Β-Apocarotenoids: Occurrence in Cassava Biofortified with Β-Carotene and Mechanisms of Uptake in Caco-2 Intestinal Cells

Total Page:16

File Type:pdf, Size:1020Kb

Β-Apocarotenoids: Occurrence in Cassava Biofortified with Β-Carotene and Mechanisms of Uptake in Caco-2 Intestinal Cells β-Apocarotenoids: Occurrence in Cassava Biofortified with β-Carotene and Mechanisms of Uptake in Caco-2 Intestinal Cells THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Boluwatiwi O. Durojaye Graduate Program in Human Nutrition The Ohio State University 2015 Master's Examination Committee: Earl H. Harrison, Ph.D., Advisor Steven J. Schwartz, Ph.D. Joshua A. Bomser, Ph.D. Copyrighted by Boluwatiwi O. Durojaye 2015 Abstract Biofortification is defined as the enrichment of staple crops with essential micronutrients. At present, it is one of the strategies used to alleviate vitamin A deficiency (VAD) by breeding staple crops with β-carotene. Staple crops that have been successfully biofortified with β-carotene under the HarvestPlus program are cassava, maize (corn) and sweet potato. Recently, β- apocarotenoids have been identified and quantified in cantaloupe melons and orange-fleshed honeydew. These cleavage products of β-carotene are formed by chemical and enzymatic oxidations. However, there are no detailed analyses of these compounds in biofortified foods and little is known about their bioavailability and intestinal absorption. Hence, this research focused on the analysis of β- apocarotenoids in biofortified cassava and kinetics of cell uptake and metabolism of β-apocarotenoids. In the first study, we analyzed the β-carotene and β-apocarotenoids content of conventionally bred cassava biofortified with β-carotene. Using a previously described high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method, we identified and quantified β-apo-13- carotenone, β-apo-14′-carotenal, β-apo-12′-carotenal, β-apo-10′-carotenal, and β-apo-8′-carotenal in hexane/acetone extracts of raw, boiled, and fried roots of ii the two biofortified cassava varieties investigated. The levels of β-apocarotenoids in roots of non-biofortified cassava varieties were lower than those of biofortified varieties and some of these values approached the limit of detection (LOD) or limit of quantification (LOQ). The purpose of the second study was to determine kinetics of uptake and metabolism of β-apocarotenoids using Caco-2 intestinal cells as a model. We hypothesized that these compounds are directly absorbed from the diet similarly to β-carotene. Pure β-apocarotenoids were delivered to fully differentiated monolayers of Caco-2 cells using tween-40 micelles. Carotenoids were extracted from media and cells with acetone:hexanes (1:4 v/v) and analyzed by HPLC. We observed that there was rapid uptake of β-apo-8′-carotenal into cells. We detected two unidentified metabolites (X and Y) of β-apo-8′-carotenal. The formation of compound X increased with time corresponding with a decrease in β-apo-8′-carotenal. Also, cellular uptake of β-apo-13-carotenone was rapid and this compound was extensively degraded over time. Understanding the mechanisms of absorption and metabolism of β- apocarotenoids relative to their quantities in foods is critical in exploring the functions of these metabolites, some of which have been shown to be potent antagonists of vitamin A. Keywords: Biofortification; HPLC-MS/MS; cell uptake; carotenoids metabolism iii Acknowledgements First and foremost, I would like to express my sincere gratitude to my advisor and mentor, Dr. Earl H. Harrison. Thank you for the funding, support and constructive criticism throughout this research project. Also, I would like to thank Dr. Steven J. Schwartz for serving on my thesis advisory committee and for his expertise and collaboration on this project. I also would like to thank Dr. Joshua A. Bomser for serving on my committee. I am also grateful to Dr. Mark L. Failla for his expertise and Dr. Chureeporn Chitchumroonchokchai (Julie C) for her important laboratory training and contributions to the success of this project. To present and past members of the Harrison laboratory group – Carlo, Sara, Yan and Vanessa, thank you for the training and time spent to troubleshoot numerous unsuccessful experiments. It has been a pleasure working with you all. I am most especially grateful to my parents Kolawole and Olufeyisara Durojaiye for whom none of this would be possible. Thank you for your prayers, support and words of encouragement that got me through my most difficult days. iv Vita Education 2013-Present...……..……………M.S. Human Nutrition, The Ohio State University 2012-2014.……….………………...………M.Sc. Biochemistry, University of Lagos 2007-2010…………………..