Case1206994969.Pdf (883.08

Total Page:16

File Type:pdf, Size:1020Kb

Case1206994969.Pdf (883.08 FEEDBACK CONTROL OF A HIGH LEVEL UPPER EXTREMITY NEUROPROSTHESIS by DIMITRA BLANA Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Dissertation Adviser: Dr. Robert F. Kirsch Department of Biomedical Engineering CASE WESTERN RESERVE UNIVERSITY May, 2008 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of Dimitra Blana candidate for the PhD degree *. (signed) Robert F. Kirsch (chair of the committee) Patrick E. Crago Musa L. Audu Antonie van den Bogert Wyatt S. Newman (date) March 17th 2008 *We also certify that written approval has been obtained for any proprietary material contained therein. TABLE OF CONTENTS LIST OF TABLES .................................................................................................................. 5 LIST OF FIGURES ................................................................................................................ 6 ACKNOWLEDGEMENTS ................................................................................................... 9 ABSTRACT ........................................................................................................................... 10 CHAPTER 1: INTRODUCTION ........................................................................................ 12 Anatomy of the human upper extremity ............................................................................ 12 Spinal cord injury ................................................................................................................. 13 Functional Electrical Stimulation ........................................................................................ 14 Musculoskeletal modeling .................................................................................................... 15 Problem description .............................................................................................................. 16 Summary of research ............................................................................................................ 17 CHAPTER 2: A MUSCULOSKELETAL MODEL OF THE UPPER EXTREMITY FOR USE IN THE DEVELOPMENT OF NEUROPROSTHETIC SYSTEMS ............ 19 Abstract .................................................................................................................................. 19 Introduction ........................................................................................................................... 20 Methods .................................................................................................................................. 21 Model Construction ............................................................................................................ 21 Experimental setup.............................................................................................................. 24 Model evaluation ................................................................................................................ 27 Application to C3 SCI with and without FES ..................................................................... 27 Results .................................................................................................................................... 28 Discussion............................................................................................................................... 34 CHAPTER 3: MODEL-BASED SELECTION OF MUSCLE AND NERVE CUFF ELECTRODES FOR A HIGH TETRAPLEGIA NEUROPROSTHESIS ..................... 38 Abstract .................................................................................................................................. 38 2 Introduction ........................................................................................................................... 39 Methods .................................................................................................................................. 42 Results .................................................................................................................................... 46 Discussion............................................................................................................................... 53 CHAPTER 4: COMBINED FEEDFORWARD AND FEEDBACK CONTROL OF A REDUNDANT, NON-LINEAR, DYNAMIC MUSCULO-SKELETAL SYSTEM. ....... 57 Abstract .................................................................................................................................. 57 Introduction ........................................................................................................................... 57 Methods .................................................................................................................................. 61 The model ............................................................................................................................ 61 The controller...................................................................................................................... 63 Results .................................................................................................................................... 66 Discussion............................................................................................................................... 73 CHAPTER 5: A SHOULDER AND ARM CONTROLLER FOR TRAJECTORY TRACKING AND STABILITY .......................................................................................... 76 Abstract .................................................................................................................................. 76 Introduction ........................................................................................................................... 76 Methods .................................................................................................................................. 78 The model ............................................................................................................................ 78 The controller...................................................................................................................... 80 Controller evaluation .......................................................................................................... 83 Results .................................................................................................................................... 