The Crystal Structure of Pyrococcus Furiosus Ornithine Carbamoyltransferase Reveals a Key Role for Oligomerization in Enzyme Stability at Extremely High Temperatures
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
And Thermo-Adaptation in Hyperthermophilic Archaea: Identification of Compatible Solutes, Accumulation Profiles, and Biosynthetic Routes in Archaeoglobus Spp
Universidade Nova de Lisboa Osmo- andInstituto thermo de Tecnologia-adaptation Química e Biológica in hyperthermophilic Archaea: Subtitle Subtitle Luís Pedro Gafeira Gonçalves Osmo- and thermo-adaptation in hyperthermophilic Archaea: identification of compatible solutes, accumulation profiles, and biosynthetic routes in Archaeoglobus spp. OH OH OH CDP c c c - CMP O O - PPi O3P P CTP O O O OH OH OH OH OH OH O- C C C O P O O P i Dissertation presented to obtain the Ph.D degree in BiochemistryO O- Instituto de Tecnologia Química e Biológica | Universidade Nova de LisboaP OH O O OH OH OH Oeiras, Luís Pedro Gafeira Gonçalves January, 2008 2008 Universidade Nova de Lisboa Instituto de Tecnologia Química e Biológica Osmo- and thermo-adaptation in hyperthermophilic Archaea: identification of compatible solutes, accumulation profiles, and biosynthetic routes in Archaeoglobus spp. This dissertation was presented to obtain a Ph. D. degree in Biochemistry at the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa. By Luís Pedro Gafeira Gonçalves Supervised by Prof. Dr. Helena Santos Oeiras, January, 2008 Apoio financeiro da Fundação para a Ciência e Tecnologia (POCI 2010 – Formação Avançada para a Ciência – Medida IV.3) e FSE no âmbito do Quadro Comunitário de apoio, Bolsa de Doutoramento com a referência SFRH / BD / 5076 / 2001. ii ACKNOWNLEDGMENTS The work presented in this thesis, would not have been possible without the help, in terms of time and knowledge, of many people, to whom I am extremely grateful. Firstly and mostly, I need to thank my supervisor, Prof. Helena Santos, for her way of thinking science, her knowledge, her rigorous criticism, and her commitment to science. -
Counts Metabolic Yr10.Pdf
Advanced Review Physiological, metabolic and biotechnological features of extremely thermophilic microorganisms James A. Counts,1 Benjamin M. Zeldes,1 Laura L. Lee,1 Christopher T. Straub,1 Michael W.W. Adams2 and Robert M. Kelly1* The current upper thermal limit for life as we know it is approximately 120C. Microorganisms that grow optimally at temperatures of 75C and above are usu- ally referred to as ‘extreme thermophiles’ and include both bacteria and archaea. For over a century, there has been great scientific curiosity in the basic tenets that support life in thermal biotopes on earth and potentially on other solar bodies. Extreme thermophiles can be aerobes, anaerobes, autotrophs, hetero- trophs, or chemolithotrophs, and are found in diverse environments including shallow marine fissures, deep sea hydrothermal vents, terrestrial hot springs— basically, anywhere there is hot water. Initial efforts to study extreme thermo- philes faced challenges with their isolation from difficult to access locales, pro- blems with their cultivation in laboratories, and lack of molecular tools. Fortunately, because of their relatively small genomes, many extreme thermo- philes were among the first organisms to be sequenced, thereby opening up the application of systems biology-based methods to probe their unique physiologi- cal, metabolic and biotechnological features. The bacterial genera Caldicellulosir- uptor, Thermotoga and Thermus, and the archaea belonging to the orders Thermococcales and Sulfolobales, are among the most studied extreme thermo- philes to date. The recent emergence of genetic tools for many of these organ- isms provides the opportunity to move beyond basic discovery and manipulation to biotechnologically relevant applications of metabolic engineering. -
Ts2631 Endolysin from the Extremophilic Thermus Scotoductus Bacteriophage Vb Tsc2631 As an Antimicrobial Agent Against Gram-Negative Multidrug-Resistant Bacteria
