An Overview of the Rendering Industry

Total Page:16

File Type:pdf, Size:1020Kb

An Overview of the Rendering Industry AN OVERVIEW OF THE RENDERING INDUSTRY David L. Meeker, Ph.D., MBA C. R. Hamilton, Ph.D. National Renderers Association Darling International, Inc. Summary One-third to one-half of each animal produced for meat, milk, eggs, and fiber is not consumed by humans. These raw materials are subjected to rendering processes resulting in many useful products. Meat and bone meal, meat meal, poultry meal, hydrolyzed feather meal, blood meal, fish meal, and animal fats are the primary products resulting from the rendering process. The most important and valuable use for these animal by-products is as feed ingredients for livestock, poultry, aquaculture, and companion animals. There are volumes of scientific references validating the nutritional qualities of these products, and there are no scientific reasons for altering the practice of feeding rendered products to animals. Government agencies regulate the processing of food and feed, and the rendering industry is scrutinized often. In addition, industry programs include the use of good manufacturing practices, hazard analysis and critical control point (HACCP), codes of practice, and third-party certification. The Food and Drug Administration (FDA) regulates animal feeds and prohibits certain ruminant proteins from being used in ruminant diets to prevent the spread of bovine spongiform encephalopathy (BSE). Though often frustrated by the attention it receives, the rendering industry clearly understands its role in the safe and nutritious production of animal feed ingredients and has done it very effectively for over 100 years. The availability of rendered products for animal feeds in the future depends on regulation and the market. Renderers are innovative and competitive and will adapt to changes in both. Regulatory agencies will determine whether certain raw materials can be used for animal feed. The National Renderers Association (NRA) supports the use of science as the basis for regulation while aesthetics, product specifications, and quality differences should be left to the marketplace. Customer expectations, consumer demand, and economic considerations will dictate product specifications and prices. Without the continuing efforts of the rendering industry, the accumulation of unprocessed animal by-products would impede the meat industries and pose a serious potential hazard to animal and human health. Raw Material A by-product is defined as a secondary product obtained during the manufacture of a principal commodity. A co-product is a product that is usually manufactured together or sequentially with another item because of product or process similarities. Some prefer the more positive connotation of the term co- product, but for simplicity, this book will mostly use the term by-product. A 1 Essential Rendering—Overview—Meeker and Hamilton portion of the profit returned to animal production and processing industries depends on the utilization of the by-products or co-products ancillary to the production of meat, milk, and eggs for human food production. The FDA regulates which materials can be included in animal feed, and in 1997 banned the feeding of ruminant materials back to ruminant animals. Considerable debate has taken place recently on whether more bovine materials should be banned from all animal feeds. The approximately 300 rendering facilities in North America serve animal industries by utilizing the by-products which amount to more than half of the total volume produced by animal agriculture. The United States currently produces, slaughters, and processes approximately 100 million hogs, 35 million cattle, and eight billion chickens annually. By-products include hides, skins, hair, feathers, hoofs, horns, feet, heads, bones, toe nails, blood, organs, glands, intestines, muscle and fat tissues, shells, and whole carcasses. These by-product materials have been utilized for centuries for many significant uses. The products produced from the “inedible” (meaning not consumed by humans) raw material make important economic contributions to their allied industries and society. In addition, the rendering process and utilization of these by-products contribute to improvements in environmental quality, animal health, and public health. Approximately 49 percent of the live weight of cattle, 44 percent of the live weight of pigs, 37 percent of the live weight of broilers, and 57 percent of the live weight of most fish species are materials not consumed by humans. Some modern trends, such as pre-packed/table ready meat products, are increasing the raw material quantities for rendering. The current volume of raw material generated in the United States is nearly 54 billion pounds annually with another 5 billion pounds generated in Canada. Raw materials vary, but an overall approximation of content would be 60 percent water, 20 percent protein and mineral, and 20 percent fat before the rendering process. These organic materials are highly perishable and laden with microorganisms, many of which are pathogenic to both humans and animals. Rendering offers a safe and integrated system of animal raw material handling and processing that complies with all of the fundamental requirements of environmental quality and disease control. The Rendering Process Rendering is a process of both physical and chemical transformation using a variety of equipment and processes. All of the rendering processes involve the application of heat, the extraction of moisture, and the separation of fat. The methods to accomplish this are schematically illustrated in Figure 1 (Hamilton, 2004). The processes and equipment are