THE MECHANISM of the VOGES-Proskaueit REACTION and the DIACETYL REACTION FORZ PRIOTEINS

Total Page:16

File Type:pdf, Size:1020Kb

THE MECHANISM of the VOGES-Proskaueit REACTION and the DIACETYL REACTION FORZ PRIOTEINS 346 R. A. Q. O'MEARA. 2. This appears to be a general characteristic, because analysis of figures obtained from routine concentrations involving several thousand litres of plasma has shown that the average serum ratio of low ammonium sulphate fractions was 13 per cent. higher than the average for the original material. 3. Fractionation of a blend of high-ratio diphtheria antitoxin with tetanus and B. welchii antitoxic plasmas has shown that the purity curves for the latter antitoxins resemble that of the diphtheria antitoxin as obtained by in vitro and not by in vivo tests. REFERENCES. BARR, M., AND GLENNY, A. T.-(1931) J. Path. Bact., 34, 539. BARR. M., GLENNY, A. T., ANI) POPE, C. G.-(1931) Brit. J. Exp. Path., 12, 217. GLENNY, A. T.-(1931) ' System of Bacteriology in Relation to Medicine.' London, Medical Research Council, 6, 106. THE MECHANISM OF THE VOGES-PROSKAUEIt REACTION AND THE DIACETYL REACTION FORZ PRIOTEINS. R. A. Q. O'MEARA. From the Departmient of Bacteriology and Preventive Medicine, Trinity College, Dublin. Received for publication August 21st, 1931. HARDEN (1906) showed that the substance, produced from glucose in bacterial cultures, which gave the Voges-Proskauer reaction was acetylmethyl carbinol (CH3.CO.CHOH.CH3), now usually called acetoin. This substance combined with some constituent of the peptone in the cultures, when the latter were made alkaline, and the chemical interaction which took place resulted in the reddish coloration and greenish fluorescence characteristic of the reaction. He observed that the reaction began at the top of the test-tube, and concluded that oxidation was a factor in the chemical changes. He assumed that, in the presence of alkali, acetoin was oxidized by atmospheric oxygenl to diacetyl (CH3.CO.CO.CH3), and found support for his assumption in the observation that peptone gave with diacetyl in the presence of alkali a reaction exactly similar to that given with acetoin, except for the fact that it was much more rapid and intense. Later, Harden and Norris (1911), working with diacetyl, found that the amino-acid fraction of the peptone responsible for the colour change was that which contained the guanidine nucleus. They found that the red coloration, without fluorescence, was given by agmatine, arginine, creatine, dicyandiamide and guanidine-acetic acid, and concluded that it was associated with the THE VOGES-PROSKAUER REACTION. 347 molecular arrangement HN: C. NH2NHR, the nature of R being left un- determined. The greenish fluorescence was ascribed by them to a combination of diacetyl with unhydrolysed protein. The current view of the mechanism of the reactions under consideration may therefore be summed up as follows: CH3 .CO. CHOH. CH3 + 0 --CH3 Co.CO. CH3 CH3. CO. CO. CH3 + HN: C. NH2NHR -- red colour CH3CO. CO. CH3 + protein green fluorescence. There are, however, difficulties in the way of accepting this view. In the first place if acetoin (CH3.CO. CHOH. CH3) were so very readily oxidizable to diacetyl (CH3.CO. CO. CH3), then it is to be expected that 2-3 butylene glycol (CH3. CHOH . CHOH . CH3) would, by virtue of its constitution, be oxidized to acetoin and from thence to diacetyl with almost equal readiness. In consequence it should give a reaction similar to the Voges-Proskauer reaction, whereas it does not. Although it mav be converted into acetoin and diacetyl fairly readily by the aid of oxidizing agents just as acetoin may be converted by them into diacetyl, 2-3 butylene glycol is very stable even in the presence of strong alkali with free exposure to air. Again, if the Voges-Proskauer reaction took place in the manner outlined above, the many attempts which have been made to hasten it with the aid of oxidizing agents should have met with success, instead of which they have all been partial or total failures. While it is true that hydrogen peroxide, mentioned by Levine (1917), or sodium peroxide, suggested by Bedford (1929), may sometimes hasten the colour production, there is no doubt that they frequently fail to achieve this result, and sometimes prevent the appearance of any colour even when acetoin is known to be present in sufficient quantity to give the reaction strongly by the ordinary technique. With these anomalies in mind it was decided to re-investigate the mechanism of the two reactions. THE REACTION WITH DIACETYL. It was found at the outset that the reaction with diacetyl does not begin immediately on the addition of alkali, either with protein solutions or solutions of such bodies as dicyandiamide or arginine. Unless the amount of diacetyl present is considerable, time has to elapse before the colour begins to appear, and furthermore when it appears it comes