viruses Article Ts2631 Endolysin from the Extremophilic Thermus scotoductus Bacteriophage vB_Tsc2631 as an Antimicrobial Agent against Gram-Negative Multidrug-Resistant Bacteria Magdalena Plotka 1,* , Malgorzata Kapusta 2, Sebastian Dorawa 1, Anna-Karina Kaczorowska 3 and Tadeusz Kaczorowski 1,* 1 Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, 80-822 Gdansk, Poland 2 Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland 3 Collection of Plasmids and Microorganisms, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland * Correspondence: [email protected] (M.P.); [email protected] (T.K.); Tel.: +48-58-523-60-75 (M.P.); +48-58-523-60-67 (T.K.) Received: 5 June 2019; Accepted: 15 July 2019; Published: 18 July 2019 Abstract: Bacteria that thrive in extreme conditions and the bacteriophages that infect them are sources of valuable enzymes resistant to denaturation at high temperatures. Many of these heat-stable proteins are useful for biotechnological applications; nevertheless, none have been utilized as antibacterial agents. Here, we demonstrate the bactericidal potential of Ts2631 endolysin from the extremophilic bacteriophage vB_Tsc2631, which infects Thermus scotoductus, against the alarming multidrug-resistant clinical strains of Acinetobacter baumannii, Pseudomonas aeruginosa and pathogens from the Enterobacteriaceae family. A 2–3.7 log reduction in the bacterial load was observed in antibacterial tests against A. baumannii and P. aeruginosa after 1.5 h. The Ts2631 activity was further enhanced by ethylenediaminetetraacetic acid (EDTA), a metal ion chelator (4.2 log reduction in carbapenem-resistant A. baumannii) and, to a lesser extent, by malic acid and citric acid (2.9 and 3.3 log reductions, respectively). -
BIOGEOCHEMICAL INTERACTIONS in FLOODED UNDERGROUND MINES Renee Schmidt Montana Tech
Montana Tech Library Digital Commons @ Montana Tech Graduate Theses & Non-Theses Student Scholarship Summer 2017 BIOGEOCHEMICAL INTERACTIONS IN FLOODED UNDERGROUND MINES Renee Schmidt Montana Tech Follow this and additional works at: http://digitalcommons.mtech.edu/grad_rsch Part of the Geochemistry Commons Recommended Citation Schmidt, Renee, "BIOGEOCHEMICAL INTERACTIONS IN FLOODED UNDERGROUND MINES" (2017). Graduate Theses & Non-Theses. 129. http://digitalcommons.mtech.edu/grad_rsch/129 This Thesis is brought to you for free and open access by the Student Scholarship at Digital Commons @ Montana Tech. It has been accepted for inclusion in Graduate Theses & Non-Theses by an authorized administrator of Digital Commons @ Montana Tech. For more information, please contact [email protected]. BIOGEOCHEMICAL INTERACTIONS IN FLOODED UNDERGROUND MINES by Renée Schmidt A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Geoscience: Geochemistry Option Montana Tech 2017 ii Abstract This study presents a biogeochemical analysis of microbial communities in flooded underground mines in Butte, Montana, USA. Samples were collected from nine mineshafts representing three distinct geochemical zones. These zones consist of the East, West, and Outer Camp mines. The East Camp mines, bordering the Berkeley Pit Superfund site, have the highest concentrations of dissolved metals and the most acidic pH values. Dissolved metal concentrations in the West Camp are one to three orders of magnitude lower than in the East Camp and have nearly neutral pH values. The Outer Camp mines have similar metal concentrations to the West Camp but are neutral to alkaline in pH. Sulfide levels also differ between the zones. In the East Camp, sulfide levels were below detection limits, whereas the West and Outer Camp mines had sulfide -6 -4 18 concentrations ranging from 10 to 10 mol/L. -
Extremophiles
Extremophiles These microbes thrive under conditions that would kill other creatures. The molecules that enable extremophiles to prosper are becoming useful to industry by Michael T. Madigan and Barry L. Marrs DEEP-SEA VENT HEAT-LOVING MICROBES (THERMOPHILES AND HYPERTHERMOPHILES) SEA ICE COLD-LOVING MICROBES (PSYCHROPHILES) Methanopyrus kandleri Polaromonas vacuolata thereby increasing efficiency and reduc- magine diving into a refreshingly ing costs. They can also form the basis of cool swimming pool. Now, think entirely new enzyme-based processes. I instead of plowing into water that tially serve in an array of applications. Perhaps 20 research groups in the U.S., is boiling or near freezing. Or consider Of particular interest are the enzymes Japan, Germany and elsewhere are now jumping into vinegar, household am- (biological catalysts) that help extremo- actively searching for extremophiles and monia or concentrated brine. The leap philes to