described in detail in the chapter in this book on operations. The temperature and length of time of the cooking process are critical and are the primary determinant of the quality of the finished product. The processes vary according to the raw material composition. All rendering system technologies include the collection and sanitary transport of raw material to a facility where it is ground into a consistent particle size and conveyed to a cooking vessel, either 2 Essential Rendering—Overview—Meeker and Hamilton continuous-flow or batch configuration. Cooking is generally accomplished with steam at temperatures of 240º to 290ºF (approximately 115º to 145ºC) for 40 to 90 minutes depending upon the type of system and materials. Most North American rendering systems are continuous-flow units. Regardless of the type of cooking, the melted fat is separated from the protein and bone solids and a large portion of the moisture is removed. Most importantly, cooking inactivates bacteria, viruses, protozoa, and parasites. Alternative methods of raw material disposal such as burial, composting, or landfill applications do not routinely achieve inactivation of microorganisms. Fat is separated from the cooked material via a screw press within a closed vessel. Following the cooking and fat separation, the “cracklings” or “crax,” which includes protein, minerals, and some residual fat, are then further processed by additional moisture removal and grinding, then transferred for storage or shipment. Storage of the protein is either in feed bin structures or enclosed buildings. The fat is stored and transported in tanks. Figure 1. The Basic Production Process of Rendering. Raw Materials Heat Processing Sizing (Time x Temperature) Protein Press Grinding Fat Clean-up Storage/Load out Processes and technology of rendering have changed over the years and continue to improve. Modern rendering facilities are constructed to separate raw material handling from the processing and storage areas. Process control is performed and monitored via computer technology so that time/temperature 3 Essential Rendering—Overview—Meeker and Hamilton recordings for appropriate thermal kill values for specific microorganisms are achieved. Temperatures far in excess of the thermal kill time requirements are unnecessary and avoided because they can lower nutritional values and digestibility. Processes in North America generally do not incorporate cooking under pressure except for feathers and other high keratin containing tissues. Research has demonstrated that raw material derived from food animal processing is heavily laden with microorganisms. Data illustrating the high incidence of foodborne pathogenic microorganisms within raw animal by-product material and the efficacy of the rendering process in killing these pathogens are listed in Table 1. It is recognized that handling of ingredients after cooking can be responsible for re-contamination—a concern for all feed ingredients and not restricted to animal protein. Salmonella is a bacteria species that is commonly associated with feed and often wrongly suspected of originating from the animal by- product ingredients. Data from around the world illustrate that all feed ingredients, including vegetable proteins and grain, may contain Salmonella (Beumer and Van der Poel, 1997; Sreenivas, 1998; McChesney et al., 1995; European Commission, 2003). Thus, it is important to follow industry feed safety guidelines or codes of practice in both pre- and post-handling of ingredients and manufactured feed. Table 1. Efficacy of the U.S. Rendering System in the Destruction of Pathogenic Bacteria. Raw Tissue Post Process Pathogen % samples positive % samples positive Clostridium perfringens 71.4 0 Listeria species 76.2 0 L. monocytogenes 8.3 0 Campylobacter species 29.8 0 C. jejuni 20.0 0 Salmonella species 84.5 0 Source: Troutt et al., 2001. Samples from 17 different rendering facilities taken
Recommended publications
  • Cooking Oil Facts
    Cooking Oil Facts As you enter a department store, you behold an array of cooking oils sporting all types of jargon on the packaging -- saturated fats, unsaturated fats, refined, filtered, ricebran oil, vanaspati, etc. Confused already? With so much variety and so many brands flooding the market today, buying the right cooking oil can prove a tough task. Different oils fill different needs - for health, taste and cooking. For good health, our bodies need a variety of healthy fats that are found naturally in different oils. When cooking, it's essential to know which oils are best for baking, sautéing and frying and which are healthiest used raw. Why have Oil (fats)? Contrary to popular belief, fat is actually a valuable part of one's diet, allowing people to absorb nutrients that require fat in order to metabolize in the body. Natural fats contain varying ratios of three types of fats: saturated, monounsaturated and polyunsaturated. • Saturated fats are hard at room temperature. They're stable, resist oxidation, and are found primarily in meat, dairy, palm and coconut oil. • Polyunsaturated fats are liquid at room temperature and the least stable. They oxidize easily and are found in seafood corn, safflower, soybean, and sunflower oils. • Monounsaturated fats are more stable than polyunsaturated fats. They're found in canola, nut and olive oils. It is recommended to limit saturated fats in the diet due to their association with cardiovascular disease. Also, you should try to rely more on monounsaturated than polyunsaturated fats. What are the varieties of Oil available in the market? Choosing which oil should be used in cooking is a big issue and concern for many people because of the fat and cholesterol contents of cooking oil.
