus Granger, 1949 (BLE; FN)†‡ =Eucorystes Marshall, 1888 Leptospathius Szépligeti, 1902 (BST)†‡ =Eucorystoides Ashmead, 1900 =Habnoba Cameron, 1905 Priosphys Enderlein, 1920 (BDO; FB) =Rhoptrospathius Cameron, 1910 Psenobolus Reinhard, 1885 (BPS)†‡ Liobracon Szépligeti, 1901 (BB; FB)†‡ Pseudodoryctes Szépligeti, 1915 (BDO; FP)†‡ =Parabinarea Brues, 1912 Pseudorhoptrocentrus Granger, 1949 (BSN; FN)†‡ =Hyboderia Enderlein, 1920 =Rhoptrocentroides Marsh, 1993 =Triderodon Enderlein, 1920 Ptesimogaster Marsh, 1965 (BPT; FB)†‡ Liodoryctes Szépligeti, 1906 (BO)†‡ Ptesimogastroides Braet & van Achterberg, 2001 =Neotrimoriodes Strand, 1911 =Sharkeyelloides Marsh, 2002 Lissodoryctes Marsh, 2002* Rhaconotus Ruthe, 1854 (BR; FR)†‡ Lissopsius Marsh, 2002* =Hedysomus Foerster, 1862 Masonius Marsh, 1993†‡ =Hormiopterus Giraud, 1869 Megaloproctus Schulz, 1906 (BDO; FDO)†‡ =Rhadinogaster Szépligeti, 1908 =Megaproctus Brullé, 1846 =Euryphrymnus Cameron, 1910 =Megistoproctus Schulz, 1911 =Rhaconotinus Hedqvist, 1965 =Ectetamenochir Enderlein, 1912 Rhacontsira Belokobylskij, 1998 (BDO) =Prosthiacantha Enderlein, 1912 Rhoptrocentrus Marshall, 1897 (BDO; FD)†‡ Micrommatus Marsh, 1993 Rimacollus Marsh, 2002* Mimipodoryctes Belokobylskij, 2000 (BR) Schlettereriella Szépligeti, 1904 (BST)†‡ Mimodoryctes Belokobylskij, 2001 =Stephaniscus Kieffer, 1904

© 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 142, 369–404 398 S. A. BELOKOBYLSKIJ ET AL.

=Biphymaphorus Szépligeti, 1911 Synspilus Belokobylskij & Quicke, 2000 (BHE) =Ogmophasmus Enderlein, 1912 Tarasco Marsh, 1993†‡ =Rhopalospathius Cameron, 1912 Terate Nixon, 1943 (BHEC) Semirhytus Szépligeti, 1902 (BSN; FP)†‡ Termitobracon Brues, 1923†‡ =Neoclinocentrus Szépligeti, 1906 Termitospathius Belokobylskij, 2002 (BS) =Liparophleps Enderlein, 1920 Toka Nixon, 1943 (BS)† Sericobracon Shaw, 1985 (BSE) Trigonophasmus Enderlein, 1912 (BT)†‡ Sharkeyella Marsh, 1993†‡ Tripteria Enderlein, 1912 (BSN)†‡ Shawius Marsh, 1993†‡ Tripteroides Marsh, 2002* Siragra Cameron, 1907 (BSIR) †‡ Vanderentiellus Marsh, 2002* Sisupala Nixon, 1943 (BSI) Verae Marsh, 1993†‡ Sonanus Belokobylskij & Konishi, 2001 (BDO) Waitaca Marsh, 1993 Spathiomorpha Tobias, 1976 (BS)†‡ Whartonius Marsh, 1993†‡ Spathioplites Fischer, 1962 (BSA) Whitfieldiellus Marsh, 1997 Spathiospilus Marsh, 1999 =Whitfieldia Marsh, 1993 Spathiostenus Belokobylskij, 1992 (BSO) Ypsistocerus Cushman, 1923 Spathius Nees, 1818 (BS; FS)†‡ Zombrus Marshall, 1897 (BO)†‡ =Stenophasmus Smith, 1859 =Trimorus Kriechbaumer, 1894 =Euspathius Foerster, 1862 =Neotrimorus Dalla Torre, 1898 =Rhacospathius Cameron, 1905 =Acanthobracon Szépligeti, 1902 =Pseudospathius Szépligeti, 1902 =Trichiobracon Cameron, 1905 Stenocorse Marsh, 1968 (BSN; FST)†‡ =Trichodoryctes Szépligeti, 1906 Stephanospathius Belokobylskij, 1992 (BST)†‡ Subcurtisella Roman, 1924 (BPS) *Genera not included in the present study; †genera Syngaster Brullé, 1846 (BDO; FB)†‡ included in the >70% DATA partition; ‡genera included in =Epitonychus Szépligeti, 1902 the REPRODUCTIVE + LARVAL data partition.