function in brutal circumstanc- their enzymes. Although only a few ex- would be disastrous for a person. Yet es. Like synthetic catalysts, enzymes, tremozymes have made their way into many microorganisms make their home which are proteins, speed up chemical use thus far, others are sure to follow. As in such forbidding environments. These reactions without being altered them- is true of standard enzymes, transform- microbes are called extremophiles be- selves. Last year the biomedical field and ing a newly isolated extremozyme into cause they thrive under conditions that, other industries worldwide spent more a viable product for industry can take from the human vantage, are clearly ex- than $2.5 billion on enzymes for appli- several years. -
Microbial Processes in Oil Fields: Culprits, Problems, and Opportunities
Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book Advances in Applied Microbiology, Vol 66, published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who know you, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial From: Noha Youssef, Mostafa S. Elshahed, and Michael J. McInerney, Microbial Processes in Oil Fields: Culprits, Problems, and Opportunities. In Allen I. Laskin, Sima Sariaslani, and Geoffrey M. Gadd, editors: Advances in Applied Microbiology, Vol 66, Burlington: Academic Press, 2009, pp. 141-251. ISBN: 978-0-12-374788-4 © Copyright 2009 Elsevier Inc. Academic Press. Author's personal copy CHAPTER 6 Microbial Processes in Oil Fields: Culprits, Problems, and Opportunities Noha Youssef, Mostafa S. Elshahed, and Michael J. McInerney1 Contents I. Introduction 142 II. Factors Governing Oil Recovery 144 III. Microbial Ecology of Oil Reservoirs 147 A. Origins of microorganisms recovered from oil reservoirs 147 B. Microorganisms isolated from oil reservoirs 148 C. Culture-independent analysis of microbial communities in oil reservoirs 155 IV. -
Thomas Gold 1999.Pdf
Praise for Thomas Gold ... "Gold is one of America's most iconoclastic scientists." -Stephen Jay Gould "Thomas Gold is one of the world's most original minds." - The Times, London "Thomas Gold might have grown tired of tilting at windmills long ago had he not destroyed so many." -USA Today "What if someone told you that [the oil crisis] was all wrong and that the hydro carbons that make up petroleum are constantly refilling reservoirs. Interested? Well, you should read this book.... Gold presents his evidence skillfully. You may not agree with him, but you have to appreciate his fresh and compre hensive approach to these major areas of Earth science .... [This book] demon strates that scientific debate is alive and well. Science is hypothesis-led and thrives on controversy-and few people are more controversial than Thomas Gold." -Nature " ... Thomas Gold, a respected astronomer and professor emeritus at Cornell University in Ithaca, N.Y., has held for years that oil is actually a renewable, primordial syrup continually manufactured by the Earth under ultrahot conditions and pressures." - The Wall Street Journal "Most scientists think the oil we drill for comes from decomposed prehistoric plants. Gold believes it has been there since the Earth's formation, that it sup ports its own ecosystem far underground and that life there preceded life on the Earth's surface .... If Gold is right, the planet's oil reserves are far larger than policymakers expect, and earthquake prediction procedures require a shakeup; moreover, astronomers hoping for extraterrestrial contacts might want to stop seeking life on other planets and inquire about life in them." -Publishers Weekly "Gold's theories are always original, always important, and usually right. -
Role of Archaeal Hera Protein in the Biology of the Bacterium Thermus Thermophilus