    [Show full text]
  • Non-Food Uses of Meat Fats
    NON-FOOD USES OF MEAT FATS dm H. W. WILDER AMERICAN MEAT INSTITUTE FOUNDATION ....-.o..-o.-o...-...-......-...o- Large quantities of animal fats are produced each year which are not used for food purposesl These tallows and greases result from the ren- dering of the so-called inedible tissues, trimmings, and waste fats from slaughterhouses, processing plants, retail markets, restaurants, and any other places where meat is handled. The meat packing and rendering industry is now producing this fat at the rate of approximately 2,782,000,000 pounds per year. In finding uses for tallow and grease, it is necessary to consider the whole fats and oils picture as regards supply and demand since there is considerable interchangeability in the fats and oils and they compete directly or indirectly for markets. For example, we import sizable quantities of coconut oil. If a substitute was developed from domestic sources, then coconut oil would compete in the world markets with our other fats which we export, particularly tallow and grease. During the past twenty years, the United States has shifted dra- matically from having been a major importer of fats to a present position as the world's largest exporter. Exports, however, cannot be counted upon to relieve our surplus in future years. A recent report (Feedstuffs, June 7, 1958, pp. 1 & 4) indicates that exports for the past 6 months have been 25 per cent lower than for the same period a year ago. New and expanded uses for tallow and grease are essential. New uses stem solely from research and it is evident that we have not had enough research developing new uses for tallow and grease.
    [Show full text]
  • Fats in the Diet Georgia M
    ® ® University of Nebraska–Lincoln Extension, Institute of Agriculture and Natural Resources Know how. Know now. G2187 Fats in the Diet Georgia M. Jones, Extension Food Specialist What Are Fats? Although fats sometimes are associated with weight gain or health problems, fats aren’t all bad. This Fats are composed mostly of the same three elements as publication discusses fats and their roles in the body carbohydrates, carbon, hydrogen, and oxygen. Fats are made and in foods. Different types of fats, fat substitutes, of a 3-carbon glycerol unit (Figure 1). This is sometimes and ways to reduce fats in some foods are other topics. referred to as the backbone of a fat. Each carbon on the glycerol can hold one fatty acid. Fats supply 9 calories per For some people, fat has a negative connotation. How- gram. Carbohydrates and protein supply 4 calories per gram. ever, like all nutrients, fat, in the appropriate amounts, is beneficial and necessary. Fat has many roles in the body Types of Fatty Acids and in food products. Fats are a source of energy for the body and supply Saturated Fatty Acids essential fatty acids, such as linoleic and linolenic. Fats are required for maintaining healthy skin and regulating cho- These fatty acids have all the hydrogen they can hold. lesterol production. Fats carry the fat-soluble vitamins A, They are normally solid at room temperature. Most saturated D, E, and K and aid in their absorption from the intestine. fatty acids are from animals; however, coconut and palm Fats play a key role in determining texture, taste, and oils also contain saturated fatty acids.