© 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 142, 369–404 PHYLOGENY OF THE DORYCTINAE (HYMENOPTERA: BRACONIDAE) 399 1 3). See Methods for character descriptions. 1 3). = 1 2; c 1 2; = 0 1; b 0 1; = APPENDIX 2 00?0000000 010010000000?0000000 ?01000?010 00000000000100100100 000001?00? ?0100??010 001?00000100?0000000 1011000000 00010000?? 00101??000 001?00000000?0000000 0110100001 0011001000 100101?10? ?0a0011010 001?00100000?0101100 0101101011 01100??100 ?011000000 ?10100001a ?010a12010 00a000000000?0000000 010?11?010 0????????? 01000??01? 001100100a ?101000011 ?a001??0a0 000100000000?0000000 1211011111 ??10?00010 0????????? 01110??001 1011001012 100101?10? ?00000?010 0000000000110000001a 013100000? 12?1?????? ?????????? 00010000?1 0110100000 ?011000000 ?10100000? ?0100??1?0 010010000000?0000000 ?????????? ?????????? 0011?0a010 0001011010 01000??0a0 a01a001000 ?1010000?? ?01000?010 000001000000?00000?1 ?????????? 1211011000 1011?0?010 00120112?0 01100??000 0010000000 000000000? ?0100??010 000100000000?0000010 000000001? 1?1?011000 1011?00010 000??????? 010010010a 1011000000 ?1010000?? ?01??????? 000000000000?0100000 00000000?? 1211210000 ??10?00010 0????????? 010011?000 101100100a ?????????? ?00000?010 000a0000000100000000 001000000? 1211011000 ?????????? 000??????? 01000??0a0 ??11001010 0001000011 ?00100?000 001?00000000?0000001 001000000? ?????????? ?????????? 0????????? 01100??000 1011001000 100100000? ?00100?1?0 000000000000?1000010 ?????????? ?????????? ?????????? 1????????? 01000??000 0011001000 ?1011000?? ?0000??010 010010000000?01011?0 ?????????? ?????????? ??10?01010 00010010?1 111111?000 0010001000 00000000?? ?1a0012010 001000000000?0000000 ?????????? 1??1?????? 00???????? 10000012?1 01100??100 0011001000 000110000? ?0101??010 01000aa01a00?0000000 ?????????? ?????????? 01???????? 0????????? 011111?000 1011000000 100101?10? 001000?0a0 000000000000?0000000 ?????????? ?????????? ?????????? 0????????? 0100a00a01 ?011000000 000000000? ?0000??1?0 000100000010?0000000 ?????????? ?????????? ?????????? 01011?10?0 01000??01? 0011001000 201100000? ?0a000?1?0 001?00000000?000000a ?????????? ?????????? 010?11?010 00120101?0 0110100001 1011000000 100100000? ?0101??010 000101000000?0000000 ?????????? 1211001101 11???????? 0001010011 01100??000 a011001000 ?101000011 ?0a000?010 00a0000?0000?000110a 00c000002? ?????????? 01???????? 000??????? 01000??01? 0011001000 ?10100001a ?0001??1?0 000000001000?0000000 ?????????? ?????????? ?????????? 000??????? 011010a100 101100100a 010?00000? ?1a??????? 001?00000000?0000000 ?????????? ?????????? ?????????? 000??????? 0111a1?000 1111001000 ?????????? ?01000?000 001?00000000?0a00000 ?????????? ??1?010000 ?????????? 000??????? 00?00??0?? ??10101012 10010000?? ?0001??010 01000a000000?0000000 00100000?? ?????????? ??10?00010 000??????? 00?00??00? 00110010a0 ?101000011 ?01000?010 001?01000000?0000000 ?????????? 1211011000 ?????????? 0????????? 01000??000 1011001000 000100000? ?010011010 000000000000?01a0001 0000000001 ?????????? ?????????? 0????????? 01100??000 0011000000 ?1000000?? ?01000?010 10aa00000000?0a0000a ?????????? ?????????? ?????????? 00000000?1 0100100001 0011001000 000100000? ?0a000?aa0 000100000000?0100000 ?????????? ?????????? 0011?0?010 0001011010 01100??000 0011001001 a000000010 ?01000?000 000001000000?0100000 ?????????? 1????1???0 01???????? 0????????? 01000??001 0011000000 100100000? ?0001??010 000100000000?000000a ?????000?? ?????????? ??10?00010 00010000?1 01000??01? 0011000000 10?1?0000? ?00000?000 000a01000000?001000a ?????????? 1211111000 00???????? 0012001110 01000??0a0 1011100000 ?1010000?? ?0a000?010 000101000000?0102100 000010000? ??1?011000 0a11?11010 00000000?1 00??11?000 0011001000 000a00000? ?01000?0a0 000000a00?00?01011?0 00000000?? 1211000000 aa11?0011a 00???????? 01000??001 1011001000 1000000010 ?0000??10? 00a000000000?0001000 0120000001 1?1?010000 ?????????? 0????????? 01a0a0000a 0011010011 ?10?01?0?? ?0a01??010 0000001000 001011???? ?????????? ?????????? 0001001010 01000??000 0?1?00?000 100101?10? ?01100?010 ?????????? ??1?010100 0110?0001a 00010010?1 00?00??01? ?a11000000 010101?0?? 00000000?? 1211001100 1011?00110 0????????? 00?00??0a0 110?000011 0000011000 1211010000 ?????????? 0012010110 00?00??01? 