Deinococcus-Thermus

Total Page:16

File Type:pdf, Size:1020Kb

Deinococcus-Thermus Hindawi Publishing Corporation International Journal of Evolutionary Biology Volume 2012, Article ID 745931, 6 pages doi:10.1155/2012/745931 Research Article Evolution of Lysine Biosynthesis in the Phylum Deinococcus-Thermus Hiromi Nishida1 and Makoto Nishiyama2 1 Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan 2 Biotechnology Research Center, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan Correspondence should be addressed to Hiromi Nishida, [email protected] Received 28 January 2012; Accepted 17 February 2012 Academic Editor: Kenro Oshima Copyright © 2012 H. Nishida and M. Nishiyama. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Thermus thermophilus biosynthesizes lysine through the α-aminoadipate (AAA) pathway: this observation was the first discovery of lysine biosynthesis through the AAA pathway in archaea and bacteria. Genes homologous to the T. thermophilus lysine biosynthetic genes are widely distributed in bacteria of the Deinococcus-Thermus phylum. Our phylogenetic analyses strongly suggest that a common ancestor of the Deinococcus-Thermus phylum had the ancestral genes for bacterial lysine biosynthesis through the AAA pathway. In addition, our findings suggest that the ancestor lacked genes for lysine biosynthesis through the diaminopimelate (DAP) pathway. Interestingly, Deinococcus proteolyticus does not have the genes for lysine biosynthesis through the AAA pathway but does have the genes for lysine biosynthesis through the DAP pathway. Phylogenetic analyses of D. proteolyticus lysine biosynthetic genes showed that the key gene cluster for the DAP pathway was transferred horizontally from a phylogenetically distant organism. 1. Introduction species acquired genes from various other bacteria to survive different kinds of environmental stresses, whereas Thermus The Deinococcus-Thermus phylum constitutes one of the species have acquired genes from thermophilic bacteria to major bacterial evolutionary lineages [1, 2]. At present, the adapt to high-temperature environments [11]. genome sequence data of 6 genera (13 organisms) belonging The distribution of lysine biosynthetic genes in the to this phylum are available in the Kyoto Encyclopedia of Deinococcus-Thermus phylum has not been clearly described. Genes and Genomes (KEGG) database [3]. In this study, we compared the distribution of the genes Two pathways for lysine biosynthesis have been de- for lysine biosynthesis between 13 organisms (D. deserti, α scribed, namely, the -aminoadipate (AAA) pathway and the D. geothermalis, D. maricopensis, D. proteolyticus, D. radio- diaminopimelate (DAP) pathway [5]. The AAA pathway has durans, Marinithermus hydrothermalis, Meiothermus ruber, ff two di erent types [6]. In T. thermophilus,ageneclusterwas M. silvanus, Oceanithermus profundus, T. scotoductus, T. found for lysine biosynthesis not through the DAP pathway thermophilus HB8, T. thermophilus HB27, and Truepera but through the AAA pathway [6–8]. Although Deinococcus radiovictrix). radiodurans has genes homologous to the T. thermophilus lysine biosynthetic genes, these genes are scattered on the 2. Methods genome [9]. In addition, the D. radiodurans aspartate kinase that catalyzes the phosphorylation of l-aspartate (the first We analyzed the distribution of each of the following reaction in the DAP pathway) is structurally and phylogenet- 10 enzymes related