……B.Sc. (Honors) Biochemistry, University of Lagos Experience and Awards 2014-Present…………...Graduate Teaching Associate, The Ohio State University 2013-Present……………..EHE Graduate scholarships, The Ohio State University 2013…………………...University Graduate Fellowship, The Ohio State University Fields of Study Major Fields: Human Nutrition; Biochemistry v Table of Contents Abstract .................................................................................................................ii Acknowledgements ..............................................................................................iv Vita ....................................................................................................................... v Table of Contents .................................................................................................vi List of Tables ........................................................................................................ x List of Figures .......................................................................................................xi List of Abbreviations ........................................................................................... xiv Introduction ........................................................................................................... 1 Specific Aims .................................................................................................... 4 Aim 1 ............................................................................................................. 4 Aim 2 ............................................................................................................. 5 Chapter 1. Review of Literature ....................................................................... 6 1.1 Biofortification as a strategy to alleviate VAD .......................................... 7 1.2 Methods of biofortification for provitamin A cassava ............................... 9 1.3 Retention, bioaccessibility and bioavailability of β-carotene in provitamin A cassava ....................................................................................................... 11 vi 1.4 Metabolism of β-carotene ...................................................................... 14 1.4.1 Digestion ......................................................................................... 14 1.4.2 Intestinal absorption ........................................................................ 15 1.4.3 Cellular Uptake ............................................................................... 18 1.5 Cleavage products of β-carotene: How are they formed? ..................... 19 1.5.1 Chemical reactions of carotenoids yielding β-apocarotenoids ........ 19 1.5.2 Enzymatic cleavage of carotenoids................................................. 20 1.6 Occurrence of β-apocarotenoids in foods and in vivo ............................ 23 1.7 Biological activity of β-apocarotenoids .................................................. 24 Chapter 2. Analysis of β-carotene and β-apocarotenoids in cassava biofortified with β-carotene ................................................................................. 28 2.1 Abstract ................................................................................................. 29 2.2 Introduction ............................................................................................ 30 2.3 Materials and Methods .......................................................................... 35 2.3.1 Chemicals and Supplies ................................................................. 35 2.3.2 Processing of cassava varieties ...................................................... 35 2.3.3 Extraction and HPLC-MS/MS analysis of β-carotene and β- apocarotenoids ............................................................................................ 37 2.4 Results .................................................................................................. 40 vii 2.4.1 Profile of β-apocarotenoids in cassava samples ............................. 40 2.4.2 Determination of total content of β-carotene and β-apocarotenoids in cassava ....................................................................................................... 44 2.4.3 Effect of boiling and frying on β-apocarotenoids content ................ 48 2.5 Discussion ............................................................................................. 54 2.6 Conclusion ............................................................................................. 56 2.7 Acknowledgements ............................................................................... 56 Chapter 3. Kinetics of uptake and metabolism of β-apo-8′-carotenal and β- apo-13-carotenone by Caco-2 human intestinal cells ......................................... 57 3.1 Abstract ................................................................................................. 58 3.2 Introduction ...........................................................................................