84 Discussion............................................................................................................................... 94 CHAPTER 6: ADAPTIVE CONTROL USING CO-CONTRACTION OF ANTAGONISTIC MUSCLES ............................................................................................. 97 Abstract .................................................................................................................................. 97 Introduction ........................................................................................................................... 97 Methods ................................................................................................................................ 100 The model .......................................................................................................................... 100 3 Controller .......................................................................................................................... 101 Adaptation and co-contraction level ................................................................................. 102 Experimental evaluation ................................................................................................... 105 Results .................................................................................................................................. 108 Discussion............................................................................................................................. 114 CHAPTER 7: PERFORMANCE OF A FEEDFORWARD-FEEDBACK FES CONTROLLER IN AN INDIVIDUAL WITH HIGH TETRAPLEGIA ...................... 117 Abstract ................................................................................................................................ 117 Introduction ......................................................................................................................... 117 Methods ................................................................................................................................ 119 The subject ........................................................................................................................ 119 The controller.................................................................................................................... 121 Controller evaluation ........................................................................................................ 125 Results .................................................................................................................................. 126 Discussion............................................................................................................................. 134 CHAPTER 8: CONCLUSIONS ........................................................................................ 138 REFERENCES .................................................................................................................... 146
Recommended publications
  • Study of Brachial Plexus with Regards to Its Formation, Branching Pattern and Variations and Possible Clinical Implications of Those Variations
    IOSR Journal of Dental and Medical Sciences (IOSR-JDMS) e-ISSN: 2279-0853, p-ISSN: 2279-0861.Volume 15, Issue 4 Ver. VII (Apr. 2016), PP 23-28 www.iosrjournals.org Study of Brachial Plexus With Regards To Its Formation, Branching Pattern and Variations and Possible Clinical Implications of Those Variations. Dr. Shambhu Prasad1, Dr. Pankaj K Patel2 1 (Assistant Professor , Department of Anatomy , NMCH , Sasaram , India ) 2 (Assistant Professor , Department of Pathology , NMCH , Sasaram , India ) Abstract: Aim of the study: to search variations in formation and branching pattern of brachial plexus and correlate them with possible clinical and surgical implications. Materials and Methods: 25human bodies were dissected for this study. Dissection was started in posterior triangle of neck and extended to distal part of upper limb passing through axilla . Photographs were taken and data was tabulated and analyzed . Observations: All 50 plexuses had origin from C5 – T1 . Dorsal scapular nerve was absent in 2 plexuses. Long thoracic nerve was made of C5,C6 fibers in one and of C6,C7 fibers in another . Lower trunk was abnormal in 2 plexuses both of same body, their was no contribution from T1 fibers to posterior cord in one of these plexus. One plexus had double lateral pectoral nerve , communication between lateral and medial pectoral nerves , lateral pectoral and medial root of median nerve also between musculocutaneous and lateral root of median nerve . 2 more plexuses had communication between lateral and medial pectoral nerves. One plexus showed 2 branches coming from posterior division of upper trunk itself before formation of posterior cord.
    [Show full text]
  • Brachial Plexus Posterior Cord Variability: a Case Report and Review
    CASE REPORT Brachial plexus posterior cord variability: a case report and review Edward O, Arachchi A, Christopher B Edward O, Arachchi A, Christopher B. Brachial plexus posterior cord anatomical variability. This case report details the anatomical variants discovered variability: a case report and review. Int J Anat Var. 2017;10(3):49-50. in the posterior cord of the brachial plexus in a routine cadaveric dissection at the University of Melbourne, Australia. Similar findings in the literature are reviewed ABSTRACT and the clinical significance of these findings is discussed. The formation and distribution of the brachial plexus is a source of great Key Words: Brachial plexus; Posterior cord; Axillary nerve; Anatomical variation INTRODUCTION he brachial plexus is the neural network that supplies motor and sensory Tinnervation to the upper limb. It is typically composed of anterior rami from C5 to T1 spinal segments, which subsequently unite to form superior, middle and inferior trunks. These trunks divide and reunite to form cords 1 surrounding the axillary artery, which terminate in branches of the plexus. The posterior cord is classically described as a union of the posterior divisions from the superior, middle and inferior trunks of the brachial plexus, with fibres from all five spinal segments. The upper subscapular, thoracodorsal and lower subscapular nerves propagate from the cord prior to the axillary and radial nerves forming terminal branches. Variability in the brachial plexus is frequently reported in the literature. It is C5 nerve root Suprascapular nerve important for clinicians to be aware of possible variations when considering Posterior division of C5-C6 injuries or disease of the upper limb.