to lysine biosynthesis through the ically very different from that of T. thermophilus [10]. Recent AAA pathway in the Deinococcus-Thermus phylum: α- studies have shown that the genome signatures of these 2 bac- aminoadipate aminotransferase, homoisocitrate dehydro- teria are different [4], supporting the theory that Deinococcus genase, LysW-γ-l-lysine aminotransferase, LysW-γ-l-lysine 2 International Journal of Evolutionary Biology Table 1: Genes for lysine biosynthesis through the α-aminoadipate pathway in the Deinococcus-Thermus phylum. Organism Enzyme 1 Enzyme 2 Enzyme 3 Enzyme 4 Enzyme 5 Enzyme 6 Enzyme 7 Enzyme 8 Enzyme 9 Enzyme 10 Thermus thermophilus HB27 TTC0043 TTC1012 TTC1393 TTC1396 TTC1541∗ TTC1542∗ TTC1543∗ TTC1546∗ TTC1547∗ TTC1550∗ Thermus thermophilus HB8 TTHA0411 TTHA1378 TTHA1755 TTHA1757 TTHA1903∗ TTHA1904∗ TTHA1907∗ TTHA1910∗ TTHA1911∗ TTHA1914∗ Thermus scotoductus TSC c05810 TSC c20650 TSC c03550 TSC c3520 TSC c01940∗ TSC c01930∗ TSC c01920∗ TSC c01890∗ TSC c01880∗ TSC c01850∗ Meiothermus ruber Mrub 0871 Mrub 2738 Mrub 0027 Mrub 2721∗ Mrub 2723∗ Mrub 2724∗ Mrub 2727∗ Mrub 2728∗ Meiothermus silvanus Mesil 2567 Mesil 1337 Mesil 0348 Mesil 0347 Mesil 0435∗ Mesil 0436∗ Mesil 0438∗ Mesil 0441∗ Mesil 0442∗ Oceanithermus profundus Ocepr 1387 Ocepr 1797∗ Ocepr 1798∗ Ocepr 1796∗ Ocepr 1788∗ Ocepr 1784∗ Ocepr 1781∗ Ocepr 1780∗ Ocepr 1779∗ Marinithermus Marky 1533 Marky 0665∗ Marky 0663∗ Marky 0666∗ Marky 0667∗ Marky 0668∗ Marky 0671∗ Marky 0672∗ Marky 0673∗ hydrothermalis Deinococcus radiodurans DR 1674 DR 0794 DR 1413 DR 1420 DR 0963 DR 2194 DR 1614 DR 1610 DR 1238 Deinococcus geothermalis Dgeo 2084 Dgeo 1458 Dgeo 1416 Dgeo 1391 Dgeo 0678 Dgeo 0685 Dgeo 1151∗ Dgeo 1154∗ Dgeo 1156∗ Dgeo 1257 Deinococcus deserti Deide 09240 Deide 16910 Deide 17960 Deide 10430 Deide 10350 Deide 13430∗ Deide 13460∗ Deide 13470∗ Deide 13980 Deinococcus maricopensis Deima 0046 Deima 1545 Deima 2454 Deima 2593 Deima 1346∗ Deima 1349∗ Deima 1350∗ Deima 1353∗ Deima 1355∗ Deima 1358∗ Deinococcus proteolyticus Deipr 0213 Truepera radiovictrix Trad 2841 Trad 1401∗ Trad 1404∗ Trad 1399∗ Trad 1395∗ Trad 1392∗ Trad 1390∗ Trad 1389∗ Trad 1388∗ Enzyme 1, α-aminoadipate aminotransferase. Enzyme 2, Homoisocitrate dehydrogenase. Enzyme 3, LysW-γ-l-lysine aminotransferase. Enzyme 4, LysW-γ-l-lysine hydrolase. Enzyme 5, LysW-γ-l-α-aminoadipate kinase. Enzyme 6, LysW-γ-l-α-aminoadipyl-6-phosphate reductase. Enzyme 7, α-aminoadipate-LysW ligase LysX. Enzyme 8, LysU. Enzyme 9, LysT. Enzyme 10, Homocitrate synthase. ∗More than 3 genes are clustered. International Journal of Evolutionary Biology 3 Table 2: Genes for lysine biosynthesis through the diaminopimelate pathway in the Deinococcus-Thermus phylum. Aspartate- ll- Aspartate Dihydrodipicolinate Dihydrodipicolinate Diaminopimelate Organism semialdehyde diaminopimelate kinase synthase reductase decarboxylase dehydrogenase aminotransferase Thermus thermophilus HB27 TTC0166 TTC0177 TTC0591 Thermus thermophilus HB8 TTHA0534 TTHA0545 TTHA0957 Thermus scotoductus TSC c07050 TSC c08140 TSC c10420 TSC c10870 Meiothermus ruber Mrub 0976 Mrub 1641 Mrub 1335 Mrub 0798 Meiothermus silvanus Mesil 1711 Mesil 2173 Mesil 2308 Mesil 0318 Oceanithermus profundus Ocepr 1316 Ocepr 1018 Ocepr 2076 Marinithermus Marky 1492 Marky 1381 Marky 1261 hydrothermalis Deinococcus radiodurans DR 1365 DR 2008 DR 1758 Deinococcus geothermalis Dgeo 1127 Dgeo 1782 Dgeo 0790 Deide 1p00310, Deide 12830, Deinococcus deserti Deide 11430 Deide 15740 Deide 3p00120, Deide 21880 Deide 3p01100 Deinococcus maricopensis Deima 1822 Deima 2680 Deima 2660 Deipr 0627, Deinococcus proteolyticus Deipr 0941 Deipr 0985 Deipr 1377∗ Deipr 1378∗ Deipr 1376∗ Deipr 1375∗ Truepera radiovictrix Trad 0977 Trad 0289 Trad 1893 Trad 0134 ∗ More than 3 genes are clustered. 