first at the top of the fluid in the test-tube just as in the Voges-Proskauer reaction. This observation suggested that oxidation was just as essential for the diacetyl reaction as for the reaction with acetoin. The possibility of an acceleration of the reaction at the top of the tube by mere surface action had, however, to be excluded. A strong solution of protein in one case, dicyandiamide in a second and creatine in a third was mixed with an equal volume of 40 per cent. caustic soda in a boiling tube, and heated while a current of hydrogen was passed through to expel air. It was cooled, the current of hydrogen still passing, and about 1 c.c. of a 2 per cent. solution of diacetyl which had been boiled and cooled was gradually introduced into the tube. No coloration resulted in either case, even though the reagents were left in contact with one another for half an hour, an active 348 R. A. Q. O'MEARA. stream of hydrogen being maintained. On stopping the hydrogen and shaking up the contents of the tubes with air an intense red colour developed without delay. The above findings were confirmed in a number of ways. To a strong solution of dicyandiamide an equal volume of 40 per cent. caustic soda was added in a test-tube, and the whole boiled vigorously, without shaking, to expel air. A few drops of a 2 per cent. solution of diacetyl which had been well boiled were then introduced, the vigorous boiling of the mixture being continued. No colour was visible so long as the boiling was continued and the tube kept unshaken, but on shaking up with air the red colour was immediately produced. The reaction was also carried out in boiling absolute alcohol and in cold absolute alcohol, from which air had been previously expelled, with confirmatory results. It may, therefore, be concluded, firstly that oxygen is essential for the development of the red colour in the diacetyl reaction, and secondly, that the reaction proceeds in the presence of alkali by condensation between diacetyl or a polymeride of diacetyl and the guanidine derivative, to form a colourless body which is readily oxidized by atmospheric oxygen to a red colouring matter. The second contention follows from the fact that diacetyl survives for only a short time in a strongly alkaline solution, being converted into p. xyloquinone and, in consequence, the colour obtained in the above experi- ments on admitting air to the tubes could not be due to residual diacetyl. The colourless intermediate product in the reaction has not been isolated in a pure state, but it has been shown that it remains colourless on neutralization, and is not susceptible to oxidation by atmospheric oxygen except in alkaline solutions. The mechanism may be summarized for the sake of clearness as follows: CH3.CO. CO. CH3 + guanidine derivative - colourless substance or (CH3'CO.CO.CH3)11+ ,, ,, Colourless substance + 0 - red substance. The more detailed study of the mechanism of the reaction has not been attempted, and presents considerable difficulties in view of the fact that the chemicals involved are somewhat of enigmas both in regard to their reactions and their constitution. It seems probable, however, that enolization of the diacetyl is a necessary preliminary in the reaction, since one would otherwise expect benzil (C6H5. CO . CO . C6H5) to give a similar reaction, and, as Harden and Norris (1911) have shown, it does not. By enolization diacetyl would give rise to unsaturated and highly reactive bodies capable of condensing either among themselves or with other substances in the solution. The possibility that it is a condensation product of diacetyl and not diacetyl itself which is responsible for the reaction cannot be lost sight of. If it is such a condensation product the substance is not p. xyloquinone. Harden (1906) left diacetyl in contact with alkali, and found that the mixture failed, after a time, to give the reaction on the addition of peptone. This method of excluding p . xyloquinone is not, however, conclusive, as it is a substance very unstable in alkaline solution, rapidly absorbing oxygen from the air and darkening in colour. In order to confirm Harden's finding p . xyloquinone was isolated in a pure state by shaking up an alkaline solution of diacetyl with ether, the ether being decanted and THE VOGES-PROSKAUER REACTION. 349 evaporated to dryness in a current of air. It is a yellow crystalline body with a typically quinonoid odour, and does not give a visible reaction with the guanidine derivatives. It was found, however, that on adding strong caustic soda to a dilute aqueous solution of p . xyloquinone a red colour was produced, in appearance not unlike that given by diacetyl with such substances as dicyandiamide. The colour was produced immediately on the addition of alkali and faded in a few minutes. Mere traces of p . xyloquinone were detectable by its odour and its behaviour in this way with alkalis.