    [Show full text]
  • Saturated Fat and Beef Fat As Related to Human Health a Review of the Scientifi C Literature
    FRI BRIEFINGS Saturated Fat and Beef Fat as Related to Human Health A Review of the Scientifi c Literature Ellin Doyle, Ph.D. Food Research Institute, University of Wisconsin Madison, WI 53706 [email protected] TABLE OF CONTENTS Summary ...........................................................................................................2 Introduction ............................................................................................................5 Fat Structure and Function ..................................................................................5 Fatty Acids and Triacylglycerol (Triglyceride) Structure ..................................5 Beef Fat ............................................................................................................7 Digestion and Absorption of Dietary Fats ..........................................................7 Physiological Fate of Saturated Fatty Acids ......................................................9 Research on Saturated Fat and Health — General Considerations ...................9 Cancer ..........................................................................................................10 Colorectal Cancer .............................................................................................10 Pancreatic Cancer .............................................................................................15 Lung Cancer .....................................................................................................15 Breast Cancer ...................................................................................................16
    [Show full text]
  • Commission Services Paper on the Processing, Disposal and Uses Of
    0(02 Brussels, 20 November 2001 &RPPLVVLRQ VHUYLFHV SDSHU RQ WKH SURFHVVLQJ GLVSRVDODQGXVHVRIDQLPDOE\SURGXFWVLQ0HPEHU 6WDWHV $ %DFNJURXQG A number of BSE and related measures have been introduced over recent years, most of which have had the effect of extending the list of unsafe materials and/or restricting disposal methods and uses. For example, the list of specified risk material has been extended to include the entire intestine of bovines, mechanically recovered meat and the vertebral column. Also, animals that die on farm and meat and bone meal can no longer be used in feeds, which until recently were acceptable outlets for the industry. An inevitable result is that the amount of material needing destruction has increased across the EU. In order to monitor the level of the increase, the impact and disposal capacity in Member States, the Directorate General for Health and Consumer Protection sent a questionnaire to Member States on 29 March asking for details including current disposal routes, amount of animal by- products disposed of YLD each route and costs . Returns have been received from all Member States, and this paper provides a summary of the situation across the EU. Some Member States did not provide full data enabling a general assumption to be made, and the content of this paper may not be of statistical significance. Nevertheless, a number of factual key conclusions can be drawn as in section C below in relation to: - processing and disposal routes - trade/export of processed animal protein and rendered fat - collection, transport and rendering costs - storage capacity for rendered products and costs - incineration, co-incineration and small on-farm incineration - burial and/or landfill - biogas - composting and use of processed animal protein as fertilisers - disposal capacity in Member States A separate questionnaire was sent out by the Directorate General for Agriculture at the end of August 2001, aiming to collect data on the cost and methods of financing of the treatment of animal waste.
    [Show full text]
  • Backyard Bird Feeding Tips Positive Change on Environmental Issues
    NEBLINE WILDLIFE & ENVIRONMENTAL FOCUS February 2020 • Page 4 Backyard Bird Feeding Tips suet. Suet is a nutritious food for wood- preparations that can be used throughout Soni Cochran peckers, flickers, nuthatches, chickadees, the year. Find no-melt suet blocks where Extension Associate, Lancaster County brown creepers and more. What is bird seed is sold. suet? Suet is a solidified mixture of fats Do you enjoy feeding birds? I sure harvested from beef animals or sheep. If FOR MORE INFORMATION do, and my favorite seed mixes include you would like to make your own suet Nebraska Extension in Lancaster County has black-oil sunflower seeds and shelled for birds, check with your local butcher information about attracting and feeding nuts like peanuts. This mix results in or grocery meat counter for suet. You can birds at https://go.unl.edu/attracting-birds very little waste from uneaten seed and also purchase commercial no-melt suet fewer problems with nuisance birds like starlings and English house sparrows. MAKE YOUR OWN SUET CAKES Vicki Jedlicka, Nebraska Extension in Lancaster County Extension Nebraska Vicki Jedlicka, A recommended bird seed mixture 3 cups melted suet* (available consists of 50% black-oil sunflower at your meat counter or seeds, 25% millet and 25% cracked corn. butcher shop) 3 cups yellow cornmeal 1 cup chunky-style peanut One of the mixes recommended butter by specialists consists of 50% black-oil sunflower seed, 25% cracked corn and *Can you use lard instead of suet? 25% white millet. Cardinals and doves Lard is fat from pigs and can be will also eat safflower seed.
    [Show full text]
  • Margarine.-Spreads.Pdf
    MARGARINE & SPREADS The global margarine market has developed to include low- fat and low-salt spreads and products with added omega-3 fatty acids, plant sterols and certified oils, with a growing appeal to vegans searching for an alternative to butter OFI The global margarine/spread market is expected to grow with a single digit increase in CAGR between 2018 and 2028, according to a recent report by Persistence Market Research (PMR). Growth will be driven by consumer demand for food products high in nutritional value and low in fat and calorie content, and higher consumption in under-developed countries where margarine offers greater value for money Butter’s rival and multiple usages. Hippolyte Mège-Mouriès in 1869, who product called krona, made by churning a “The global market for margarine/spread responded to a challenge by Emperor blend of dairy cream and vegetable oils, is dominated by North America, which Napoleon III to create a butter substitute was introduced in Europe and, in 1982, a holds a significant market share, followed for the armed forces and lower classes. blend of cream and vegetable oils called by Europe and Asia-Pacific,” PMR says. The recipe was a mix of skimmed milk, Clover was introduced in the UK by the “North America is the largest consumer, water and animal fat. Milk Marketing Board. The vegetable oil especially due to the high consumption In 1871, Mège-Mouriès sold his patent and cream spread ‘I Can’t Believe It’s Not in food processing. Europe is the second to Dutch firm Jurgens. Jurgens realised Butter!’ was introduced into the USA in largest consumer.