G C A T T A C G G C A T genes Article Role of Archaeal HerA Protein in the Biology of the Bacterium Thermus thermophilus Alba Blesa 1, Nieves G. Quintans 1, Ignacio Baquedano 1, Carlos P. Mata 2, José R. Castón 2 and José Berenguer 1,* 1 Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Calle Nicolás Cabrera 1, Madrid 28049, Spain; [email protected] (A.B.); [email protected] (N.G.Q.); [email protected] (I.B.) 2 Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Cantoblanco, Madrid 28049, Spain; [email protected] (C.P.M.); [email protected] (J.R.C.) * Correspondence: [email protected]; Tel.: +34-91-196-4498 Academic Editors: John Jones and Etienne G.J. Danchin Received: 15 March 2017; Accepted: 24 April 2017; Published: 27 April 2017 Abstract: Intense gene flux between prokaryotes result in high percentage of archaeal genes in the genome of the thermophilic bacteria Thermus spp. Among these archaeal genes a homolog to the Sulfolobus spp. HerA protein appears in all of the Thermus spp. strains so far sequenced (HepA). The role of HepA in Thermus thermophilus HB27 has been analyzed using deletion mutants, and its structure resolved at low resolution by electron microscopy. Recombinant HepA shows DNA-dependent ATPase activity and its structure revealed a double ring, conically-shaped hexamer with an upper diameter of 150 Å and a bottom module of 95 Å. A central pore was detected in the structure that ranges from 13 Å at one extreme, to 30 Å at the other. -
Life in Extreme Environments
insight review articles Life in extreme environments Lynn J. Rothschild & Rocco L. Mancinelli NASA Ames Research Center, Moffett Field, California 94035-1000, USA (e-mail: [email protected]; [email protected]) Each recent report of liquid water existing elsewhere in the Solar System has reverberated through the international press and excited the imagination of humankind. Why? Because in the past few decades we have come to realize that where there is liquid water on Earth, virtually no matter what the physical conditions, there is life. What we previously thought of as insurmountable physical and chemical barriers to life, we now see as yet another niche harbouring ‘extremophiles’. This realization, coupled with new data on the survival of microbes in the space environment and modelling of the potential for transfer of life between celestial bodies, suggests that life could be more common than previously thought. Here we examine critically what it means to be an extremophile, and the implications of this for evolution, biotechnology and especially the search for life in the Universe. ormal is passé; extreme is chic. While thriving in biological extremes (for example, nutritional Aristotle cautioned “everything in extremes, and extremes of population density, parasites, moderation”, the Romans, known for their prey, and so on). excesses, coined the word ‘extremus’, the ‘Extremophile’ conjures up images of prokaryotes, yet the superlative of exter (‘being on the outside’). taxonomic range spans all three domains. Although all NBy the fifteenth century ‘extreme’ had arrived, via Middle hyperthermophiles are members of the Archaea and French, to English. At the dawning of the twenty-first Bacteria, eukaryotes are common among the psychrophiles, century we know that the Solar System, and even Earth, acidophiles, alkaliphiles, piezophiles, xerophiles and contain environmental extremes unimaginable to the halophiles (which respectively thrive at low temperatures, low ‘ancients’ of the nineteenth century. -
Deinococcus-Thermus
Hindawi Publishing Corporation International Journal of Evolutionary Biology Volume 2012, Article ID 745931, 6 pages doi:10.1155/2012/745931 Research Article Evolution of Lysine Biosynthesis in the Phylum Deinococcus-Thermus Hiromi Nishida1 and Makoto Nishiyama2 1 Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan 2 Biotechnology Research Center, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan Correspondence should be addressed to Hiromi Nishida, [email protected] Received 28 January 2012; Accepted 17 February 2012 Academic Editor: Kenro Oshima Copyright © 2012 H. Nishida and M. Nishiyama. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Thermus thermophilus biosynthesizes lysine through the α-aminoadipate (AAA) pathway: this observation was the first discovery of lysine biosynthesis through the AAA pathway in archaea and bacteria. Genes homologous to the T. thermophilus lysine biosynthetic genes are widely distributed in bacteria of the Deinococcus-Thermus phylum. Our phylogenetic analyses strongly suggest that a common ancestor of the Deinococcus-Thermus phylum had the ancestral genes for bacterial lysine biosynthesis through the AAA pathway. In addition, our findings suggest that the ancestor lacked genes for lysine biosynthesis through the diaminopimelate (DAP) pathway. Interestingly, Deinococcus proteolyticus does not have the genes for lysine biosynthesis through the AAA pathway but does have the genes for lysine biosynthesis through the DAP pathway. Phylogenetic analyses of D. proteolyticus lysine biosynthetic genes showed that the key gene cluster for the DAP pathway was transferred horizontally from a phylogenetically distant organism. -