001000000? ?????1???? 1110?00010 0????????? ?????????? 1211210000 ?????????? 0010000001 ?????1???? ?????????? erminal taxa 10 20 30 40 50 60 70 80 90 100 Morphological character states for the taxa analysed (polymorphic added as: a T Acanthodoryctes Acanthorhogas Achterbergia Acrophasmus Afrospathius Aivalykus Allorhogas Amazondoryctes Antidoryctes Aphelopsia Aptenobracon Araucania Arhaconotus Asiaheterospilus Bathycentor Binarea Bohartiellus Bracodoryctes Bulbonervus Caenophanes Caingangia Callihormius Canchim Ceylonspathius Chelonodoryctes Coiba Cryptodoryctes Curtisella Cyphodoryctes Dendrosoter Dendrosotinus Dicarynoryctes Donquickeia Doryctes Doryctophasmus Ecphylopsis Ecphylus Embobracon

© 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 142, 369–404 400 S. A. BELOKOBYLSKIJ ET AL. Continued APPENDIX 2 00?0010000 001?00000000?0000000 ?0a000?000 000000000100?01001?0 100100000? 100001a010 000000000100?0100000 0011010000 00010000?? 00001??1?1 00a000000000?0000000 01000??01? 1011001012 110?01?1?? ?0101??0a0 001?00000000?0000000 0000001011 01100??0a0 ?110000011 ?10100010? ?010012010 000100000000?010000a 1010?00110 0????????? 00?00??01? ?01100001a ?10100001a ?00000?0a0 000000000000?000000a 1211000000 ??10?00010 0????????? 01000??01? 1011001000 20010000?? ?a10010010 00000a000000?0000000 000000002? 0211011000 ?????????? 0??11000?1 0110100101 a010001000 000000000? ?0100110a0 000101000000?0000000 000000000? ?????????? 11???????? 00a1000211 01000??01? 0010000000 0?0a00000? ?0101??0a0 000000000000?0000000 ?????????? ??1?011000 00???????? 0????????? 011010110a 00a1001000 ?101000011 ?0101??010 000000000000?0a00000 00000000?? ??1?011100 ??11?01010 01010001?0 0100101000 1011001000 ?10a000011 ?0001??010 000100000000?0000000 00000000?1 1??1?1???? 0110?01010 0a0??????? 0110a0000a 101a001000 010?00000? ?01000?010 000001000000?0000000 ?????????? 1211001100 ??11?00110 00000010?1 01100??000 1011001000 2000000010 ?01000?010 001?00000000?0a00000 001000002? 1211010000 1a11?00010 0000000011 0??00??000 0011000000 20010000?? ?01000?1?1 00aa0a000010?0000000 001000000? 1211011000 1110?00010 000??????? 01000??00a 00110000a2 ?1010a00?? ?0a000?1?0 000000000000?0000010 00b000000? 121?011000 ?????????? 0????????? 0110100000 0010000012 ?101000011 ?1000??010 000001000000?0?00000 0000100011 ?????????? ??11?01010 0????????? 01000??01? aa1100100a ?1010000?? ?01000?010 000000000000?000000a ?????????? 121?210000 ?????????? 0????????? 011a0??a00 1010000000 000000100? ?1a00??011 000000000000?000???0 00000000?? ?????????? ?????????? 0000001a11 00?00??01? 1011000000 00000000?? ?00000?010 0001?0000000?000000a ?????????? ?????????? 1010?01010 0????????? 0110100001 0011001000 000100000? ?00000?010 00aa00000000?0100000 ?????????? 1b11011000 ?????????? 00011?12?0 0110100101 1010001000 110?00000? ?0a000?0a0 0100000000 0000000020 ?????????? 110?11?010 0????????? 0110a01000 1011001000 200100000? ?100010010 ?????????? ?2?1?????? ?????????? 0a01001010 1??00??000 a011001000 00010010?? ????????0? ?2?1?????? 0011?01110 0????????? 011aa1?a00 1010000000 ????????2? 1211010000 ?????????? 100??????? 0110100a01 001000000? ?????????? ??10?00010 0????????? ?????????? 1?1?010000 ??0?11?010 00100000?? 1211010000 000000000? 00?0000000 0001010000 ?01000?000 ?1010000?? 001100000b 0111a00000 0????????? ?????????? ?????????? ?????????? 110000000a 000a000000 ?00000?010 000100000? a01a001000 011a0??000 00000000?1 0111?01010 1211011000 00200000?? 00?0000000 0000000?00 ?000012100 010?00001? 1011001000 0??00??0?? 000??????? ?????????? ?????????? ?????????? 00?00000?0 001?00000000?0001100 ?a000??010 000000000000?0000000 ?1010000?? ?0110??1?0 00aa01000000?0000000 0010001000 ?1010001?? ?010a0?010 0000000?0000?0000000 01100??00a ?111000000 ?10000001a ?0001??1?0 000100000000?0100000 0????????? 01100??01? 1011001000 110?01?10? ?01000?000 000001000100?100001a ?????????? 0????????? 0110a0000a 1111000000 100100000? 001001?010 010010000000?0000011 ?????????? ?????????? 00a1000ba1 0??00??0?? 000?000011 000110000? ?aa000?010 010001100000?0100000 ?????????? ?????????? 0011?00010 000??????? 011a110000 1011000011 000010000? ?01000?010 001?00000000?0a00000 ?????????? 0211011000 ?????????? 00?10?0011 010011?000 1011000000 0000a0100? ?0101??010 000001000a00?0100000 000000000? ?????????? 