    [Show full text]
  • Electrodiagnosis of Brachial Plexopathies and Proximal Upper Extremity Neuropathies
    Electrodiagnosis of Brachial Plexopathies and Proximal Upper Extremity Neuropathies Zachary Simmons, MD* KEYWORDS Brachial plexus Brachial plexopathy Axillary nerve Musculocutaneous nerve Suprascapular nerve Nerve conduction studies Electromyography KEY POINTS The brachial plexus provides all motor and sensory innervation of the upper extremity. The plexus is usually derived from the C5 through T1 anterior primary rami, which divide in various ways to form the upper, middle, and lower trunks; the lateral, posterior, and medial cords; and multiple terminal branches. Traction is the most common cause of brachial plexopathy, although compression, lacer- ations, ischemia, neoplasms, radiation, thoracic outlet syndrome, and neuralgic amyotro- phy may all produce brachial plexus lesions. Upper extremity mononeuropathies affecting the musculocutaneous, axillary, and supra- scapular motor nerves and the medial and lateral antebrachial cutaneous sensory nerves often occur in the context of more widespread brachial plexus damage, often from trauma or neuralgic amyotrophy but may occur in isolation. Extensive electrodiagnostic testing often is needed to properly localize lesions of the brachial plexus, frequently requiring testing of sensory nerves, which are not commonly used in the assessment of other types of lesions. INTRODUCTION Few anatomic structures are as daunting to medical students, residents, and prac- ticing physicians as the brachial plexus. Yet, detailed understanding of brachial plexus anatomy is central to electrodiagnosis because of the plexus’ role in supplying all motor and sensory innervation of the upper extremity and shoulder girdle. There also are several proximal upper extremity nerves, derived from the brachial plexus, Conflicts of Interest: None. Neuromuscular Program and ALS Center, Penn State Hershey Medical Center, Penn State College of Medicine, PA, USA * Department of Neurology, Penn State Hershey Medical Center, EC 037 30 Hope Drive, PO Box 859, Hershey, PA 17033.
    [Show full text]
  • Variant Branches of Brachial Plexus - a Case Report
    eISSN 1308-4038 International Journal of Anatomical Variations (2012) 5: 5–7 Case Report Variant branches of brachial plexus - a case report Published online April 8th, 2012 © http://www.ijav.org Prashant Nashiket CHAWARE Abstract Jaideo Manohar UGHADE During routine dissection of brachial plexus we observed two upper subscapular nerves. These two upper subscapular nerves, lower subscapular nerve and axillary nerve arose from posterior Sudhir Vishnupant PANDIT division of upper trunk. Posterior cord gave thoracodorsal nerve and continued as radial Gajanan Laxmanrao MASKE nerve. We also found that anterior division of middle trunk divided into two branches; anterior division-a and anterior division-b. Anterior division-a joined anterior division of upper trunk to Department of Anatomy, Shri Vasantrao Naik Government form the lateral cord. Anterior division-b joined medial root-1 of median nerve to form medial root-2 of median nerve. This medial root-2 joined with lateral root of median nerve to form Medical College, Yavatmal, Maharashtra, INDIA. median nerve. The anterior division-b carrying fibers from C7 primary ramus, contributed fibers to form medial root-2 of median nerve and then joined with the ulnar nerve. Presence of C7 root Dr. Prashant Nashiket Chaware in ulnar nerve was clearly seen in our case, which is seldom visualized in routine dissection. © Assistant Professor Int J Anat Var (IJAV). 2012; 5: 5–7. Department of Anatomy Shri Vasantrao Naik Government Medical College Yavatmal, Maharashtra 445001, INDIA. +91 7232 242456 ext. 157 [email protected] Received September 8th, 2011; accepted March 10th, 2012 Key words [posterior cord] [median nerve] [ulnar nerve] [nerve variations] Introduction trunk was much thinner than the others (Figure 1).