Recommended publications
  • Flavour Management by Citric Acid Negative MLF Starter Cultures Authors: Carsten Heinemeyer, 2B Fermcontrol; Ulrich Hamm DLR-RNH Bad Kreuznach, Germany; Dr
    Flavour management by citric acid negative MLF starter cultures Authors: Carsten Heinemeyer, 2B FermControl; Ulrich Hamm DLR-RNH Bad Kreuznach, Germany; Dr. Jürgen Fröhlich, University of Mainz General will be completed in all fermentations. Additionally, acetic acid and a certain residual profile of the metabolic intermediates The malo-lactic fermentation (MLF) is a commonly used remain in the wine. method to convert the aggressive malic acid to lactic acid. This conversion results in a reduction of the titratable acidity, which New MLF Starter Cultures is desired mainly in red wine but also in numerous white wines. The development of a citric acid negative MLF starter culture This process will be done either by the indigenous flora of LAB gave a new opportunity to avoid diacetyl and acetic acid or by selected strains of LAB e.g. Oenococcus oeni. During the production from the citric acid degradation. The fermentation MLF Oenococcus oeni does not convert only malic acid into lactic with a citric acid negative MLF starter culture will best preserve acid, numerous amounts of aroma active by-products will also be the varietal character of the wine. produced. The best known is diacetyl, which gives buttery notes to the wine. Diacetyl will be produced during the MLF by the In a comprehensive four year study at the wine research institute conversion of the natural citric acid in the wine by Oenococcus DLR-RNH Bad Kreuznach in Rhineland-Palatinate-Germany, oeni (Jan Clair Nielsen 1999). Apart from the diacetyl formation different MLF starter strains were tested under practical by Oenococcus oeni, numerous intermediate by-products are winemaking conditions.
    [Show full text]
  • An Original Method for Producing Acetaldehyde and Diacetyl by Yeast
    b r a z i l i a n j o u r n a l o f m i c r o b i o l o g y 4 7 (2 0 1 6) 949–954 ht tp://www.bjmicrobiol.com.br/ Industrial Microbiology An original method for producing acetaldehyde and diacetyl by yeast fermentation a a,∗ a b a,c Irina Rosca , Anca Roxana Petrovici , Mihai Brebu , Irina Stoica , Bogdan Minea , a Narcisa Marangoci a “Petru Poni” Institute of Macromolecular Chemistry, Advanced Research Center for Bionanoconjugates and Biopolymers, Aleea GrigoreGhica Voda, Iasi, Romania b SC Zeelandia SRL, R&D Department, Valea Lupului, Iasi, Romania c “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania a r a t i c l e i n f o b s t r a c t Article history: In this study a natural culture medium that mimics the synthetic yeast peptone glucose Received 2 June 2015 medium used for yeast fermentations was designed to screen and select yeasts capable Accepted 29 February 2016 of producing high levels of diacetyl and acetaldehyde. The presence of whey powder and Available online 25 July 2016 sodium citrate in the medium along with manganese and magnesium sulfate enhanced Associate Editor: Jorge Gonzalo both biomass and aroma development. A total of 52 yeasts strains were cultivated in two Farias Avendano different culture media, namely, yeast peptone glucose medium and yeast acetaldehyde- diacetyl medium. The initial screening of the strains was based on the qualitative reaction Keywords: of the acetaldehyde with Schiff’s reagent (violet color) and diacetyl with Brady’s reagent Acetaldehyde (yellow precipitate).