Recommended publications
  • Synthetic Conversion of Leaf Chloroplasts Into Carotenoid-Rich Plastids Reveals Mechanistic Basis of Natural Chromoplast Development
    Synthetic conversion of leaf chloroplasts into carotenoid-rich plastids reveals mechanistic basis of natural chromoplast development Briardo Llorentea,b,c,1, Salvador Torres-Montillaa, Luca Morellia, Igor Florez-Sarasaa, José Tomás Matusa,d, Miguel Ezquerroa, Lucio D’Andreaa,e, Fakhreddine Houhouf, Eszter Majerf, Belén Picóg, Jaime Cebollag, Adrian Troncosoh, Alisdair R. Ferniee, José-Antonio Daròsf, and Manuel Rodriguez-Concepciona,f,1 aCentre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain; bARC Center of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney NSW 2109, Australia; cCSIRO Synthetic Biology Future Science Platform, Sydney NSW 2109, Australia; dInstitute for Integrative Systems Biology (I2SysBio), Universitat de Valencia-CSIC, 46908 Paterna, Valencia, Spain; eMax-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany; fInstituto de Biología Molecular y Celular de Plantas, CSIC-Universitat Politècnica de València, 46022 Valencia, Spain; gInstituto de Conservación y Mejora de la Agrodiversidad, Universitat Politècnica de València, 46022 Valencia, Spain; and hSorbonne Universités, Université de Technologie de Compiègne, Génie Enzymatique et Cellulaire, UMR-CNRS 7025, CS 60319, 60203 Compiègne Cedex, France Edited by Krishna K. Niyogi, University of California, Berkeley, CA, and approved July 29, 2020 (received for review March 9, 2020) Plastids, the defining organelles of plant cells, undergo physiological chromoplasts but into a completely different type of plastids and morphological changes to fulfill distinct biological functions. In named gerontoplasts (1, 2). particular, the differentiation of chloroplasts into chromoplasts The most prominent changes during chloroplast-to-chromo- results in an enhanced storage capacity for carotenoids with indus- plast differentiation are the reorganization of the internal plastid trial and nutritional value such as beta-carotene (provitamin A).
    [Show full text]
  • Novel Carotenoid Cleavage Dioxygenase Catalyzes the First Dedicated Step in Saffron Crocin Biosynthesis
    Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis Sarah Frusciantea,b, Gianfranco Direttoa, Mark Brunoc, Paola Ferrantea, Marco Pietrellaa, Alfonso Prado-Cabrerod, Angela Rubio-Moragae, Peter Beyerc, Lourdes Gomez-Gomeze, Salim Al-Babilic,d, and Giovanni Giulianoa,1 aItalian National Agency for New Technologies, Energy, and Sustainable Development, Casaccia Research Centre, 00123 Rome, Italy; bSapienza, University of Rome, 00185 Rome, Italy; cFaculty of Biology, University of Freiburg, D-79104 Freiburg, Germany; dCenter for Desert Agriculture, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; and eInstituto Botánico, Facultad de Farmacia, Universidad de Castilla–La Mancha, 02071 Albacete, Spain Edited by Rodney B. Croteau, Washington State University, Pullman, WA, and approved July 3, 2014 (received for review March 16, 2014) Crocus sativus stigmas are the source of the saffron spice and responsible for the synthesis of crocins have been characterized accumulate the apocarotenoids crocetin, crocins, picrocrocin, and in saffron and in Gardenia (5, 6). safranal, responsible for its color, taste, and aroma. Through deep Plant CCDs can be classified in five subfamilies according to transcriptome sequencing, we identified a novel dioxygenase, ca- the cleavage position and/or their substrate preference: CCD1, rotenoid cleavage dioxygenase 2 (CCD2), expressed early during CCD4, CCD7, CCD8, and nine-cis-epoxy-carotenoid dioxygen- stigma development and closely related to, but distinct from, the ases (NCEDs) (7–9). NCEDs solely cleave the 11,12 double CCD1 dioxygenase family. CCD2 is the only identified member of bond of 9-cis-epoxycarotenoids to produce the ABA precursor a novel CCD clade, presents the structural features of a bona fide xanthoxin.