010?000010 00011?aa?0 0100100a0a 1011000100 ?10100010? 01a000?010 00a0000000a0?000000a ?????????? 001001???? 1110?01010 01011?1b?0 0110100001 ?111001011 000a00000? ?0101??010 001?00000000?0000010 ?????????? 1211210000 0110?10010 000??????? 01000??000 1011000000 110101?1?? ?00000?000 001?00a000 ?12020010? 1211011001 ??0?11?010 00010?01?1 01000??10a ?11000001a 200100000? ?0101??010 0030000020 1211011111 1110?00010 00010010?0 00?00??01? 0010001000 20010000?? 003100000? 1?1?0?1000 1111?01010 0????????? 1111a1?000 1011001000 00100000?? 1211010000 ?????????? 10000012?1 01100??001 111000000? ??1?011000 01???????? 0????????? 00000000?? ?????????? ?????????? ?????????? ?????????? ?????????? ijibracon ritziella erminal taxa 10 20 30 40 50 60 70 80 90 100 anzenia arra ataiella ohnsonius Euscelinus Evaniodes F F Glyptocolastes Guaygata Gymnobracon Halycaea Hecabalodes Hecabolus Heerz Hemidoryctes Hemispathius Heterospathius Heterospilus Histeromeroides Holcobracon Hybodoryctes Hypodoryctes Iare Ipodoryctes Ivondrovia J J J J T Labania Leluthia Leptodoryctes Leptorhaconotus Leptospathius Liobracon Liodoryctes Masonius Megaloproctus Micrommatus Mimipodoryctes Mimodoryctes

© 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 142, 369–404 PHYLOGENY OF THE DORYCTINAE (HYMENOPTERA: BRACONIDAE) 401 00?00000a0 000001000000?0100000 ?110010010 001?00000000?0000??0 000001?00? ?0a01??000 00a000000?00?0000000 1011000000 ?10100000? ?0000??010 000000000000?0000011 010010000a 1011001000 ?10?01?a0? ?00000?010 000001000000?0000000 00001?1200 01100??a01 111?000000 000100000? ?01000?010 000a00000000?01053?0 010?11?010 000100011a 01100??01? 0011001000 000110100? ?00000?0a0 000000000000?0000000 1211001001 0110?00010 0????????? 01a01000a1 1011000000 001100000? ?0101??1?0 001?00000000?0a0001a 0031?0002? 1211011100 ?????????? 01010001?1 0110a00001 1011001000 1?0101?10? ?0100a101a 000001000000?00000?0 0010000011 ?????????? 01???????? 00001?12?0 01a00??a00 ?11a00000a ?10100000? ?01000?010 001?01000000?0000000 ?????????? ??1?0011?0 000?11?010 00010000?1 00?00??01? 0010000011 000000100? ?0100??010 000000000000?0000000 00000110?? 1211011111 0011?01110 000??????? 01000??0a0 1011000100 000?0000?? ?00000?010 000000000000?0a0000a 0031?0002? 1?1?010000 ?????????? 00010000?1 0110100001 0011000100 000100000? ?0a0010010 001?00000000?0000000 00000000?? ?????????? 1110?00010 000??????? 011011?100 101a00100a 000a00000? ?0111??010 00a001000000?0000000 ?????????? 1211011000 ??0?11?010 0????????? 0aa00??aa0 0011001000 ?10100000? ?0100??010 00a000000000?010???0 000000000? 1211011101 ?????????? 000a0012a1 011010a100 11110000a0 000100000? ?a0000?010 0001000000a100000001 0031000020 ?????????? 0111?01010 00011?01?1 01000??0a0 1011000100 ?10100000? ?0100??001 001?00000000?0a00000 ?????????? 12110101?0 0111?10010 0????????? 01101a0101 a01a001000 100?01?0?? ?0a000?000 0001010000??????0000 000000002? 1211211000 ??10?00010 0????????? 01a00??a00 0011000012 20010000a0 ?010a0?0a0 000000000100?0000000 00000000?? 1????11000 ?????????? 00010000?1 01100??01? 001a000012 ?101000011 11100??010 00000a000010?0100100 00100000?? ?????????? 1011?0?010 0????????? 01a00??01? a011000000 ?a01000011 ?0a0011010 001?00000a00?0000001 ?????????? 1?1?001000 ?????????? 0????????? 01100??100 1a11001012 000a0000?? 0a001??011 001?00100000?0100000 00100000?? ?????????? ??11?01110 0001000011 01100??000 0011001000 ?1010a010? ?0101??010 00010000000000100000 ?????????? 1211010000 1010?00010 0????????? 0110100101 ?11100001b ?101000011 ?0100a0100 001?00100000?0a0000a 011000000? 1211011000 ?????????? 0????????? 01100??01? 101100000a ?10100000? ?000a0?010 000100000000?010000a 001010000? ?????????? ?????????? 0????????? 01100??0a1 0011000000 110?01?000 ?0a000?000 000001000000?0000000 ?????????? ?211211000 ??11?01010 0????????? 0110100?01 001100000? 100100000? ?01000?010 001?01000000?01000?0 000000000? 1?1?011100 ??10?01010 0????????? 0??00???0? 001a001011 ?101000011 ?0101??010 000001000000?0100000 00100000?? 1?1?011100 ??0?01?010 000??????? 01100??000 0011001000 ?10100000? ?010011010 0000a001000110000001 00000000?? 1?1?010000 ?????????? 00000010?1 011010000a 1a11000000 000?0000?? ?a1000?010 000000000111000000?1 00100000?? ?????????? 