    [Show full text]
  • An Unrecognized Hazard in E-Cigarette Vapor: Preliminary Quantification of Methylglyoxal Formation from Propylene Glycol in E-Cigarettes
    International Journal of Environmental Research and Public Health Article An Unrecognized Hazard in E-Cigarette Vapor: Preliminary Quantification of Methylglyoxal Formation from Propylene Glycol in E-Cigarettes Parham Azimi 1, Zahra Keshavarz 1, Marianne Lahaie Luna 1,2, Jose Guillermo Cedeno Laurent 1 , Jose Vallarino 1, David C. Christiani 1 and Joseph G. Allen 1,* 1 Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; [email protected] (P.A.); [email protected] (Z.K.); [email protected] (M.L.L.); [email protected] (J.G.C.L.); [email protected] (J.V.); [email protected] (D.C.C.) 2 Occupational & Environmental Health Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada * Correspondence: [email protected] Abstract: Up to 95% of the liquid volume in an e-cigarette consists of propylene glycol. Previous research has shown that propylene glycol can generate diacetyl and formaldehyde when heated. New research shows that propylene glycol can also generate methylglyoxal, an alpha di-carbonyl compound recently shown to cause epithelial necrosis at even lower concentrations than diacetyl, the flavoring chemical associated with bronchiolitis obliterans (“Popcorn Lung”). We analyzed chemical emissions from 13 JUUL pod flavors. Diacetyl and methylglyoxal was detected in 100% of samples 3 3 with median concentration (range) of 20 µg/m (less than limit of quantification: 54 µg/m ) and 4219 µg/m3 (677–15,342 µg/m3), respectively. We also detected acetaldehyde (median concentration: Citation: Azimi, P.; Keshavarz, Z.; 341 µg/m3) and propionaldehyde (median concentration: 87 µg/m3) in all samples.
    [Show full text]
  • Particularly Hazardous Substances
    Particularly Hazardous Substances In its Laboratory Standard, OSHA requires the establishment of additional protections for persons working with "Particularly Hazardous Substances" (PHS). OSHA defines these materials as "select" carcinogens, reproductive toxins and acutely toxic materials. Should you wish to add: explosive, violently reactive, pyrophoric and water-reactve materials to this category, the information is included. Carbon nanotubes have also been added due to their suspected carcinogenic properties. This table is designed to assist the laboratory in the identification of PHS, although it is not definitively conclusive or entirely comprehensive. *Notes on the proper use of this table appear on page 12. 1 6 5 2 3 4 Substance CAS National Toxicity National Program Carcinogen Toxin Acute Regulated OSHA Carcinogen Group IARC Carcinogen Toxin Reproductive Violently Reactive/ Explosive/Peroxide Forming/Pyrophoric A-a-C(2-Amino-9H-pyrido[2,3,b]indole) 2648-68-5 2B Acetal 105-57-7 yes Acetaldehyde 75-07-0 NTP AT 2B Acrolein (2-Propenal) 107-02-8 AT Acetamide 126850-14-4 2B 2-Acetylaminofluorene 53-96-3 NTP ORC Acrylamide 79-06-6 NTP 2B Acrylyl Chloride 814-68-6 AT Acrylonitrile 107-13-1 NTP ORC 2B Adriamycin 23214-92-8 NTP 2A Aflatoxins 1402-68-2 NTP 1 Allylamine 107-11-9 AT Alkylaluminums varies AT Allyl Chloride 107-05-1 AT ortho-Aminoazotoluene 97-56-3 NTP 2B para-aminoazobenzene 60-09-3 2B 4-Aminobiphenyl 92-67-1 NTP ORC 1 1-Amino-2-Methylanthraquinone 82-28-0 NTP (2-Amino-6-methyldipyrido[1,2-a:3’,2’-d]imidazole) 67730-11-4 2B
    [Show full text]
  • Recommendation from the Scientific Committee on Occupational Exposure Limits for Diacetyl
    Employment, Social Affairs & Inclusion SCOEL Recommendation on Diacetyl Recommendation from the Scientific Committee on Occupational Exposure Limits for Diacetyl SCOEL/SUM/149 June 2014 June 2014 1 Employment, Social Affairs & Inclusion SCOEL Recommendation on Diacetyl Table of Contents 1. Substance identification, physico-chemical properties.............................................. 3 2. Occurrence/use and occupational exposure ........................................................... 3 2.1. Occurrence and use ...................................................................................... 3 2.2. Occupational exposure .................................................................................. 4 2.3. Methods of exposure monitoring and analysis .................................................. 5 3. Health significance ............................................................................................. 6 3.1. Toxicokinetics .............................................................................................. 7 3.1.1. Human data ........................................................................................... 7 3.1.2. Animal data ........................................................................................... 7 3.1.3. Biological monitoring ............................................................................... 8 3.2. Acute toxicity ............................................................................................... 8 3.2.1. Human data ..........................................................................................