    [Show full text]
  • Carotenoids Support Normal Embryonic Development During Vitamin A
    www.nature.com/scientificreports OPEN β-apo-10′-carotenoids support normal embryonic development during vitamin A defciency Received: 29 December 2017 Elizabeth Spiegler1, Youn-Kyung Kim1, Beatrice Hoyos2, Sureshbabu Narayanasamy3,4, Accepted: 24 May 2018 Hongfeng Jiang5, Nicole Savio1, Robert W. Curley Jr.3, Earl H. Harrison4, Ulrich Hammerling1,2 Published: xx xx xxxx & Loredana Quadro 1 Vitamin A defciency is still a public health concern afecting millions of pregnant women and children. Retinoic acid, the active form of vitamin A, is critical for proper mammalian embryonic development. Embryos can generate retinoic acid from maternal circulating β-carotene upon oxidation of retinaldehyde produced via the symmetric cleavage enzyme β-carotene 15,15′-oxygenase (BCO1). Another cleavage enzyme, β-carotene 9′,10′-oxygenase (BCO2), asymmetrically cleaves β-carotene in adult tissues to prevent its mitochondrial toxicity, generating β-apo-10′-carotenal, which can be converted to retinoids (vitamin A and its metabolites) by BCO1. However, the role of BCO2 during mammalian embryogenesis is unknown. We found that mice lacking BCO2 on a vitamin A defciency-susceptible genetic background (Rbp4−/−) generated severely malformed vitamin A-defcient embryos. Maternal β-carotene supplementation impaired fertility and did not restore normal embryonic development in the Bco2−/−Rbp4−/− mice, despite the expression of BCO1. These data demonstrate that BCO2 prevents β-carotene toxicity during embryogenesis under severe vitamin A defciency. In contrast, β-apo-10′-carotenal dose-dependently restored normal embryonic development in Bco2−/−Rbp4−/− but not Bco1−/−Bco2−/−Rbp4−/− mice, suggesting that β-apo-10′-carotenal facilitates embryogenesis as a substrate for BCO1-catalyzed retinoid formation.
    [Show full text]
  • On the Biosynthesis and Evolution of Apocarotenoid Plant Growth Regulators
    On the biosynthesis and evolution of apocarotenoid plant growth regulators. Item Type Article Authors Wang, Jian You; Lin, Pei-Yu; Al-Babili, Salim Citation Wang, J. Y., Lin, P.-Y., & Al-Babili, S. (2020). On the biosynthesis and evolution of apocarotenoid plant growth regulators. Seminars in Cell & Developmental Biology. doi:10.1016/ j.semcdb.2020.07.007 Eprint version Post-print DOI 10.1016/j.semcdb.2020.07.007 Publisher Elsevier BV Journal Seminars in cell & developmental biology Rights NOTICE: this is the author’s version of a work that was accepted for publication in Seminars in cell & developmental biology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Seminars in cell & developmental biology, [, , (2020-08-01)] DOI: 10.1016/j.semcdb.2020.07.007 . © 2020. This manuscript version is made available under the CC- BY-NC-ND 4.0 license http://creativecommons.org/licenses/by- nc-nd/4.0/ Download date 27/09/2021 08:08:14 Link to Item http://hdl.handle.net/10754/664532 1 On the Biosynthesis and Evolution of Apocarotenoid Plant Growth Regulators 2 Jian You Wanga,1, Pei-Yu Lina,1 and Salim Al-Babilia,* 3 Affiliations: 4 a The BioActives Lab, Center for Desert Agriculture (CDA), Biological and Environment Science 5 and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi 6 Arabia.
    [Show full text]
  • Simultaneous LC/MS Analysis of Carotenoids and Fat-Soluble Vitamins in Costa Rican Avocados (Persea Americana Mill.)
    molecules Article Simultaneous LC/MS Analysis of Carotenoids and Fat-Soluble Vitamins in Costa Rican Avocados (Persea americana Mill.) Carolina Cortés-Herrera 1,*, Andrea Chacón 1, Graciela Artavia 1 and Fabio Granados-Chinchilla 2 1 Centro Nacional de Ciencia y Tecnología de Alimentos, Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, 11501-2060 San José, Costa Rica; [email protected] (A.C.); [email protected] (G.A.) 2 Centro de Investigación en Nutrición Animal (CINA), Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, 11501-2060 San José, Costa Rica; [email protected] * Correspondence: [email protected]; Tel.: +506-2511-7226 Academic Editor: Severina Pacifico Received: 26 August 2019; Accepted: 5 October 2019; Published: 10 December 2019 Abstract: Avocado (a fruit that represents a billion-dollar industry) has become a relevant crop in global trade. The benefits of eating avocados have also been thoroughly described as they contain important nutrients needed to ensure biological functions. For example, avocados contain considerable amounts of vitamins and other phytonutrients, such as carotenoids (e.g., β-carotene), which are fat-soluble. Hence, there is a need to assess accurately these types of compounds. Herein we describe a method that chromatographically separates commercial standard solutions containing both fat-soluble vitamins (vitamin A acetate and palmitate, Vitamin D2 and D3, vitamin K1, α-, δ-, and γ-vitamin E isomers) and carotenoids (β-cryptoxanthin, zeaxanthin, lutein, β-carotene, and lycopene) effectively (i.e., analytical recoveries ranging from 80.43% to 117.02%, for vitamins, and from 43.80% 1 to 108.63%).