    [Show full text]
  • Section 1 Upper Limb Anatomy 1) with Regard to the Pectoral Girdle
    Section 1 Upper Limb Anatomy 1) With regard to the pectoral girdle: a) contains three joints, the sternoclavicular, the acromioclavicular and the glenohumeral b) serratus anterior, the rhomboids and subclavius attach the scapula to the axial skeleton c) pectoralis major and deltoid are the only muscular attachments between the clavicle and the upper limb d) teres major provides attachment between the axial skeleton and the girdle 2) Choose the odd muscle out as regards insertion/origin: a) supraspinatus b) subscapularis c) biceps d) teres minor e) deltoid 3) Which muscle does not insert in or next to the intertubecular groove of the upper humerus? a) pectoralis major b) pectoralis minor c) latissimus dorsi d) teres major 4) Identify the incorrect pairing for testing muscles: a) latissimus dorsi – abduct to 60° and adduct against resistance b) trapezius – shrug shoulders against resistance c) rhomboids – place hands on hips and draw elbows back and scapulae together d) serratus anterior – push with arms outstretched against a wall 5) Identify the incorrect innervation: a) subclavius – own nerve from the brachial plexus b) serratus anterior – long thoracic nerve c) clavicular head of pectoralis major – medial pectoral nerve d) latissimus dorsi – dorsal scapular nerve e) trapezius – accessory nerve 6) Which muscle does not extend from the posterior surface of the scapula to the greater tubercle of the humerus? a) teres major b) infraspinatus c) supraspinatus d) teres minor 7) With regard to action, which muscle is the odd one out? a) teres
    [Show full text]
  • Unilateral Intercordal Neural Communication Coexistent with Variant Branching Pattern of Posterior Cord of Brachial Plexus
    CAse reporT Unilateral intercordal neUral commUnication coexistent with variant branching pattern of posterior cord of brachial plexUs Renu Baliyan, Vandana Mehta, Jyoti Arora, Ashish Kr. Nayyar, R. K. Suri, Gaytri Rath Department of Anatomy, Vardhman Mahavir Medical College, New Delhi, India Summary: Variant branching pattern of the cords of brachial plexus coupled with erroneous communications has been an area of concern for surgeons opting to explore this region. Anaesthetic blocks and surgical approaches are the highlights of these interventions, where a keen familiarization of the anatomy of this region is mandatory. The present case description reports a unilateral variant branching pattern of the posterior cord coexistent with a neural communication between lateral and medial cords in an adult male cadaver. This intercordal neural communication between lateral and medial cords was oriented obliquely and measured 2.2 cm in length. Furthermore, the posterior cord revealed a variant branching pattern. It branched into three upper subscapular nerves and a common trunk for the thoracodorsal and lower subscapular nerves. The lowest of the three upper subscapular nerves gave a communicating twig to the thoracodorsal nerve. Inspite of uncount- able reports on variations of brachial plexus, descriptions regarding anomalous branching patterns hold enormous clinical significance for the radiologists, anesthetists and surgeons, besides being of academic interest for the anatomists. Key words: Posterior cord; Medial cord; Lateral cord; Neural communication introduction along with an intercordal neural communication between medial and lateral cords of brachial plexus. The hallmark of the axillary region is the brachial plexus, which is a plexiform arrangement of the anterior primary case report rami of the lowest 4 cervical and first thoracic spinal nerves.
    [Show full text]
  • Study of Variations in the Origin and Distance of Origin of Axillary Nerve Ijcrr of the Posterior Cord of Brachial Plexus
    Original Article STUDY OF VARIATIONS IN THE ORIGIN AND DISTANCE OF ORIGIN OF AXILLARY NERVE IJCRR OF THE POSTERIOR CORD OF BRACHIAL PLEXUS Santosh M. Bhosale, Nagaraj S. Mallashetty Assistant Professor, Department of Anatomy, S.S.I.M.S & R.C, Davangere-577004, Karnataka, India. ABSTRACT Background: Variations in the origin of axillary nerve from the posterior cord of brachial plexus and its distance of origin from mid clavicular point are important during surgical approaches to the axilla and upper arm, administration of anesthetic blocks, interpreting effects of nervous compressions and in repair of plexus injuries. The patterns of branching show population differ- ences. Data from the South indian population is scarce. Objective: To describe the variations in the origin of the axillary nerve from the posterior cord of brachial plexus and its distance of origin from mid- clavicular point in the South Indian population. Materials and methods: Forty brachial plexuses from twenty formalin fixed cadavers were explored by gross dissection. Origin and order of branching of axillary nerve and its distance of origin from mid- clavicualr point was recorded. Representative pho- tographs were then taken using a digital camera (Sony Cybershot R, W200, 7.2 Megapixels). Results: In forty specimens studied, 87.5% of axillary nerve originated from the posterior cord of brachial plexus and in 12.5% of specimens axillary nerve took origin from common trunk along with thoracodorsal or lower subscapular nerve or both. In 32.5% of the specimens axillary nerve had origin from posterior cord of brachial plexus at a distance of 4.6-5.0cm from mid-clavicular point.