33 Spirochaeta thermophila STHERM c00170 16 Denitrovibrio acetiphilus Dacet 0798 Spirochaeta caldaria DSM 7334 Spica 0951 35 100 Treponema primitia TREPR 1186 Calditerrivibrio nitroreducens Calni 0514 35 89 Flexistipes sinusarabici Flexsi 1574 97 Methanohalophilus mahii Mmah 0892 Methanococcoides burtonii Mbur 0628 98 100 Methanosarcina barkeri Mbar A1641 100 Methanosarcina mazei MM 1885 100 Methanosarcina acetivorans MA0726 Selenomonas sputigena Selsp 2045 56 Syntrophobotulus glycolicus Sgly 1852 61 Desulfitobacterium hafniense DCB-2 Dhaf 4876 100 Desulfitobacterium hafniense Y51 DSY4977 Spirochaeta smaragdinae Spirs 1460 100 Deinococcus proteolyticus Deipr 1375 Kytococcus sedentarius Ksed 00760 100 Spirochaeta sp. Buddy SpiBuddy 1124 100 Spirochaeta coccoides Spico 0777 0.1 Figure 1: Phylogenetic relationship between Deinococcus proteolyticus diaminopimelate decarboxylase and related proteins. Multiple alignment was obtained using the top 20 amino acid sequences of the BLASTp search result for D. proteolyticus diaminopimelate decarboxylase (Deipro 1375), as based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The maximum-likelihood tree was constructed using MEGA software version 5 [12]. The WAG model was used as the amino acid substitution model. The nearest neighbor interchange was used for the maximum-likelihood heuristic method. The γ-distributed rate was considered, and the number of discrete γ categories was 3. Bootstrap analysis was performed with 100 replicates. Red indicates D. proteolyticus. 4 International Journal of Evolutionary Biology 100 Anabaena variabilis Ava 2354 59 Anabaena sp. PCC7120 alr5103 81 Cyanothece sp. PCC 7425 Cyan7425 4424 89 Acaryochloris marina AM1 1880 87 Synechococcus elongatus PCC7942 Synpcc7942 0853 100 Synechococcus elongatus PCC6301 syc0687 c 72 Synechococcus sp. CC9605 Syncc9605 0311 Opitutus terrae Oter 4620 Pelobacter carbinolicus Pcar 2423 100 Geobacter sp. M21 GM21 4142 100 Geobacter bemidjiensis Gbem 4052 94 Geobacter metallireducens Gmet 0213 100 Geobacter uraniumreducens Gura 0238 74 Geobacter sp. FRC-32 Geob 1134 50 Geobacter lovleyi Glov 3040 Spirochaeta
Recommended publications
  • Spatio-Temporal Study of Microbiology in the Stratified Oxic-Hypoxic-Euxinic, Freshwater- To-Hypersaline Ursu Lake
    Spatio-temporal insights into microbiology of the freshwater-to- hypersaline, oxic-hypoxic-euxinic waters of Ursu Lake Baricz, A., Chiriac, C. M., Andrei, A-., Bulzu, P-A., Levei, E. A., Cadar, O., Battes, K. P., Cîmpean, M., enila, M., Cristea, A., Muntean, V., Alexe, M., Coman, C., Szekeres, E. K., Sicora, C. I., Ionescu, A., Blain, D., O’Neill, W. K., Edwards, J., ... Banciu, H. L. (2020). Spatio-temporal insights into microbiology of the freshwater-to- hypersaline, oxic-hypoxic-euxinic waters of Ursu Lake. Environmental Microbiology. https://doi.org/10.1111/1462-2920.14909, https://doi.org/10.1111/1462-2920.14909 Published in: Environmental Microbiology Document Version: Peer reviewed version Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights Copyright 2019 Wiley. This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected].