0010?01110 0????????? 0110100001 0011000100 ?10100000? 0aa001a010 000000000000?0000000 ?????????? 1211010000 ?????????? 0011000010 01100??000 0011000012 000100000? ?00000?010 001?00000000?0100010 001000000? ?????????? 1110?00010 0????????? 01000??0a0 0011000000 ?1010000?? ?0100??000 001001001000?0a0000a ?????????? 1211011000 ?????????? 00010001?1 0110100101 0010000000 ?10000000? ?0100?10?0 00aa00000000?010000a 000000000? ?????????? 0010?00010 00011?00?1 01000??000 001100a001 ?1?1?1100? ?0a00a1000 00a100000000?0000000 ?????????? 1211010000 1111?00011 0????????? 011011?000 0011100010 10010a000? ?00100?010 001?000000a0?0100000 000001000? 1211001000 ??11?01010 000??????? 00??0??000 a011001000 200100000? ?0a000?000 10a000000100?0000000 00b000000? 1?1?010000 ??10?00010 00???????? 011aa1?a00 0010001000 200100000? 0010011010 000000000000?0000000 10000000?? 1?11011000 ?????????? a000000011 01100??100 001a000000 000000000? ?a0000?010 001?00000000?0100000 00000000?? ?????????? 1111?00010 00000001?1 00?00??000 0011000011 ?10100000? ?00000?010 001?01000010?0000000 ?????????? 1b11010000 01???????? 00011?11?1 0100100001 001100100a 010100000? ?01000?010 001?0100000110000001 0010000020 ?????????? 010?10?010 00011?10?0 01100??10a 100?001000 11010000?? ?01000?010 0100000011 ?????????? 1211010000 0111?01010 00010010?1 011011?100 0011000002 ?100000011 01000100a0 0010000000 1211210000 110001?010 0????????? 0110100101 1011001000 000000000? 121020010? 1211010000 ?????????? 00011?01?1 01100??000 0011000000 00100000?? ?????????? 00???????? 00010000?1 0100100a01 ?????????? ??1?211000 0011?01010 00011?0010 00000000?? 1?1?011000 0111?01010 00000000?? 1211010000 0b200001?? ystenoides ystenus l l erminal taxa 10 20 30ambolidea aradoryctes arallorhogas arana 40araspathius areucorystes ariodes edinotus ercnobracon 50ercnobraconoides 60 70 80 90 100 T Monarea Monolexis Mononeuron Neodoryctes Nervellius Neurocrassus Nipponecphylus Notiospathius Odontobracon Odontodoryctes Ontsira Osmophila P P P P P P P P P P Pioscelus Platydoryctes Platyspathius Po Po Priosphys Psenobolus Pseudodoryctes Pseudorhoptrocentrus Ptesimogaster Ptesimogastroides Rhaconotus Rhacontsira Rhoptrocentrus Schlettereriella Semirhytus Sericobracon Sharkeyella Shawius Siragra

© 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 142, 369–404 402 S. A. BELOKOBYLSKIJ ET AL. 000??????? ?????????? ?????????? ?????????? a Continued APPENDIX 2 10?000000a 010000000000?0a10000 ?00000?000 0001000000 200000000? ?01001?010 0010000011 200100000? 01000??01? 0011010000 0001??11?1 010010000 00???????? ?2?1?????? ????????0? 00?0000000 000000000000?0000001 ?00000?010 101?00000000?0000000 000100000? ?011010010 000100000000?0100000 1011001002 100100000? ?00000?1?0 00a001000000?000000a 01000??0a0 1011000012 ?1010000?? ?0101??010 00aa0a000000?0000000 0001000110 01100??0a1 1010001012 ?10101?0?? ?00000?a00 000100000000?0100000 0110?01010 000??????? 01100??01? 00110000a1 b00100000? ?01000?010 000001000100?0000000 1?1?000000 ?????????? 0????????? 0110101000 a01a00a012 ?10100000? 001000?0a0 001?0100001110a0000a 00100000?? ?2?1?????? ?????????? 0????????? 01a00??0a0 10110010a0 000000000? ?01000?010 00000000000100000000 ????????0? ?????????? ?????????? 000100aa11 01100??001 0011000012 ?10001?0?? ?a1000?010 001?00000000?0a00000 ?????????? ?????????? 0011?01010 00010000?1 010011?01? 0011001011 000000000? ?00000?1?0 001?00000000?0000000 ?????????? 1b10010000 0010?00010 000??????? 01100??001 0011000000 ?1010000?? ?0101??010 001?0a000000?01032?0 0220000000 1211011000 ??11?00010 0????????? 01101a010a 0010000000 ?1010000?? ?0101??010 0a0000111000?000110a 001000000? 1?1?000000 ?????????? 00110001?0 01100??100 0a11001012 ?101000011 ?11000?000 000000000000?0100000 10001000?? ?????????? 0111?01010 0????????? 01100??01? 1011000000 ?10?0a00?? ?11000?000 000100100000?010000a ?????????? 1211001110 ?????????? 0????????? 0110a00000 111?000010 200000000? ?0100??010 000001000000?0000001 101000002? ?????????? ??10?00110 000??????? 00?00??01? 0011100012 10010000?? ?01001a010 000000000010?0000000 ?????????? 1?1?011000 ?????????? 0??10?0211 00?00??00? 0011000011 000000000? ?01000?010 000a00000000?0000000 01100000?? ?????????? 1110?00010 000??????? 01100??01? 0011001011 ?10100000? ?0101??010 0000000000 ?????????? 