    [Show full text]
  • Substituted Deoxyguanosine Nucleosides from 2‐
    Synthesis of N2-Substituted Deoxyguanosine UNIT 1.3 Nucleosides from 2-Fluoro-6-O- (Trimethylsilylethyl)-2′-Deoxyinosine This unit describes the synthesis of 2-fluoro-6-O-(trimethylsilylethyl)-2′-deoxyinosine and gives examples of its use for the preparation of N2-substituted deoxyguanosine nucleosides. Such nucleoside derivatives are used for a variety of purposes including chemotherapy, enzyme mechanism studies, nuclear magnetic resonance (NMR) studies (when isotopically labeled), and as synthetic standards for identification of adducts formed by the reaction of DNA with xenobiotics. In addition, the O6-protected 2-fluoro- 2′-deoxyinosine compounds can be converted to phosphoramidites and used in the synthesis of oligonucleotides, thus allowing substitution reactions to be carried out after oligonucleotide assembly. 2-Halopurine derivatives have been used for many years for the preparation of N2-sub- stituted guanosine derivatives, with the 2-fluoro substituent being the most easily dis- placed by nucleophiles (Montgomery and Hewson, 1960; Gerster and Robins, 1965, 1966). The 2-fluoro group is introduced by aqueous diazotization of guanosine in the presence of potassium fluoride or fluoroboric acid. However, these conditions are too harsh for 2′-deoxyguanosine and lead to depurination; hence, different synthetic method- ology is needed for the deoxynucleoside. The fluorine atom can be introduced success- fully by diazotization under anhydrous conditions with t-butyl nitrite as the diazotizing agent and HF in pyridine as the fluoride source (Robins and Uznanski, 1981; Lee et al., 1990; Harris et al., 1991). Success in the fluoridation step requires protection of the C6 oxygen group, which is done by Mitsunobu alkylation (Mitsunobu, 1981) with trimethyl- silylethanol or other alcohols.
    [Show full text]
  • Diacetyl Take a Single Short Sniff
    beer flavor standard 2,3-butanedione OFF-FLAVOR KIT available from www.cicerone.org ASSESSMENT CONFUSIONS Without covering the glass, swirl • Butyric acid the beer to release the aroma. • Vanillin Diacetyl Take a single short sniff. Repeat • Isobutyraldehyde “like butter, or as necessary. IMPORTANCE butter popcorn” THRESHOLD stouts 10 – 40 µg/l and lagers, eg in other lager beers. Considerable ORIGINS efforts are made by breweries to Produced in beer from a precursor formed by yeast during fermentation. Can also be formed REMARKS by contaminant lactic acid bacteria. 2,3-Butanedione is one of two vicinal diketones found in beer. O The ratio of diacetyl to CH3 pentanedione concentrations can H3 C be used as an indicator of bacterial contamination in beer. TION O A www.aroxa.com CAS NUMBER [email protected] 431-03-8 ©2013 CARA TECHNOLOGY LTD % POPUL RANDALLS ROAD LEATHERHEAD, SURREY FLAVOR THRESHOLD KT22 7RY, UK beer flavor standard dimethyl sulfide OFF-FLAVOR KIT available from www.cicerone.org ASSESSMENT CONFUSIONS Without covering the glass, swirl • Methyl thioacetate the beer to release the aroma. • Ethanethiol DMS Take a single short sniff. Repeat • Dimethyl trisulphide “like sweetcorn or as necessary. IMPORTANCE tomato sauce” THRESHOLD 30 - 50 µg/l beers. Excessive levels are indicative ORIGINS of growth of contaminant bacteria Formed from malt-derived during fermentation. precursors, primarily during wort production and – to a lesser extent – REMARKS during fermentation. The perception of dimethyl sulfide H3 C CH3 aromatic higher
    [Show full text]
  • Diacetyl by Wine Making Lactic Acid Bacteria
    Agric. Biol. Chem., 49 (7), 2147-2157, 1985 2147 Transformation of Citric Acid to Acetic Acid, Acetoin and Diacetyl by Wine Making Lactic Acid Bacteria Yoshimi Shimazu, Mikio Uehara and Masazumi Watanabe Food Research Laboratory, KikkomanCorporation, 399 Noda, Noda-shi, Chiba 278, Japan Received January 18, 1985 Adecrease in citric acid and increases in acetic acid, acetoin and diacetyl were found in the test red wine after inoculation of intact cells of Leuconostoc mesenteroides subsp. lactosum ATCC27307, a malo-lactic bacterium, grownon the malate plus citrate-medium. Citric acid in the buffer solution was transformed to acetic acid, acetoin and diacetyl in the pH range of 2 to 6 after inoculation with intact cells of this bacterial species. It was concluded that citric acid in wine making involving malo- lactic fermentation, at first, was converted by citrate lyase to acetic and oxaloacetic acids, and the latter was successively transformed by decarboxylation to pyruvic acid which was subsequently converted to acetoin, diacetyl and acetic acid. Both the activities of citrate lyase and acetoin formation from pyruvic acid in the dialyzed cell- free extract were optimal at pH 6.0. Divalent cations such as Mn2+ , Mg2+ , Co2 + and Zn2 + activated the citrate lyase. The citrate lyase was completely inhibited by EDTA,Hg2+ and Ag2 +. The acetoin formation from pyruvic acid was significantly stimulated by thiamine pyrophosphate and CoCl2, and inhibited by oxaloacetic acid. Specific activities of the citrate lyase and acetoin formation were considerably variable amongthe six strains of malo-lactic bacteria examined. Someactivities of irreversible reduction of diacetyl to acetoin were foundin the cell-free extracts of four of the malo- lactic bacteria strains and the optimal pH was 6.0 for this activity of Leu.