    [Show full text]
  • Efficient Genome Editing of an Extreme Thermophile, Thermus
    www.nature.com/scientificreports OPEN Efcient genome editing of an extreme thermophile, Thermus thermophilus, using a thermostable Cas9 variant Bjorn Thor Adalsteinsson1*, Thordis Kristjansdottir1,2, William Merre3, Alexandra Helleux4, Julia Dusaucy5, Mathilde Tourigny4, Olafur Fridjonsson1 & Gudmundur Oli Hreggvidsson1,2 Thermophilic organisms are extensively studied in industrial biotechnology, for exploration of the limits of life, and in other contexts. Their optimal growth at high temperatures presents a challenge for the development of genetic tools for their genome editing, since genetic markers and selection substrates are often thermolabile. We sought to develop a thermostable CRISPR-Cas9 based system for genome editing of thermophiles. We identifed CaldoCas9 and designed an associated guide RNA and showed that the pair have targetable nuclease activity in vitro at temperatures up to 65 °C. We performed a detailed characterization of the protospacer adjacent motif specifcity of CaldoCas9, which revealed a preference for 5′-NNNNGNMA. We constructed a plasmid vector for the delivery and use of the CaldoCas9 based genome editing system in the extreme thermophile Thermus thermophilus at 65 °C. Using the vector, we generated gene knock-out mutants of T. thermophilus, targeting genes on the bacterial chromosome and megaplasmid. Mutants were obtained at a frequency of about 90%. We demonstrated that the vector can be cured from mutants for a subsequent round of genome editing. CRISPR-Cas9 based genome editing has not been reported previously in the extreme thermophile T. thermophilus. These results may facilitate development of genome editing tools for other extreme thermophiles and to that end, the vector has been made available via the plasmid repository Addgene.
    [Show full text]
  • Characterization of Stress Tolerance and Metabolic Capabilities of Acidophilic Iron-Sulfur-Transforming Bacteria and Their Relevance to Mars
    Characterization of stress tolerance and metabolic capabilities of acidophilic iron-sulfur-transforming bacteria and their relevance to Mars Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften – Dr. rer. nat. – vorgelegt von Anja Bauermeister aus Leipzig Im Fachbereich Chemie der Universität Duisburg-Essen 2012 Die vorliegende Arbeit wurde im Zeitraum von März 2009 bis Dezember 2012 im Arbeitskreis von Prof. Dr. Hans-Curt Flemming am Biofilm Centre (Fakultät für Chemie) der Universität Duisburg-Essen und in der Abteilung Strahlenbiologie (Institut für Luft- und Raumfahrtmedizin, Deutsches Zentrum für Luft- und Raumfahrt, Köln) durchgeführt. Tag der Einreichung: 07.12.2012 Tag der Disputation: 23.04.2013 Gutachter: Prof. Dr. H.-C. Flemming Prof. Dr. W. Sand Vorsitzender: Prof. Dr. C. Mayer Erklärung / Statement Hiermit versichere ich, dass ich die vorliegende Arbeit mit dem Titel „Characterization of stress tolerance and metabolic capabilities of acidophilic iron- sulfur-transforming bacteria and their relevance to Mars” selbst verfasst und keine außer den angegebenen Hilfsmitteln und Quellen benutzt habe, und dass die Arbeit in dieser oder ähnlicher Form noch bei keiner anderen Universität eingereicht wurde. Herewith I declare that this thesis is the result of my independent work. All sources and auxiliary materials used by me in this thesis are cited completely. Essen, 07.12.2012 Table of contents Abbreviations .......................................................................................