    [Show full text]
  • Apocarotenoids: a Brief Review
    International Journal of Research and Review Vol.7; Issue: 12; December 2020 Website: www.ijrrjournal.com Review Article E-ISSN: 2349-9788; P-ISSN: 2454-2237 Apocarotenoids: A Brief Review Seba M C, Anatt Treesa Mathew, Sheeja Rekha, Prasobh G R Department of Pharmaceutical Chemistry, Sree Krishna College of Pharmacy and Research Centre, Parassala, Kerala Corresponding Author: Seba M C ABSTRACT The development of apocarotenoids is started by oxidative cleavage reactions Carotenoids are broad group of natural that can be catalyzed by enzymes, generally pigments, extending from red to orange, to CCDs, or take place via exposure of yellow colours. Produced by plants and certain carotenoids to ROS. β-Cyclocitral is an microorganisms (e.g.: fungi, bacteria and example for a carotenoid cleavage product microalgae), carotenoids have significant physiological function (e.g.: light harvesting). that can be produced following both Apocarotenoids are organic compounds, which scenarios. The formation of this β-carotene– is cleavage products of C40 isoprenoid derived volatile in photosynthetic tissues is 1 pigments, named carotenoids, catalyzed by initiated by a singlet oxygen O2 attack, enzyme carotenoid oxygenase, produced which takes place in the photosystem II, absolutely by plants and microorganisms. particularly in the presence of high light Apocarotenoids show vital roles in several stress, while in citrus fruits, it is catalyzed biological activities (e.g., plant hormones). by a CCD (CCD4b) that cleaves β-carotene, Various carotenoids and apocarotenoids have β-cryptoxanthin, and zeaxanthin. Although great economic significance in feed, cosmetics, some CCDs display a quite relaxed substrate food supplements, pharmaceutical industries and and site (double bond) specificity , cleavage also possess high commercial values Key Words: Carotenoids, Apocarotenoids, reactions catalyzed by these enzymes Carotenoid oxygenase generally take place at definite double bond(s) in defined carotenoid/apocarotenoid INTRODUCTION substrate(s).
    [Show full text]
  • Periodic Root Branching in Arabidopsis Requires Synthesis of An
    Periodic root branching in Arabidopsis requires PNAS PLUS synthesis of an uncharacterized carotenoid derivative Jaimie M. Van Normana, Jingyuan Zhanga, Christopher I. Cazzonellib, Barry J. Pogsonb, Peter J. Harrisonc, Timothy D. H. Buggc, Kai Xun Chanb, Andrew J. Thompsond, and Philip N. Benfeya,e,1 aDepartment of Biology, Duke Center for Systems Biology and eHoward Hughes Medical Institute, Duke University, Durham, NC 27708; bAustralian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia; cDepartment of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom; and dCranfield Soil and Agri-Food Institute, Cranfield University, Cranfield, Bedfordshire MK43 0AL, United Kingdom Contributed by Philip N. Benfey, February 24, 2014 (sent for review January 5, 2014) In plants, continuous formation of lateral roots (LRs) facilitates the primary root tip but remains confined within the primary efficient exploration of the soil environment. Roots can maximize root. The primordium is considered to be an LR only after it has developmental capacity in variable environmental conditions emerged from the primary root and cell division is activated at its through establishment of sites competent to form LRs. This LR apex (8). Developmental progression of individual LRPs is sen- prepattern is established by a periodic oscillation in gene expres- sitive to a vast range of developmental and environmental cues sion near the root tip. The spatial distribution of competent (reviewed in ref. 10), which, ultimately, allows for plasticity in (prebranch) sites results from the interplay between this periodic root system architecture in variable subterranean environments. process and primary root growth; yet, much about this oscillatory In the root’s radial axis, LRs form strictly from a subset of process and the formation of prebranch sites remains unknown.