    [Show full text]
  • Independent Toxicology Assessment for Diacetyl
    Independent Toxicology Assessment for Diacetyl December 17, 2008 Andrew Maier, PhD, CIH, DABT Associate Director Toxicology Excellence for Risk Assessment Phone: 513-542-7475 x16 [email protected] Presentation Outline • Who is TERA? • What is TERA’s role? • Applying a systematic approach to health-based occupational limit development. • Some initial thoughts on diacetyl risk assessment. 2 Toxicology Excellence for Risk Assessment (TERA) Toxicology Excellence for Risk Assessment (TERA) is a non-profit, 501(c)(3) corporation organized for scientific and educational purposes. The mission of TERA is to inform the protection of public health by developing and communicating risk assessment values, improving risk assessment methods through research, and to educate on risk assessment issues. •Independent non-profit – funding from individual mission- related projects sponsored by government and industry •Objective approach with a focus on science •Scientific opinions are released to the public 3 Recent TERA Sponsors • Approximately 70% of TERA funding is from government. • U.S. EPA: - Support of IRIS Assessments - Science Support Document for NO2 NAAQS. - Exposure and effect progression for phosgene-induced fibrosis. • U.S. NIOSH: - Development of IDLH values. - Implementation of new skin notation methodology. • State of Texas: - Peer Review of ESL values (e.g., 1,3-butadiene). • Industry Consortia: - Chloropicrin acute inhalation values presented to U.S. and CA agencies. • Volunteer Groups: - Approximately 7% of TERA budget, including service on AIHA WEEL Committee. 4 TERA’s Role for Diacetyl Issue • TERA is being funded for this work by a consortium of food producers. • Provide an independent toxicology review document for diacetyl. • Ensure the document is made available to interested OEL-setting organizations and agencies as an aid to their deliberations.
    [Show full text]
  • ALDC Prevents Diacetyl
    P.O. BOX 593 • NORTHAMPTON, MA 01061 413 404 4830 MURPHYANDSON.COM ALDC prevents diacetyl. By breaking down alpha acetolactate during fermentation, ALDC inhibits production of off flavors, ensuring quality and increasing capacity. In commercial PRODUCT INFO brewery trials, ALDC from ALDC from Murphy & Son is added at the Murphy & Son time of yeast pitching an prevents the reduced the level formation of diacetyl fermentation. of diacetyl in finished beer As a result, diacetyl can be kept below the below the flavor threshold flavor threshold, ensuring the quality, flavor, compared to the and consistency of every brew. Without previous batch the need for long maturation, tank space is brewed with increased. ALDC. BENEFITS DRY HOP CREEP Is your dry hopping kicking up diacetyl? Keep the Reduce diacetyl production level below threshold by adding ALDC to the cooled Meet peak capacity demands wort at yeast pitching. Utilize vessels more efficiently DIACETYL BOMBS? Ensure packaged beer quality Prevent the release of diacetyl forming in packages by removing the precursor—alpha acetolactate— from each and every batch before packaging. APPLICATION How much to add 1–5 grams per barrel When to use Add to fermenter at time of yeast pitching Activity range pH: 4.0–7.0 temperature: 50–104°F HOW DOES IT WORK? ALDC is an enzyme that effectively bypass- STORAGE es the production of diacetyl during fermen- Temperature tation to make acetoin, a normal fermenta- 32-50°F tion byproduct, which has very little flavor. Do not allow to freeze. If this is your first time using ALDC, then Location Cool, sealed, and away from sunlight add a higher dose, i.e.