    [Show full text]
  • Rendered Products in Pet Food
    RENDERED PRODUCTS IN PET FOOD Greg Aldrich, Ph.D. President, Pet Food and Ingredient Technology, Inc. Summary Globally, in 2005, pet food and products were a $53 billion industry—and the market is growing. In the United States, dog and cat food sales alone account for $14.5 billion with exports of nearly $1 billion. The global total for pet food and supplies for all pet animals is now approaching $40 billion annually. These rising sales are driven, in part, by increasing ownership of pets with more than 140 million dogs and cats and an estimated 200 million specialty pets, such as fish, pocket pets, and exotic animals. It is also moved by the trend that more people consider their pets as members of the family as demonstrated by everything from birthday and holiday celebrations, family photos, health insurance, burial plots, and preparation of special meals. Pet foods are now more than ever considered packaged goods that are co-mingled with other family food items. The top five pet food companies, over 65 percent of the market, are owned by household names like Mars, Nestle, Proctor & Gamble, Colgate-Palmolive, and Del Monte. Traditional retail outlets such as grocery and farm/feed stores have lost some market share to big-box mass market stores, warehouse clubs, and pet specialty stores, but grocery stores remain the largest outlet. Pet food choices have become almost limitless with options for different price points, life-stage, shapes and sizes, package type, ingredient preferences, breed, size, and disease condition. Pet foods are also becoming more “humanized” and tracking human food trends.
    [Show full text]
  • July 31, 2020 To: Cargill Customers Re: Beef Animal Fat (Tallow) for Biodiesel
    July 31, 2020 To: Cargill Customers Re: Beef Animal Fat (Tallow) For Biodiesel Dear Valued Customer Thank you for requesting information on Cargill’s products sold for Biodiesel. This letter covers all Beef Tallow (Animal Fat) from the following Beef Rendering locations: Facility Location City, State FDA Registered 1530 US Highway 60 Friona, TX Yes 3201 E. Trail Street Dodge City, KS Yes 490 Road 9 Schuyler, NE Yes 1505 E. Burlington Ave. Fort Morgan, CO Yes 1252 Route 706 Wyalusing, PA Yes According to the North American Renderers Association (NARA), rendering is the recycling of raw animal tissue from food animals, and waste cooking fats and oils from all types of eating establishments into a variety of value-added products. Beef Tallow goes through the normal rendering process. During the rendering process, heat, separation technology, and filtering are applied to the material to destroy microbial populations, remove moisture, extract fat from the protein, and remove moisture and proteinaceous material from the fat1. Cargill’s Animal Fats (Beef Inedible Tallow, Bleachable Fancy Tallow, and Beef Technical Tallow) products are considered by the Environment Protection Agency (EPA) to be a “food waste”, with an energy of 16,200 BTU / lb, listed as renewable biomass/fuel materials and animal biproducts according to 40 CFR 80.1401. These products fully meet all regulations and requirements set forth under 40 CFR 80.1401, 40 CFR 80.1426(f)(5)(i), and 40 CFR Subpart M. Cargill’s Animal Fats (Beef Inedible Tallow, Bleachable Fancy Tallow, and Beef Technical Tallow) products are listed as a Specified Source Feedstocks according to Title 17 CCR § 95481(9) and § 95488.8(g)(1)(A).