    [Show full text]
  • Carotenoid Cleavage Oxygenases from Microbes and Photosynthetic Organisms: Features and Functions
    International Journal of Molecular Sciences Review Carotenoid Cleavage Oxygenases from Microbes and Photosynthetic Organisms: Features and Functions Oussama Ahrazem 1, Lourdes Gómez-Gómez 1, María J. Rodrigo 2, Javier Avalos 3 and María Carmen Limón 3,* 1 Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; [email protected] (O.A.); [email protected] (L.G.-G.) 2 Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Departamento de Ciencia de los Alimentos, Calle Catedrático Agustín Escardino 7, 46980 Paterna, Spain; [email protected] 3 Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, 41012 Sevilla, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-954-555947 Academic Editor: Vladimír Kˇren Received: 5 September 2016; Accepted: 8 October 2016; Published: 26 October 2016 Abstract: Apocarotenoids are carotenoid-derived compounds widespread in all major taxonomic groups, where they play important roles in different physiological processes. In addition, apocarotenoids include compounds with high economic value in food and cosmetics industries. Apocarotenoid biosynthesis starts with the action of carotenoid cleavage dioxygenases (CCDs), a family of non-heme iron enzymes that catalyze the oxidative cleavage of carbon–carbon double bonds in carotenoid backbones through a similar molecular mechanism, generating aldehyde or ketone groups in the cleaving ends. From the identification of the first CCD enzyme in plants, an increasing number of CCDs have been identified in many other species, including microorganisms, proving to be a ubiquitously distributed and evolutionarily conserved enzymatic family.
    [Show full text]
  • Β-Carotene Oxidation Products - Function and Safety
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.18.436000; this version posted March 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 β-Carotene oxidation products - function and safety 2 3 Graham W. Burton1*, Trevor J. Mogg1, William W. Riley2, and James G. Nickerson1 4 5 1Avivagen Inc., 100 Sussex Drive, Ottawa, Ontario, Canada K1A 0R6 6 2Jinan University, International School, Guangzhou, China 7 8 * Corresponding author. Avivagen Inc., 100 Sussex Drive, Ottawa, Ontario, Canada K1A 0R6. 9 E-mail address: [email protected] (GB) 10 11 Abbreviations 12 OxBC: fully oxidized β-carotene 13 14 Declaration of competing interest: GWB, TJM and JGN are employees and WWR is a 15 technical consultant of Avivagen Inc. GWB owns shares in Avivagen Inc. 16 Funding: The authors declare no specific funding for this work. 17 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.18.436000; this version posted March 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 18 Abstract 19 β-Carotene oxidation products have newly discovered bioactivity in plants and animals. 20 Synthetic fully oxidized β-carotene (OxBC) has application in supporting livestock health, with 21 potential human applications.
    [Show full text]
  • A Cis-Carotene Derived Apocarotenoid Regulates Etioplast And
    bioRxiv preprint doi: https://doi.org/10.1101/528331; this version posted January 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 A cis-carotene derived apocarotenoid regulates etioplast and chloroplast development 2 3 Christopher I Cazzonellia,*, 1, Xin Houb,*, Yagiz Alagoza, John Riversb, Namraj Dhamia, Jiwon Leec, Marri 4 Shashikanthb and Barry J Pogsonb, 1 5 6 Affiliations: 7 * These two authors contributed equally 8 a Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith 9 NSW 2751, Australia. 10 b Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of 11 Biology, The Australian National University, Canberra, ACT 2601, Australia. 12 c Centre for Advanced Microscopy, The Australian National University, Canberra, ACT 2601, Australia 13 14 1 Address correspondence to [email protected] and [email protected]. 15 The author(s) responsible for distribution of materials integral to the findings presented in this article in 16 accordance with the policy described in the Instructions for Authors (www.plantcell.org) are: Barry 17 Pogson ([email protected]) and Christopher Cazzonelli ([email protected]) 18 19 The authors declare no conflict of interest 20 Short Title: Apocarotenoid control of plastid development 21 One-sentence summary: Carotenoids are not just required as core components for plastid biogenesis, 22 they can be cleaved into an apocarotenoid signal that regulates etioplast and chloroplast development 23 during extended periods of darkness.