121100???? ?????????? 0????????? 0110101002 0010001000 ?1010a00?? ?1000??000 ????????0? ?????????? ?????????? 00011?00?1 01100??100 1010000001 ?1000000?? ?????????? ?211010000 0110?00010 0????????? 01000??0a0 1011001000 011000000? 1211001000 ??0?01?010 00010010?1 01100??000 01b000000? 1211011000 0111?00010 0????????? 012000000? 1?1?011000 ?????????? 00000000?? ?????????? ?????????? 10?0000000 001?000000 ?01000?010 ?101000011 1011001000 01100??001 00110?01?0 10???????? ??1?011000 001?0000?? 1100000000 000000100000?00044?0 ?1100??010 010000111?00?0000010 ?1010000?? ?11000?1?0 000001000000?0a00000 0010001000 ?10?01?00? ?01000?010 00aa000000aaa000110a 0111100000 111?000010 000000100? ?01000?010 01aa00aa1000?0000000 0????????? 00?00??01? 1011000100 00010a000? ?1000aa010 000000000000?0000000 ?????????? 0??10?0?11 0110100001 100?000000 a00001?00? ?00000?010 000000000000?0000010 ?????????? ?????????? 00011?1200 01000?0000 00a10000a0 000?00000? ?00000?010 000000000000?0000010 ?????????? ?????????? 010?11?010 000??????? 0110aa10a0 100?000000 000?01?00? ?00000?010 00a000000010?0000011 ?????????? 1211011111 ??a000?a00 0a0b0001aa 00?00?0000 100?000000 000100000? ?0a000?000 000000000000?0001000 003100002? 0010?000?? 010?000020 00000001?1 00?00?0000 1010000000 100100000? ?00??????? 00010a00a000?0000000 ???????000 20100000?0 010?000000 0001001011 00?00??01? 100?000000 ?????????? ?01000?000 00a000000000?0000000 000?0??000 00100000?? 0001000000 0001000000 00?00?00a0 ??11000001 1a0a00000? ?01000?010 00000a000000?0000010 ???0???000 00000000?? 00???????? 0000010211 00?00??01? 000?000000 0a0000000? ?0a000?010 000a00000000?000000a ???0???000 ??????00?? 110?00?000 0????????? 01100??000 000?000000 00000a000? ?01000?0a0 000100000010?0000000 ?????????? 0010?000?? ?????????? 0??1010011 01000?0010 a00?000000 000000000? ?00a00?010 0001000000 ???????000 ?????????? 0????????? 000b0102?1 00?00?0000 a0a1000000 ?1010a000? ?00000?000 ?????????? ?????????? 010?000000 0000010111 0100000000 000?000010 000101?00? ?????????? 00100000?? 010?000000 0000010201 01100?0000 1010000000 ???????00? 00100000?0 000?000000 000??????? 0000000010 00000??000 00000000?0 ??0?000000 00000????? 000?0??000 00100?00?? ??0?000000 ???0???00? 01000000?? ???????00? hartonius hitfieldiellus aitaca rigonophasmus ripteria erae erminal taxa 10 20 30 40 50 60 70 80 90 100 arasco erate ermitobracon ermitospathius oka Sisupala Sonanus Spathioplites Spathiospilus Spathiostenus Spathius Stenocorse Stephanospathius Subcurtisella Syngaster Synspilus T T T T T T T V W W Spathiomorpha W T Ypsistocerus Zombrus Aleiodes Braconinae Clinocentrus Colastes Dolopsidea Hormius Metaspathius Monitoriella Phaenodus Rhysipolis Rhyssalus Stiropius Doryctomorpha

© 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 142, 369–404 PHYLOGENY OF THE DORYCTINAE (HYMENOPTERA: BRACONIDAE) 403

APPENDIX 3 Achterberg: D. apicalis Braet & van Achterberg (H); Donquickeia Marsh: Quickia incompletus Marsh (H); List of the species examined in this study from collec- Doryctes Haliday: D. striatellus (Nees) (SP), Hybodor- tion specimens and from literature. Abbreviations: H, yctes diversus Szépligeti (H), Udamolcus herero holotype; L, lectotype; P, paratypes; PL, paralectotype; Enderlein (H), and several species from Palaearctic SP, nontype specimens examined; N, no specimens and Oriental regions; Doryctophasmus Enderlein: examined, scored from literature descriptions. D. ferrugineiceps Enderlein (H); Ecphylopsis Ash- mead: E. nigra Ashmead (L), E. swezeyi Beardsley (N); DORYCTINAE: Acanthodoryctes Turner: Iphiaulax Ecphylus Foerster: E. silesiacus (Ratzeburg) (SP), morleyi Froggatt (L), I. tomentosus Szépligeti (H); E. caudatus Ruschka (SP), E. arephini Belokobylskij Acanthorhogas Szépligeti: A. setosus Szépligeti (L); (H); Embobracon van Achterberg: E. brevistigmus van Achterbergia Marsh: A. arawak Marsh (P); Afrospath- Achterberg (N); Evaniodes Szépligeti: E. areolatus ius Belokobylskij & Quicke: A. dispar Belokobylskij & Szépligeti (H); Euscelinus Westwood: E. sarawacus Quicke (H); Aivalykus Nixon: A. electus Nixon (H) Westwood (SP), Sbeitla furax Wilkinson (H); Fijibra- Ecphyloides flavus Marsh (H); Amazondoryctes Bar- con Belokobylskij: F. insularis