    [Show full text]
  • Bovine Spongiform Encephalopathy (Mad Cow Disease) Fast Fact
    Bovine Spongiform Encephalopathy (BSE) Mad Cow Disease What is BSE and what swaying and behavioral changes (e.g., Who should I contact if I causes it? nervousness, aggression or frenzy) suspect BSE? Bovine spongiform encepha- are seen. Weight loss and a drop in In Animals – Contact your lopathy (en-CEF-A-LOP-a-thee), also milk production may be noted. Rarely, veterinarian immediately. called BSE or “mad cow disease,” is a cattle with BSE will become suddenly In Humans – Contact your disease that affects the brain of cattle ill within days. All cattle with BSE will physician immediately. and humans. Most scientists believe die from the disease. How can I protect my animal that it is caused by an abnormal Can I get BSE? protein in brain tissue, called a prion from BSE? Yes. Humans who eat BSE- (PRY-on), that can cause fatal disease Only a few cases of BSE have ever contaminated beef products can when eaten. been found in the U.S., so the risk that develop a disease called variant your animal will become infected The disease was first diagnosed in Creutzfeldt-Jakob (KROITZ-felt YAH- is very low. As a precaution, the the United Kingdom in 1986. Since cub) disease (vCJD). This disease is government has passed regulations then the disease has occurred in many called ‘variant’ to distinguish it from a to prevent certain tissues from being European countries as well as Japan, different, genetically acquired disease fed to cattle or other ruminants. Canada and the United States. Most of of humans called classic Creutzfeldt- the reported cases of BSE (95%) have Jakob disease (CJD).
    [Show full text]
  • Protein Evaluation of Porcine Meat and Bone Meal Products
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Nebraska Beef Cattle Reports Animal Science Department January 2000 Protein Evaluation of Porcine Meat and Bone Meal Products Tony Scott University of Nebraska-Lincoln Ryan Mass University of Nebraska-Lincoln Casey Wilson University of Nebraska-Lincoln Terry J. Klopfenstein University of Nebraska-Lincoln, [email protected] Austin Lewis University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/animalscinbcr Part of the Animal Sciences Commons Scott, Tony; Mass, Ryan; Wilson, Casey; Klopfenstein, Terry J.; and Lewis, Austin, "Protein Evaluation of Porcine Meat and Bone Meal Products" (2000). Nebraska Beef Cattle Reports. 388. https://digitalcommons.unl.edu/animalscinbcr/388 This Article is brought to you for free and open access by the Animal Science Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Nebraska Beef Cattle Reports by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. mixture. Although it is not clear how this not lower than commodity SBM. These conclude that the MP concentrations of method is effective, it is obvious from data demonstrate not all methods of treat- treated SBM products vary more from the UIP concentration that the browning ing SBM (to increase UIP) lower TND. lot to lot than does commodity SBM. We reaction is induced by this treatment. The MP concentrations of several also conclude that the UIP concentra- However, variable UIP results were treated SBM products were estimated. tions of all three treated SBM products achieved and the TND of the protein These products are marketed based on tested are variable and should be moni- sometimes was affected.
    [Show full text]
  • Assessment of Alternative Phosphorus Fertilizers for Organic Farming: Meat and Bone Meal
    FACT SHEET Assessment of Alternative Phosphorus Fertilizers for Organic Farming: Meat and Bone Meal In the past meat and bone meal was a major source of nutrients for recycling back to agricultural land, either as animal feed or organic nitrogen and phos phorus fertilizer. Nowadays – since the Bovine Spongiform Encephalopa­ thy (BSE) crisis in 1999 – it is only used as fertilizer. Although meat and bone meals are allowed by EU regulation in organic farming, several growers’ organisations prohibited them during the BSE crisis. Incineration or melting in a cupola furnace are alternative treatment options to their direct use elimina­ ting any risk on BSE transmission. However, these processes lead to losses of organic matter as well as nitrogen and sulfur and affect the phosphorus availa­ bility. The fact sheet shows which actions are needed to ease the statutory restrictions for use as fertilizer and thus to make phosphorus sources in meat and bone meal accessible for organic agriculture again. Introduction Bone meal (BM) and meat meal (MM), as well as France, 1.5 million tonnes in UK, 350,000 tonnes in meat and bone meal (MBM) are by-products of the Austria, 500,000 tonnes in Denmark and 2.8 million rendering industry and made from animal process- tonnes in Germany [1]. The total P potential in the EU ing offal. Offal consists of those animal parts that from the rendering industry offal ranges between are not suited for human consumption. Animal offal 110,000 and 128,000 tonnes per year. In Germany contains among others fat, meat, organs, bones, 20–25 % of the total P amounts available – approxi- blood and feathers.
    [Show full text]