    [Show full text]
  • Scalene Entrapment Syndrome M CD by James 0
    1:1 m m I I m Scalene entrapment syndrome m CD by James 0. Royder, DO, FAA() m ver the years, a continuing diagnostic and thera- When the Tinel's Sign and the Phalen's Test are both peutic dilemma is presented by the large number negative, one can usually rule out a mononeuropathy of 0 0 of patients who present with cervical the ulnar or radial nerve, such as Carpal Tunnel, Guyon radiculopathy without positive neurological findings and Tunnel or Tardy Ulnar Palsy syndromes. When the a negative MRI. Muscle spasms, rigidity, restriction of Scalene-cramp Test' evokes a pattern of referred pain range of motion are the presenting objective findings, down the upper extremity, it suggests entrapment of the while neck pain, headaches, light headedness. along with brachial plexus by the scalene muscles. In performing this pain and "tingling" in the shoulder, arm and hand are the test, the patient rotates the head toward the painful ex- initial subjective complaints. tremity and then pulls his chin down into the supraclav- The patient's history will usually reveal some type of icular fossa..this causes the scalene muscles on that side traumatic event preceding the onset of these symptoms. to contract and will exaggerate the referred pain if the In some cases, the symptoms develop insidiously over a scalenes are involved. period of time. A series of continuous, repetitive traumas The Scalene-relief Test' is a quick way to check to see can produce the same damage. Initially, we must rule out if the scalene muscles are involved.
    [Show full text]
  • The Morphology and Evolution of the Primate Brachial Plexus
    City University of New York (CUNY) CUNY Academic Works All Dissertations, Theses, and Capstone Projects Dissertations, Theses, and Capstone Projects 2-2019 The Morphology and Evolution of the Primate Brachial Plexus Brian M. Shearer The Graduate Center, City University of New York How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/gc_etds/3070 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] THE MORPHOLOGY AND EVOLUTION OF THE PRIMATE BRACHIAL PLEXUS by BRIAN M SHEARER A dissertation submitted to the Graduate Faculty in Anthropology in partial fulfillment of the requirements for the degree of Doctor of Philosophy, The City University of New York. 2019 © 2018 BRIAN M SHEARER All Rights Reserved ii THE MORPHOLOGY AND EVOLUTION OF THE PRIMATE BRACHIAL PLEXUS By Brian Michael Shearer This manuscript has been read and accepted for the Graduate Faculty in Anthropology in satisfaction of the dissertation requirement for the degree of Doctor in Philosophy. William E.H. Harcourt-Smith ________________________ ___________________________________________ Date Chair of Examining Committee Jeffrey Maskovsky ________________________ ___________________________________________ Date Executive Officer Supervisory Committee Christopher Gilbert Jeffrey Laitman Bernard Wood THE CITY UNIVERSITY OF NEW YORK iii ABSTRACT THE MORPHOLOGY AND EVOLUTION OF THE PRIMATE BRACHIAL PLEXUS By Brian Michael Shearer Advisor: William E. H. Harcourt-Smith Primate evolutionary history is inexorably linked to the evolution of a broad array of locomotor adaptations that have facilitated the clade’s invasion of new niches.
    [Show full text]
  • Variations in Subscapularis Muscle Innervation—A Report on Case Series
    medicina Article Variations in Subscapularis Muscle Innervation—A Report on Case Series Martin Siwetz 1, Niels Hammer 1,2,3,*, Benjamin Ondruschka 4 and David C. Kieser 5 1 Department of Macroscopic and Clinical Anatomy, Medical University of Graz, 8010 Graz, Austria; [email protected] 2 Fraunhofer IWU, Medical Branch, 01187 Dresden, Germany 3 Department of Orthopedic and Trauma Surgery, University of Leipzig, 04109 Leipzig, Germany 4 Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany; [email protected] 5 Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, 8140 Christchurch, New Zealand; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +43-316-385-71100 Received: 31 August 2020; Accepted: 10 October 2020; Published: 12 October 2020 Abstract: Background and objectives: The subscapularis muscle is typically innervated by two distinct nerve branches, namely the upper and lower subscapular nerve. These usually originate from the posterior cord of the brachial plexus. A large number of variations have been described in previous literature. Materials and Methods: Dissection was carried out in 31 cadaveric specimens. The frequency of accessory subscapular nerves was assessed and the distance from the insertion points of these nerves to the myotendinous junction was measured. Results: Accessory subscapular nerves were found in three cases (9.7%). According to their origin from the posterior cord of the brachial plexus proximal to the thoracodorsal nerve all three nerves were identified as accessory upper subscapular nerves. No accessory lower subscapular nerves were found. Conclusion: Accessory nerves occur rather commonly and need to be considered during surgery, nerve blocks, and imaging procedures.