    [Show full text]
  • Genomics 98 (2011) 370–375
    Genomics 98 (2011) 370–375 Contents lists available at ScienceDirect Genomics journal homepage: www.elsevier.com/locate/ygeno Whole-genome comparison clarifies close phylogenetic relationships between the phyla Dictyoglomi and Thermotogae Hiromi Nishida a,⁎, Teruhiko Beppu b, Kenji Ueda b a Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan b Life Science Research Center, College of Bioresource Sciences, Nihon University, Fujisawa, Japan article info abstract Article history: The anaerobic thermophilic bacterial genus Dictyoglomus is characterized by the ability to produce useful Received 2 June 2011 enzymes such as amylase, mannanase, and xylanase. Despite the significance, the phylogenetic position of Accepted 1 August 2011 Dictyoglomus has not yet been clarified, since it exhibits ambiguous phylogenetic positions in a single gene Available online 7 August 2011 sequence comparison-based analysis. The number of substitutions at the diverging point of Dictyoglomus is insufficient to show the relationships in a single gene comparison-based analysis. Hence, we studied its Keywords: evolutionary trait based on whole-genome comparison. Both gene content and orthologous protein sequence Whole-genome comparison Dictyoglomus comparisons indicated that Dictyoglomus is most closely related to the phylum Thermotogae and it forms a Bacterial systematics monophyletic group with Coprothermobacter proteolyticus (a constituent of the phylum Firmicutes) and Coprothermobacter proteolyticus Thermotogae. Our findings indicate that C. proteolyticus does not belong to the phylum Firmicutes and that the Thermotogae phylum Dictyoglomi is not closely related to either the phylum Firmicutes or Synergistetes but to the phylum Thermotogae. © 2011 Elsevier Inc.
    [Show full text]
  • Experimental and Statistical Analysis of Nutritional Requirements for the Growth of the Extremophile Deinococcus Geothermalis DSM 11300
    Experimental and statistical analysis of nutritional requirements for the growth of the extremophile Deinococcus geothermalis DSM 11300 Julie Bornot, Cesar Arturo Aceves-Lara, Carole Molina-Jouve, Jean-Louis Uribelarrea, Nathalie Gorret To cite this version: Julie Bornot, Cesar Arturo Aceves-Lara, Carole Molina-Jouve, Jean-Louis Uribelarrea, Nathalie Gor- ret. Experimental and statistical analysis of nutritional requirements for the growth of the ex- tremophile Deinococcus geothermalis DSM 11300. Extremophiles, Springer Verlag, 2014, 18 (6), pp.1009-1021. 10.1007/s00792-014-0671-8. hal-01268947 HAL Id: hal-01268947 https://hal.archives-ouvertes.fr/hal-01268947 Submitted on 11 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible This is an author’s version published in: http://oatao.univ-toulouse.fr/22999 Official URL: https://doi.org/10.1007/s00792-014-0671-8 To cite this version: Bornot, Julie and Aceves-Lara, César-Arturo and Molina-Jouve, Carole and Uribelarrea, Jean-Louis and Gorret, Nathalie Experimental and statistical analysis of nutritional requirements for the growth of the extremophile Deinococcus geothermalis DSM 11300.
    [Show full text]
  • Supplementary Information
    doi: 10.1038/nature06269 SUPPLEMENTARY INFORMATION METAGENOMIC AND FUNCTIONAL ANALYSIS OF HINDGUT MICROBIOTA OF A WOOD FEEDING HIGHER TERMITE TABLE OF CONTENTS MATERIALS AND METHODS 2 • Glycoside hydrolase catalytic domains and carbohydrate binding modules used in searches that are not represented by Pfam HMMs 5 SUPPLEMENTARY TABLES • Table S1. Non-parametric diversity estimators 8 • Table S2. Estimates of gross community structure based on sequence composition binning, and conserved single copy gene phylogenies 8 • Table S3. Summary of numbers glycosyl hydrolases (GHs) and carbon-binding modules (CBMs) discovered in the P3 luminal microbiota 9 • Table S4. Summary of glycosyl hydrolases, their binning information, and activity screening results 13 • Table S5. Comparison of abundance of glycosyl hydrolases in different single organism genomes and metagenome datasets 17 • Table S6. Comparison of abundance of glycosyl hydrolases in different single organism genomes (continued) 20 • Table S7. Phylogenetic characterization of the termite gut metagenome sequence dataset, based on compositional phylogenetic analysis 23 • Table S8. Counts of genes classified to COGs corresponding to different hydrogenase families 24 • Table S9. Fe-only hydrogenases (COG4624, large subunit, C-terminal domain) identified in the P3 luminal microbiota. 25 • Table S10. Gene clusters overrepresented in termite P3 luminal microbiota versus soil, ocean and human gut metagenome datasets. 29 • Table S11. Operational taxonomic unit (OTU) representatives of 16S rRNA sequences obtained from the P3 luminal fluid of Nasutitermes spp. 30 SUPPLEMENTARY FIGURES • Fig. S1. Phylogenetic identification of termite host species 38 • Fig. S2. Accumulation curves of 16S rRNA genes obtained from the P3 luminal microbiota 39 • Fig. S3. Phylogenetic diversity of P3 luminal microbiota within the phylum Spirocheates 40 • Fig.