    [Show full text]
  • Carotene and Novel Apocarotenoid Concentrations in Orange-Fleshed Cucumis Melo Melons: Determinations of Β-Carotene Bioaccessibility and Bioavailability Matthew K
    ARTICLE pubs.acs.org/JAFC Carotene and Novel Apocarotenoid Concentrations in Orange-Fleshed Cucumis melo Melons: Determinations of β-Carotene Bioaccessibility and Bioavailability Matthew K. Fleshman,† Gene E. Lester,*,‡ Ken M. Riedl,§ Rachel E. Kopec,§ Sureshbabu Narayanasamy,|| Robert W. Curley, Jr.,|| Steven J. Schwartz,§ and Earl H. Harrison*,† † Department of Human Nutrition, The Ohio State University, Columbus, Ohio 43210, United States ‡ Kika de la Garza Subtropical Agricultural Research Center, United States Department of Agriculture, Weslaco, Texas 78596, United States § Department of Food Science and Technology, The Ohio State University, Columbus, Ohio 43210, United States College) of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States ABSTRACT: Muskmelons, both cantaloupe (Cucumis melo Reticulatus Group) and orange-fleshed honeydew (C. melo Inodorus Group), a cross between orange-fleshed cantaloupe and green-fleshed honeydew, are excellent sources of β-carotene. Although β- carotene from melon is an important dietary antioxidant and precursor of vitamin A, its bioaccessibility/bioavailability is unknown. We compared β-carotene concentrations from previously frozen orange-fleshed honeydew and cantaloupe melons grown under the same glasshouse conditions, and from freshly harvested field-grown, orange-fleshed honeydew melon to determine β-carotene bioaccessibility/bioavailability, concentrations of novel β-apocarotenals, and chromoplast structure of orange-fleshed honeydew melon. β-Carotene and β-apocarotenal concentrations were determined by HPLC and/or HPLC-MS, β-carotene bioaccessibility/ bioavailability was determined by in vitro digestion and Caco-2 cell uptake, and chromoplast structure was determined by electron microscopy. The average β-carotene concentrations (μg/g dry weight) for the orange-fleshed honeydew and cantaloupe were 242.8 and 176.3 respectively.
    [Show full text]
  • Periodic Root Branching in Arabidopsis Requires Synthesis of an Uncharacterized Carotenoid Derivative
    Periodic root branching in Arabidopsis requires synthesis of an uncharacterized carotenoid derivative Jaimie M. Van Normana, Jingyuan Zhanga, Christopher I. Cazzonellib, Barry J. Pogsonb, Peter J. Harrisonc, Timothy D. H. Buggc, Kai Xun Chanb, Andrew J. Thompsond, and Philip N. Benfeya,e,1 aDepartment of Biology, Duke Center for Systems Biology and eHoward Hughes Medical Institute, Duke University, Durham, NC 27708; bAustralian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia; cDepartment of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom; and dCranfield Soil and Agri-Food Institute, Cranfield University, Cranfield, Bedfordshire MK43 0AL, United Kingdom Contributed by Philip N. Benfey, February 24, 2014 (sent for review January 5, 2014) In plants, continuous formation of lateral roots (LRs) facilitates the primary root tip but remains confined within the primary efficient exploration of the soil environment. Roots can maximize root. The primordium is considered to be an LR only after it has developmental capacity in variable environmental conditions emerged from the primary root and cell division is activated at its through establishment of sites competent to form LRs. This LR apex (8). Developmental progression of individual LRPs is sen- prepattern is established by a periodic oscillation in gene expres- sitive to a vast range of developmental and environmental cues sion near the root tip. The spatial distribution of competent (reviewed in ref. 10), which, ultimately, allows for plasticity in (prebranch) sites results from the interplay between this periodic root system architecture in variable subterranean environments. process and primary root growth; yet, much about this oscillatory In the root’s radial axis, LRs form strictly from a subset of process and the formation of prebranch sites remains unknown.
    [Show full text]