Belokobylskij (H); Fritz- balho & Penteado Dias: A. bicolor Barbalho & iella Marsh: F. plaumanni Marsh (H, P); Penteado Dias (N), A. ater Barbalho & Penteado Dias Glyptocolastes Ashmead: G. texanus Ashmead (SP), (N); A. costaricensis Marsh (P); Antidoryctes Belokoby- Glyptodoryctes caryae (Ashmead) (SP), Doryctes texa- lskij & Quicke: A. pronotalis Belokobylskij & Quicke nus Ashmead (H); Guaygata Marsh: G. howdeni (H); Acrophasmus Enderlein: A. amazonicus Roman Marsh (P); Gymnobracon Szépligeti: G. brasiliensis (H), A. exilis Enderlein (H), A. maeandricus Enderlein Szépligeti (H), Ipospathius denticoxa Enderlein (H), (H), Concurtisella Roman: C. bidens Roman (L); Allor- Rutheia superba Szépligeti (H); Halycaea Cameron: hogas Gahan: A. gallicola Gahan (P); Aphelopsia H. erythrocephala Cameron (L), Cendebeus filicornis Marsh: A. annulicornis Marsh (P); Aptenobracon Cameron (L); Hecabalodes Wilkinson: H. anthaxiae Marsh: A. formicoides Marsh (H); Araucania Marsh: Wilkinson (H), H. radialis Tobias (H), H. tadzhicus A. penai Marsh (H); Arhaconotus Belokobylskij: Tobias (H); Hecabolus Curtis: H. sulcatus Curtis (SP); A. papuanus Belokobylskij (H); Asiaheterospilus Heerz Marsh: H. tooya Marsh (H); Hemidoryctes Belokobylskij & Konishi: A. kusegimati Belokobylskij Belokobylskij: H. soror Belokobylskij (H), Camptocen- & Konishi (H); Bathycentor Saussure: B. kraesselini trus annulipes Cameron (H); Hemispathius Belokoby- Saussure (L), Ipodoryctes parallelus Granger (L); lskij & Quicke: H. polystenoides Belokobylskij & Binarea Brullé: B. spinicollis Brullé (H), B. pulchripes Quicke (H); Heterospathius Barbalho & Penteado Szépligeti (H), B. nigridorsum Enderlein (L); Dias: H. belokobylskiji Barbalho & Penteado Dias (N), Bohartiellus Marsh: B. cornutus Marsh (N), H. petiolatus Barbalho & Penteado Dias (N); Het- B. plaumanni Marsh (N); Bracodoryctes Belokobylskij erospilus Haliday: Harpagolaccus pectinatus Ender- & Quicke: B. tergalis Belokobylskij & Quicke (H); Bul- lein (H), Anocatostigma paradoxum Enderlein (H), bonervus Shenefelt: B. semilunaris Shenefelt (H); Cae- and numerous species from Palaearctic and Oriental nophanes Foerster: Bracon incompletus Ratzeburg (L), regions; Histeromeroides Marsh: H. onkoterebrus Heterospilis asion Nixon (H), C. luculentus Belokoby- Marsh (H); Holcobracon Cameron: H. fulvus Cameron lskij (H); Caingangia Marsh: C. flavokolos Marsh (H); (H); Hybodoryctes Szépligeti: Doryctes bicolor Szép- Callihormius Ashmead: Pambolus bifasciatus Ash- ligeti (L), Goniogmus ferrugineus Enderlein (H); mead (L); Canchim Barbalho & Penteado Dias: Hypodoryctes Kokujev: H. sibiricus Kokujev (H), Mix- C. carinatus Barbalho & Penteado Dias (N), tec whartoni Marsh (H); Janzenia Marsh: J. gauldi C. erugosus Barbalho & Penteado Dias (N); Ceylon- Marsh (H); Jataiella Barbalho & Penteado Dias: spathius Belokobylskij: C. nixoni Belokobylskij J. pilosa Barbalho & Penteado Dias (N); Johnsonius (H); Chelonodoryctes Belokobylskij & Quicke: Marsh: J. xanthus Marsh (H); Ipodoryctes Granger: C. inopinatus: Belokobylskij & Quicke (H); Coiba I. anticestriatus Granger (H), Epirhacon laetus Marsh: C. woldai Marsh (H); Cryptodoryctes Beloko- Belokobylskij (H), and several species from Afrotropi- bylskij & Quicke: C. turneri Belokobylskij & Quicke cal and Oriental regions; Ivondrovia Shenefelt & (H); Curtisella Spinola: Neorhyssa nigra Szépligeti Marsh: Lophogaster seyrigi Granger (L); Labania (L); Lissophrymnus annulicaudis Cameron (H); Hedqvist: L. straminea Hedqvist (H); Leluthia Cam- Cyphodoryctes Marsh: Cyrtonion brasiliense Marsh eron: L. mexicana Cameron (H), Doryctosoma para- (P); Dendrosoter Wesmael: D. protuberans (Nees) (SP), doxum (P), Panama canalia Marsh (H); Leptodoryctes D. middendorffi (Ratzeburg) (SP), D. hartigii (Ratze- Barbalho & Penteado Dias: L. luizi (N); Leptorhacono- burg) (L); Dendrosotinus Telenga: Dendrosoter ferrug- tus Granger: L. brunneus Granger (H); Leptospathius ineus Marshall (L), D. similis Boucek, Gildoria Szépligeti: L. formosus Szépligeti (L), Rhoptrospath- elegans Hedqvist (H); Dicarinoryctes Braet & van ius striatus Cameron (H), Habnoba petiolata Cameron

© 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 142, 369–404 404 S. A. BELOKOBYLSKIJ ET AL.