    [Show full text]
  • Evolution Génomique Chez Les Bactéries Du Super Phylum Planctomycetes-Verrucomicrobiae-Chlamydia
    AIX-MARSEILLE UNIVERSITE FACULTE DE MEDECINE DE MARSEILLE ECOLE DOCTORALE : SCIENCE DE LA VIE ET DE LA SANTE THESE Présentée et publiquement soutenue devant LA FACULTE DE MEDECINE DE MARSEILLE Le 15 janvier 2016 Par Mme Sandrine PINOS Née à Saint-Gaudens le 09 octobre 1989 TITRE DE LA THESE: Evolution génomique chez les bactéries du super phylum Planctomycetes-Verrucomicrobiae-Chlamydia Pour obtenir le grade de DOCTORAT d'AIX-MARSEILLE UNIVERSITE Spécialité : Génomique et Bioinformatique Membres du jury de la Thèse: Pr Didier RAOULT .................................................................................Directeur de thèse Dr Pierre PONTAROTTI ....................................................................Co-directeur de thèse Pr Gilbert GREUB .............................................................................................Rapporteur Dr Pascal SIMONET............................................................................................Rapporteur Laboratoires d’accueil Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes – UMR CNRS 6236, IRD 198 I2M - UMR CNRS 7373 - EBM 1 Avant propos Le format de présentation de cette thèse correspond à une recommandation de la spécialité Maladies Infectieuses et Microbiologie, à l’intérieur du Master de Sciences de la Vie et de la Santé qui dépend de l’Ecole Doctorale des Sciences de la Vie de Marseille. Le candidat est amené à respecter des règles qui lui sont imposées et qui comportent un format de thèse utilisé dans le Nord de l’Europe permettant un meilleur rangement que les thèses traditionnelles. Par ailleurs, la partie introduction et bibliographie est remplacée par une revue envoyée dans un journal afin de permettre une évaluation extérieure de la qualité de la revue et de permettre à l’étudiant de le commencer le plus tôt possible une bibliographie exhaustive sur le domaine de cette thèse. Par ailleurs, la thèse est présentée sur article publié, accepté ou soumis associé d’un bref commentaire donnant le sens général du travail.
    [Show full text]
  • Table S4. Phylogenetic Distribution of Bacterial and Archaea Genomes in Groups A, B, C, D, and X
    Table S4. Phylogenetic distribution of bacterial and archaea genomes in groups A, B, C, D, and X. Group A a: Total number of genomes in the taxon b: Number of group A genomes in the taxon c: Percentage of group A genomes in the taxon a b c cellular organisms 5007 2974 59.4 |__ Bacteria 4769 2935 61.5 | |__ Proteobacteria 1854 1570 84.7 | | |__ Gammaproteobacteria 711 631 88.7 | | | |__ Enterobacterales 112 97 86.6 | | | | |__ Enterobacteriaceae 41 32 78.0 | | | | | |__ unclassified Enterobacteriaceae 13 7 53.8 | | | | |__ Erwiniaceae 30 28 93.3 | | | | | |__ Erwinia 10 10 100.0 | | | | | |__ Buchnera 8 8 100.0 | | | | | | |__ Buchnera aphidicola 8 8 100.0 | | | | | |__ Pantoea 8 8 100.0 | | | | |__ Yersiniaceae 14 14 100.0 | | | | | |__ Serratia 8 8 100.0 | | | | |__ Morganellaceae 13 10 76.9 | | | | |__ Pectobacteriaceae 8 8 100.0 | | | |__ Alteromonadales 94 94 100.0 | | | | |__ Alteromonadaceae 34 34 100.0 | | | | | |__ Marinobacter 12 12 100.0 | | | | |__ Shewanellaceae 17 17 100.0 | | | | | |__ Shewanella 17 17 100.0 | | | | |__ Pseudoalteromonadaceae 16 16 100.0 | | | | | |__ Pseudoalteromonas 15 15 100.0 | | | | |__ Idiomarinaceae 9 9 100.0 | | | | | |__ Idiomarina 9 9 100.0 | | | | |__ Colwelliaceae 6 6 100.0 | | | |__ Pseudomonadales 81 81 100.0 | | | | |__ Moraxellaceae 41 41 100.0 | | | | | |__ Acinetobacter 25 25 100.0 | | | | | |__ Psychrobacter 8 8 100.0 | | | | | |__ Moraxella 6 6 100.0 | | | | |__ Pseudomonadaceae 40 40 100.0 | | | | | |__ Pseudomonas 38 38 100.0 | | | |__ Oceanospirillales 73 72 98.6 | | | | |__ Oceanospirillaceae
    [Show full text]
  • BOSS on EXPOSE-R2-Comparative Investigations on Biofilm and Planktonic Cells of Deinococcus Geothermalis As Mission Preparation Tests