Thermus Bacteriophage P23-77: Key Member of a Novel, but Ancient
JYVÄSKYLÄ STUDIES IN BIOLOGICAL AND ENVIRONMENTAL SCIENCE 300 Alice Pawlowski Thermus Bacteriophage P23-77: Key Member of a Novel, but Ancient Family of Viruses from Extreme Environments JYVÄSKYLÄ STUDIES IN BIOLOGICAL AND ENVIRONMENTAL SCIENCE 300 Alice Pawlowski Thermus Bacteriophage P23-77: Key Member of a Novel, but Ancient Family of Viruses from Extreme Environments Esitetään Jyväskylän yliopiston matemaattis-luonnontieteellisen tiedekunnan suostumuksella julkisesti tarkastettavaksi yliopiston Agora-rakennuksen auditoriossa 3, huhtikuun 17. päivänä 2015 kello 12. Academic dissertation to be publicly discussed, by permission of the Faculty of Mathematics and Science of the University of Jyväskylä, in building Agora, auditorium 3, on April 17, 2015 at 12 o’clock noon. UNIVERSITY OF JYVÄSKYLÄ JYVÄSKYLÄ 2015 Thermus Bacteriophage P23-77: Key Member of a Novel, but Ancient Family of Viruses from Extreme Environments JYVÄSKYLÄ STUDIES IN BIOLOGICAL AND ENVIRONMENTAL SCIENCE 300 Alice Pawlowski Thermus Bacteriophage P23-77: Key Member of a Novel, but Ancient Family of Viruses from Extreme Environments UNIVERSITY OF JYVÄSKYLÄ JYVÄSKYLÄ 2015 Editors Varpu Marjomäki Department of Biological and Environmental Science, University of Jyväskylä Pekka Olsbo, Ville Korkiakangas Publishing Unit, University Library of Jyväskylä Jyväskylä Studies in Biological and Environmental Science Editorial Board Jari Haimi, Anssi Lensu, Timo Marjomäki, Varpu Marjomäki Department of Biological and Environmental Science, University of Jyväskylä Cover picture: Thermus phage P23-77 (EM data bank entry 1525) above geysers steam boiling Yellowstone by Jon Sullivan / Public Domain. URN:ISBN:978-951-39-6154-1 ISBN 978-951-39-6154-1 (PDF) ISBN 978-951-39-6153-4 (nid.) ISSN 1456-9701 Copyright © 2015, by University of Jyväskylä Jyväskylä University Printing House, Jyväskylä 2015 Für Jan ABSTRACT Pawlowski, Alice Thermus bacteriophage P23-77: key member of a novel, but ancient family of viruses from extreme environments Jyväskylä: University of Jyväskylä, 2015, 70 p. -
Conserved Signature Indels (Csis) Are an Important Category of Shared Derived Molecular Markers
Defending Darwin: Do Microbial Genomes Support or Challenge the Darwinian Mode of Evolution? Radhey S. Gupta McMaster University, Canada © by author ECCMID 2013, ESCMID Online Lecture LibraryBerlin, April 28, 2013 Current State of Microbiology 16S rRNA tree • 16S rRNA trees provide the current framework for understanding microbiology. • About 30 main groups/phyla within Bacteria have been identified. These groups are also seen in most other phylogenetic trees. • Interrelationships among different groups are not resolved. • Most higher taxa are distinguished only in phylogenetic (or statistical) terms. In most cases, no biochemical or molecular markers are known that are specific for these groups. © by author Ludwig and Klenk, Bergey’s Manual of Systematic Bacteriology (2005) Some Important Issues in Microbiology Requiring Understanding • ESCMIDAbility to distinguish different Online groups of microorganisms Lecture in more definitive Library molecular terms • Development of a reliable classification system reflecting their evolutionary relationships. • Understanding what unique molecular, biochemical or other properties distinguish different groups of microbes from each other. Are Genome Sequences helpful in Understanding Microbial Evolution? Widely held view Doolittle, W.F. (1999) Science 284,2124 Koonin and Wolf (2012) Front. Cell. Infect. Microbiol. 284,2124 © by author Prokaryotic genomes have acquired extensive information from sources other than through vertical descent. Only a vague outline of the main domains/phyla (STOL) can be inferred. ESCMID OnlineA treeLecture-like evolutionary relationship Library (i.e. Darwinian mode of evolution) is very weakly supported or not at all supported. Are any of the Critical Issues Related to Microbial Phylogeny/Taxonomy better understood? Merhej and Raoult (2012) Front. Cell. Infect. Microbiol.