    [Show full text]
  • Human Anatomy Lab Manual Sixth Edition Summer Term Mark Nielsen University of Utah
    Human Anatomy Lab Manual Sixth Edition Summer Term Mark Nielsen University of Utah Contents Orientation . 1 Tips . .3 Labs . 5 Laboratory One . 9 Laboratory Two . 17 Laboratory Three . 23 Laboratory Four . 29 Laboratory Five . 35 Laboratory Six . 41 Laboratory Seven . 51 Laboratory Eight . 57 Laboratory Nine . 63 Laboratory Ten . 69 Practical Tips . 75 iii Preface This book is for students in Biology 2325 - Human Anatomy. As you begin your anatomical learning adventure, use this book to prepare for the laboratory. It is designed to help you prepare for and get the most out of each of the laboratory sessions. There is a chapter for each of the labs that has a list of objectives that you should use to prepare for lab. If you follow these objectives you will arrive at lab prepared and you will maximize your learning efforts. All the material you will cover in each laboratory along with what you will need to do to prepare for the lab quizzes each week is covered in this manual. Human Anatomy Lab Manual iv Orientation Welcome to the human anatomy laboratory that accompanies the lecture in Biology 2325 - Human Anatomy. This lab provides you with a rare opportu- nity to explore anatomy using dissected human cadavers. Exploring cadavers is the true approach to learning anatomy, that is, experiencing anatomy in its three-dimensional reality. There is no better way to learn this subject. In lecture you will use your sense of hearing to listen and learn and your visual sense to see two-dimensional illustrations throughout the lecture. The lab opens the door to additional senses — those of touch, three-dimensional vision, and even the unique smell of a cadaver lab.
    [Show full text]
  • STUDY of VARIATIONS in the BRANCHING PATTERN and DISTANCE of ORIGIN of BRANCHES of POSTERIOR CORD of BRACHIAL PLEXUS Santosh Bhosale 1, Raghavendra A.Y *2
    International Journal of Anatomy and Research, Int J Anat Res 2017, Vol 5(4.1):4445-60. ISSN 2321-4287 Original Research Article DOI: https://dx.doi.org/10.16965/ijar.2017.364 STUDY OF VARIATIONS IN THE BRANCHING PATTERN AND DISTANCE OF ORIGIN OF BRANCHES OF POSTERIOR CORD OF BRACHIAL PLEXUS Santosh Bhosale 1, Raghavendra A.Y *2. *1,2 Associate Professor, Department of Anatomy, S.S.I.M.S & R.C, Davangere, Karnataka, India. ABSTRACT Background: Keeping in mind the frequency at which the surgical procedures are performed in the axilla, the organization and branching of brachial plexus and its topography becomes clinically significant and it is extremely complicated. Brachial plexus is the seat of explorations for oncosurgeons operating for breast carcinoma, schwannoma, neurofibroma, Anesthesiologists performing brachial plexus block, Plastic surgeons harboring myo-cutaneous flaps, Orthopedicians dealing with shoulder arthroplasty, humeral and clavicular fractures and for clinicians to explain the inexplicable signs of nerve compressions. The clinical importance of the variations in posterior cord is discussed in the light of various medical scenarios. Objective: To study and compare the variations in the diverse branching pattern of the posterior cord and the distance of origin of each branch in a Central Karnataka population. Materials and Methods: Branching pattern was studied by gross dissection of Brachial plexus. Origin and branching pattern and also the distance of the origin of branches of the posterior cord from mid-clavicular point on both sides were recorded. Results: UTA (L) R is the most frequent branching pattern examined in 55% of cases on right side and 60% cases on left side.
    [Show full text]