    EPSC Abstracts Vol. 8, EPSC2013-930, 2013 European Planetary Science Congress 2013 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2013 BOSS on EXPOSE-R2-Comparative Investigations on Biofilm and Planktonic cells of Deinococcus geothermalis as Mission Preparation Tests Corinna Panitz1,2, Petra Rettberg2, Jan Frösler3, Prof. H. - C. Flemming3, Elke Rabbow2, Günther Reitz2 1RWTH Aachen/Medical Faculty, Inst.of Aerospace Medicine - Aachen, Germany, 2DLR, Inst.of Aerospace Medicine, Radiation Biology Dep. - Köln, Germany,3Universität Duisburg-Essen, Fakultät für Chemie - Biofilm Centre - Essen, Germany1; ([email protected] / Fax: +49-2203-61970) Abstract not only bacteria and Archaea, have mechanisms by which they can adhere to surfaces and to each other. Biofilms are of interest for Astrobiological investi- Biofilms are characterized by structural heterogeneity, gations since they are one of the oldest clear signs of genetic diversity, and complex community inter- life on Earth. In the experiment BOSS the hypothesis actions using the EPS matrix for stable, long-term interactions and as an external digestion system. This will be tested if the biofilm form of life with micro- matrix is strong enough that under certain conditions organisms embedded and aggregated in their EPS biofilms can even become fossilized. Usually, abiotic matrix is suited to support long-term survival of particles are associated with the “sticky” biofilm microorganisms under the harsh environmental con- matrix. One benefit of this environment is increased ditions as they exist in space and on Mars and is resistance to different chemical and physical agents superior to the same bacteria in the form of plank- as the dense extracellular matrix and the outer layer tonic cultures.
    [Show full text]
  • Yu-Chen Ling and John W. Moreau
    Microbial Distribution and Activity in a Coastal Acid Sulfate Soil System Introduction: Bioremediation in Yu-Chen Ling and John W. Moreau coastal acid sulfate soil systems Method A Coastal acid sulfate soil (CASS) systems were School of Earth Sciences, University of Melbourne, Melbourne, VIC 3010, Australia formed when people drained the coastal area Microbial distribution controlled by environmental parameters Microbial activity showed two patterns exposing the soil to the air. Drainage makes iron Microbial structures can be grouped into three zones based on the highest similarity between samples (Fig. 4). Abundant populations, such as Deltaproteobacteria, kept constant activity across tidal cycling, whereas rare sulfides oxidize and release acidity to the These three zones were consistent with their geological background (Fig. 5). Zone 1: Organic horizon, had the populations changed activity response to environmental variations. Activity = cDNA/DNA environment, low pH pore water further dissolved lowest pH value. Zone 2: surface tidal zone, was influenced the most by tidal activity. Zone 3: Sulfuric zone, Abundant populations: the heavy metals. The acidity and toxic metals then Method A Deltaproteobacteria Deltaproteobacteria this area got neutralized the most. contaminate coastal and nearby ecosystems and Method B 1.5 cause environmental problems, such as fish kills, 1.5 decreased rice yields, release of greenhouse gases, Chloroflexi and construction damage. In Australia, there is Gammaproteobacteria Gammaproteobacteria about a $10 billion “legacy” from acid sulfate soils, Chloroflexi even though Australia is only occupied by around 1.0 1.0 Cyanobacteria,@ Acidobacteria Acidobacteria Alphaproteobacteria 18% of the global acid sulfate soils. Chloroplast Zetaproteobacteria Rare populations: Alphaproteobacteria Method A log(RNA(%)+1) Zetaproteobacteria log(RNA(%)+1) Method C Method B 0.5 0.5 Cyanobacteria,@ Bacteroidetes Chloroplast Firmicutes Firmicutes Bacteroidetes Planctomycetes Planctomycetes Ac8nobacteria Fig.