    [Show full text]
  • United States Patent (19) 11) 4,450,277 Graf Et Al
    United States Patent (19) 11) 4,450,277 Graf et al. 45 May 22, 1984 54 PREPARATION OF1-SUBSTITUTED 56 References Cited MIDAZOLES U.S. PATENT DOCUMENTS T5) Inventors: Fritz Graf, Speyer; Leopold Hupfer, 3,037,028 5/1962 Green .................................. 54.8/335 Friedelsheim, both of Fed. Rep. of Germany OTHER PUBLICATIONS Preliminary Brochure of BASF AG on 1- and 2-Me 73) Assignee: BASF Aktiengesellschaft, Fed. Rep. thylimidazole and 1,2-Dimethylimidazole Dated of Germany 9/1967. Lions, F., et al., J. Proc. Royal Soc. N.S.W., 74 (1941), 21 Appl. No.: 190,901 pp. 365-372. (22 Filed: Sep. 25, 1980 Primary Examiner-Richard A. Schwartz Attorney, Agent, or Firm-Keil & Witherspoon (30) Foreign Application Priority Data 57 ABSTRACT Oct. 8, 1979 IDE Fed. Rep. of Germany ....... 2940709 A process for the preparation of 1-substituted imidaz 51) Int. Cl. .................. C07D 233/58; C07D 233/60; oles by reacting an a-dicarbonyl compound with am CO7D 233/61 monia, an aldehyde and a primary amine in an aqueous 52 U.S. C. .................................... 548/346; 548/335; medium, in a single stage, at 20-150° C. 548/341; 548/342 58 Field of Search ................ 548/335, 346, 341, 342 3 Claims, No Drawings 4,450,277 ; 2 1 hyde, acetaldehyde, propionaldehyde, isobutyralde PREPARATION OF1-SUBSTITUTED hyde and benzaldehyde. MDAZOLES Examples of primary amines to be used as starting . components are monoamines of the formula X-NH2, The present invention relates to a novel process for 5 of the aliphatic, cycloaliphatic or aromatic series. Suit the preparation of 1-substituted imidazoles.
    [Show full text]
  • Acetoin Diacetyl
    Acetoin Diacetyl Method no.: 1012 Control no.: T-1012-FV-01-0811-M Target concentration: 0.05 ppm (TWA) (0.18 mg/m3) acetoin 0.05 ppm (TWA) (0.18 mg/m3) diacetyl OSHA PEL: none acetoin none diacetyl ACGIH TLV: none acetoin none diacetyl Procedure: Samples are collected by drawing workplace air through two tubes containing specially cleaned and dried silica gel connected in series. Samples are extracted and derivatized with a solution of 95:5 ethyl alcohol:water containing 2 mg/mL of O-(2, 3, 4, 5, 6-pentafluorobenzyl) hydroxylamine hydrochloride (PFBHA) and analyzed by gas chromatography using an electron capture detector (GC-ECD). Recommended sampling time 180 min at 0.05 L/min (9.0 L) (TWA) and sampling rate: 15 min at 0.2 L/min (3 L) (short term) Reliable quantitation limit: 1.49 ppb (5.37 μg/m3) acetoin 1.30 ppb (4.57 μg/m3) diacetyl Standard error of 5.06% acetoin estimate at the target 5.11% diacetyl concentration: Special requirements: Protect samplers from the light during and after sampling with aluminum foil or opaque tape. Status of method: Evaluated method. This method has been subjected to the established evaluation procedures of the OSHA Salt Lake Technical Center Methods Development Team. November 2008 Mary E. Eide Methods Development Team Industrial Hygiene Chemistry Division OSHA Salt Lake Technical Center Sandy UT 84070-6406 1 of 34 T-1012-FV-01-0811-M 1. General Discussion For assistance with accessibility problems in using figures and illustrations presented in this method, please contact Salt Lake Technical Center (SLTC) at (801) 233-4900.
    [Show full text]