(L); Liobracon Szépligeti: Hyboderia collare Enderlein van Achterberg (H); Rhaconotus Ruthe: R. aciculatus (L), L. singularis Szépligeti (H), L. partitus Enderlein Ruthe (H), Rhaconotinus caboverdensis Hedqvist (H), (H), Triderodon hoffmannsi Enderlein (H); Liodoryctes and numerous species and types from Palaearctic, Ori- Szépligeti: Acanthodoryctes australiensis Szépligeti ental and Afrotropical regions; Rhacontsira Belokoby- (L), Neotrimoriodes dentifer Strand (H); Masonius lskij: Ontsira heterospiloides Belokobylskij (H), Marsh: M. fasciatus Marsh (H, P); Megaloproctus R. sculpturator Belokobylskij (H), R. nana Belokobyl- Schulz: Megaproctus nigridorsum Enderlein (H), skij (H); Rhoptrocentrus Marshall: R. piceus Marshall M. didymus Brullé (H), M. brasiliensis Szépligeti (H), (SP), R. syrmiensis Szépligeti (H); Schlettereriella Szé- Ectetamenochir crinicornis Enderlein (H), Prosthia- pligeti: Stenophasmus buettneri Stadl (H), Biphyma- cantha harpactorina Enderlein (H); Micrommatus phorus rufithorax Szépligeti (H), Ogmophasmus Marsh: M. brevicornis Marsh (H, P); Mimipodoryctes flaviceps Enderlein (H), O. ingens Enderlein (H); Belokobylskij: M. robustus Belokobylskij (H); Mimo- Semirhytus Szépligeti: S. filicornis Szépligeti (H), Neo- doryctes Belokobylskij: M. proprius Belokobylskij (H); clinocentrus variegatus Szépligeti (PL), Liparophleps Monarea Szépligeti: M. fasciipennis Szépligeti (H), crassivena Enderlein (H); Sericobracon Shaw: M. longicornis Enderlein (H); Monolexis Foerster: S. armaensis Shaw (H); Sharkeyella Marsh: S. pilosus M. fuscicornis Foerster (L), M. atis Nixon (H); Mono- Marsh (H); Shawius Marsh: S. braziliensis Marsh (H); neuron Fischer: M. duguetiae Fischer (N); Neodoryctes Siragra Cameron: S. nitida Cameron (SP); Sisupala Szépligeti: N. thoracicus Szépligeti (H); Nervellius Nixon: S. splendida Nixon (H); Sonanus Belokobylskij Roman: N. subdivisus Roman (L); Neurocrassus & Konishi: S. senzuensis Belokobylskij & Konishi (H); Snoflak: Ontsira rara Belokobylskij (H), N. tentorialis Spathiomorpha Tobias: S. varinervis Tobias (H), Belokobylskij (H), N. fabimaculatus Belokobylskij S. brevipalpis Belokobylskij (H); Spathioplites (H); Nipponecphylus Belokobylskij & Konishi; Fischer: S. phreneticus Fischer (H); Spathiospilus N. matsumurai Belokobylskij & Konishi (H); Marsh: S. brasiliensis Marsh (P); Spathiostenus Notiospathius Matthews & Marsh: Psenobolus colum- Belokobylskij: Eucorystes formosanus Watanabe (H); bianus Enderlein (H), P. laucacrocera Enderlein (H), Spathius Nees: Spathius exarator (Linneus) (SP), and P. sculpturatus Enderlein (H); Odontobracon Cam- type specimens of numerous species from Palaearctic, eron: O. nigriceps Cameron (SP); Odontodoryctes Oriental, and Afrotropical regions, Pseudospathius tri- Granger: O. biannulatus Granger (L); Ontsira Cam- color Szépligeti (H); Stenocorse Marsh: Glyptocolastes eron: O. reticulata Cameron (H), Clinocentrus anticus bruchivorus Crawford (H); Stephanospathius Beloko- Wollaston (L), Wachsmannia maculipennis Szépligeti bylskij: Stenophasmus ornatipes Kieffer (H); Subcur- (H); Osmophila Szépligeti: O. hyalinipennis Szépligeti tisella Roman: S. waterstoni Roman (H); Syngaster (H); Pambolidea Ashmead: P. yuma Ashmead (H); Brullé: S. lepidus Brullé (L), Epitonychus variegatus Paradoryctes Granger: P. coxalis Granger (L); Paral- Szépligeti (H); Synspilus Belokobylskij & Quicke: lorhogas Marsh: P. pallidiceps (Perkins); Parana S. nitidus Belokobylskij & Quicke (H); Tarasco Marsh: Nixon: P. clotho Nixon (H); Paraspathius Nixon: T. spathiiformis Marsh (P); Terate Nixon: T. menopon P. periparetus Nixon (H); Pareucorystes Tobias: Nixon (H); Termitobracon Brues: T. emersoni Brues P. varinervis Tobias (H); Pariodes Fischer: Evaniodes (SP); Termitospathius Belokobylskij: T. sumatranus spathiiformis Szépligeti (H); Pedinotus Szépligeti: Belokobylskij (H); Toka Nixon: T. glabrivena Nixon P. brasiliensis Szépligeti (H), P. columbianus Ender- (H); Trigonophasmus Enderlein: T. schenklingi Ender- lein (H); Percnobracon Kieffer: P. secundus Muesebeck lein (H); Tripteria Enderlein: T. crinicauda Enderlein (H); Percnobraconoides Marsh: P. jojoba Marsh (H); (H); Verae Marsh: V. peculya Marsh (H, P); Waitaca Pioscelus Muesebeck & Walkley: Caenophanes borea- Marsh: W. flavostigma Marsh (H); Whartonius Marsh: lis Ashmead (H); Platyspathius Viereck: P. bisignatus Clinocentrus rugulosus Cameron (H); Whitfieldiellus (Walker) (SP), P. dinoderi (Gahan) (SP), Spathiohor- Marsh: Whitfieldia variegatus Marsh (H); Ypsistocerus mius ornatulus Enderlein (L); Polystenoides Muese- Cushman: T. manni Cushman (N); Zombrus Marshall: beck: P. lignicola Muesebeck (H); Polystenus Foerster: Z. anisopus Marshall (L), Z. bicolor Enderlein P. rugosus Foerster (L), Eucorystes aciculatus Rein- (H). OTHER SUBFAMILIES: RHYSSALINAE: hard (H); Priosphys Enderlein: P. denticulata Ender- Metaspathius Brues: M. apterus Brues (H). The lein (H); Psenobolus Reinhard: P. pygmaeus Reinhard remaining genera of the Rhyssalinae and those of (L); Pseudodoryctes Szépligeti: P. annulicornis Szép- the Exothecinae, Mesostoinae, Pambolinae, and ligeti (H); Pseudorhoptrocentrus Granger: P. brunneus Rogadinae and the Braconinae were scored from Granger (L), Rhoptrocentroides platyfemur Marsh (P); numerous specimens belonging to species particularly Ptesimogaster Marsh: P. parkeri Marsh (H); Ptesimo- from the Palaearctic, Oriental, and Afrotropical gastroides Braet & van Achterberg: P. cerdai Braet & regions.

© 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 142, 369–404