    [Show full text]
  • Access to Electronic Thesis
    Access to Electronic Thesis Author: Khalid Salim Al-Abri Thesis title: USE OF MOLECULAR APPROACHES TO STUDY THE OCCURRENCE OF EXTREMOPHILES AND EXTREMODURES IN NON-EXTREME ENVIRONMENTS Qualification: PhD This electronic thesis is protected by the Copyright, Designs and Patents Act 1988. No reproduction is permitted without consent of the author. It is also protected by the Creative Commons Licence allowing Attributions-Non-commercial-No derivatives. If this electronic thesis has been edited by the author it will be indicated as such on the title page and in the text. USE OF MOLECULAR APPROACHES TO STUDY THE OCCURRENCE OF EXTREMOPHILES AND EXTREMODURES IN NON-EXTREME ENVIRONMENTS By Khalid Salim Al-Abri Msc., University of Sultan Qaboos, Muscat, Oman Mphil, University of Sheffield, England Thesis submitted in partial fulfillment for the requirements of the Degree of Doctor of Philosophy in the Department of Molecular Biology and Biotechnology, University of Sheffield, England 2011 Introductory Pages I DEDICATION To the memory of my father, loving mother, wife “Muneera” and son “Anas”, brothers and sisters. Introductory Pages II ACKNOWLEDGEMENTS Above all, I thank Allah for helping me in completing this project. I wish to express my thanks to my supervisor Professor Milton Wainwright, for his guidance, supervision, support, understanding and help in this project. In addition, he also stood beside me in all difficulties that faced me during study. My thanks are due to Dr. D. J. Gilmour for his co-supervision, technical assistance, his time and understanding that made some of my laboratory work easier. In the Ministry of Regional Municipalities and Water Resources, I am particularly grateful to Engineer Said Al Alawi, Director General of Health Control, for allowing me to carry out my PhD study at the University of Sheffield.
    [Show full text]
  • And Thermo-Adaptation in Hyperthermophilic Archaea: Identification of Compatible Solutes, Accumulation Profiles, and Biosynthetic Routes in Archaeoglobus Spp
    Universidade Nova de Lisboa Osmo- andInstituto thermo de Tecnologia-adaptation Química e Biológica in hyperthermophilic Archaea: Subtitle Subtitle Luís Pedro Gafeira Gonçalves Osmo- and thermo-adaptation in hyperthermophilic Archaea: identification of compatible solutes, accumulation profiles, and biosynthetic routes in Archaeoglobus spp. OH OH OH CDP c c c - CMP O O - PPi O3P P CTP O O O OH OH OH OH OH OH O- C C C O P O O P i Dissertation presented to obtain the Ph.D degree in BiochemistryO O- Instituto de Tecnologia Química e Biológica | Universidade Nova de LisboaP OH O O OH OH OH Oeiras, Luís Pedro Gafeira Gonçalves January, 2008 2008 Universidade Nova de Lisboa Instituto de Tecnologia Química e Biológica Osmo- and thermo-adaptation in hyperthermophilic Archaea: identification of compatible solutes, accumulation profiles, and biosynthetic routes in Archaeoglobus spp. This dissertation was presented to obtain a Ph. D. degree in Biochemistry at the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa. By Luís Pedro Gafeira Gonçalves Supervised by Prof. Dr. Helena Santos Oeiras, January, 2008 Apoio financeiro da Fundação para a Ciência e Tecnologia (POCI 2010 – Formação Avançada para a Ciência – Medida IV.3) e FSE no âmbito do Quadro Comunitário de apoio, Bolsa de Doutoramento com a referência SFRH / BD / 5076 / 2001. ii ACKNOWNLEDGMENTS The work presented in this thesis, would not have been possible without the help, in terms of time and knowledge, of many people, to whom I am extremely grateful. Firstly and mostly, I need to thank my supervisor, Prof. Helena Santos, for her way of thinking science, her knowledge, her rigorous criticism, and her commitment to science.
    [Show full text]