Products of Interest
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Minimoog Model D Manual
3 IMPORTANT SAFETY INSTRUCTIONS WARNING - WHEN USING ELECTRIC PRODUCTS, THESE BASIC PRECAUTIONS SHOULD ALWAYS BE FOLLOWED. 1. Read all the instructions before using the product. 2. Do not use this product near water - for example, near a bathtub, washbowl, kitchen sink, in a wet basement, or near a swimming pool or the like. 3. This product, in combination with an amplifier and headphones or speakers, may be capable of producing sound levels that could cause permanent hearing loss. Do not operate for a long period of time at a high volume level or at a level that is uncomfortable. 4. The product should be located so that its location does not interfere with its proper ventilation. 5. The product should be located away from heat sources such as radiators, heat registers, or other products that produce heat. No naked flame sources (such as candles, lighters, etc.) should be placed near this product. Do not operate in direct sunlight. 6. The product should be connected to a power supply only of the type described in the operating instructions or as marked on the product. 7. The power supply cord of the product should be unplugged from the outlet when left unused for a long period of time or during lightning storms. 8. Care should be taken so that objects do not fall and liquids are not spilled into the enclosure through openings. There are no user serviceable parts inside. Refer all servicing to qualified personnel only. NOTE: This equipment has been tested and found to comply with the limits for a class B digital device, pursuant to part 15 of the FCC rules. -
UC Berkeley UC Berkeley Electronic Theses and Dissertations
UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Perceptual and Context Aware Interfaces on Mobile Devices Permalink https://escholarship.org/uc/item/7tg54232 Author Wang, Jingtao Publication Date 2010 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Perceptual and Context Aware Interfaces on Mobile Devices by Jingtao Wang A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Computer Science in the Graduate Division of the University of California, Berkeley Committee in charge: Professor John F. Canny, Chair Professor Maneesh Agrawala Professor Ray R. Larson Spring 2010 Perceptual and Context Aware Interfaces on Mobile Devices Copyright 2010 by Jingtao Wang 1 Abstract Perceptual and Context Aware Interfaces on Mobile Devices by Jingtao Wang Doctor of Philosophy in Computer Science University of California, Berkeley Professor John F. Canny, Chair With an estimated 4.6 billion units in use, mobile phones have already become the most popular computing device in human history. Their portability and communication capabil- ities may revolutionize how people do their daily work and interact with other people in ways PCs have done during the past 30 years. Despite decades of experiences in creating modern WIMP (windows, icons, mouse, pointer) interfaces, our knowledge in building ef- fective mobile interfaces is still limited, especially for emerging interaction modalities that are only available on mobile devices. This dissertation explores how emerging sensors on a mobile phone, such as the built-in camera, the microphone, the touch sensor and the GPS module can be leveraged to make everyday interactions easier and more efficient. -
Touchpoint: Dynamically Re-Routable Effects Processing As a Multi-Touch Tablet Instrument
Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece Touchpoint: Dynamically Re-Routable Effects Processing as a Multi-Touch Tablet Instrument Nicholas K. Suda Owen S. Vallis, Ph.D California Institute of the Arts California Institute of the Arts 24700 McBean Pkwy. 24700 McBean Pkwy. Valencia, California 91355 Valencia, California 91355 United States United States [email protected] [email protected] ABSTRACT Touchpoint is a multi-touch tablet instrument which pre- sents the chaining-together of non-linear effects processors as its core music synthesis technique. In doing so, it uti- lizes the on-the-fly re-combination of effects processors as the central mechanic of performance. Effects Processing as Synthesis is justified by the fact that that the order in which non-linear systems are arranged re- sults in a diverse range of different output signals. Be- cause the Effects Processor Instrument is a collection of software, the signal processing ecosystem is virtual. This means that processors can be re-defined, re-configured, cre- Figure 1. The sprawl of peripherals used to control IDM ated, and destroyed instantaneously, as a “note-level” mu- artist Tim Exile’s live performance. sical decision within a performance. The software of Touchpoint consists of three compo- nents. The signal processing component, which is address- In time stretching, pitch correcting, sample replacing, no- ed via Open Sound Control (OSC), runs in Reaktor Core. ise reducing, sound file convolving, and transient flagging The touchscreen component runs in the iOS version of Le- their recordings, studio engineers of every style are reg- mur, and the networking component uses ChucK. -
Resonant Spaces Notes
Andrew McPherson Resonant Spaces for cello and live electronics Performance Notes Overview This piece involves three components: the cello, live electronic processing, and "sequenced" sounds which are predetermined but which render in real time to stay synchronized to the per- former. Each component is notated on a separate staff (or pair of staves) in the score. The cellist needs a bridge contact pickup on his or her instrument. It can be either integrated into the bridge or adhesively attached. A microphone will not work as a substitute, because the live sound plays back over speakers very near to the cello and feedback will inevitably result. The live sound simulates the sound of a resonating string (and, near the end of the piece, ringing bells). This virtual string is driven using audio from the cello. Depending on the fundamental frequency of the string and the note played by the cello, different pitches are produced and played back by speakers placed near the cellist. The sequenced sounds are predetermined, but are synchronized to the cellist by means of a series of cue points in the score. At each cue point, the computer pauses and waits for the press of a footswitch to advance. In some cases, several measures go by without any cue points, and it is up to the cellist to stay synchronized to the sequenced sound. An in-ear monitor with a click track is available in these instances to aid in synchronization. The electronics are designed to be controlled in real-time by the cellist, so no other technician is required in performance. -
User Guide Blackberry 8800 Smartphone SWD-280419-0222085634-001 Contents
User Guide BlackBerry 8800 Smartphone SWD-280419-0222085634-001 Contents BlackBerry basics..................................................................................................................................................................................................................................9 Switch applications..........................................................................................................................................................................................................................................9 Assign an application to a Convenience key................................................................................................................................................................................................9 Set owner information......................................................................................................................................................................................................................................9 Turn on standby mode......................................................................................................................................................................................................................................9 About links.........................................................................................................................................................................................................................................................9 -
Imagine Your Art As the New Face of Moog Music's
IMAGINE YOUR ART AS THE NEW FACE OF MOOG MUSIC’S HEADQUARTERS! WELCOME ALL CREATIVES We are excited to be accepting artist submissions for a design that will be the new face of the Moog factory in downtown Asheville, NC. Locals and visitors of our vibrant city have come to know our factory by the iconic synthesizer mural that has adorned the buildingʼs exterior for more than eight years. Now, weʼre ready to breathe new life into the public artwork that represents who we are and the instruments that our employee-owners build inside these four walls. This is where you come in! 1st PLACE WINNER TOP 5 RUNNERS-UP • Moog One 16-Voice Analog Synthesizer ($8,500 value) • Your Choice: Moog Mother-32, DFAM, or Subharmonicon • Your Artwork Displayed on the Moog Factory • Moog Merch Package HOW IT WORKS 1. Synthesize your best ideas of what represents Moog and our creative community. 2. Download the asset pack for artwork templates and specifications on file type and dimension requirements. 3. Submit your custom artwork at www.moogmusic.com/mural by February 19, 2021. Upload your artwork as a high resolution thumbnail that does not exceed 9MB, print files will be requested if you are selected as the winner. You may submit up to three pieces for consideration. 4. Online voting will be open to the public at www.moogmusic.com/mural from January 11 – February 28, 2021. 5. Weʼll select one grand prize winner and five runners-up, and will announce the winners via our email newsletter. The popular public vote will count toward our teamʼs consideration; make sure to share the voting link to your artwork on your website, social media accounts, etc. -
User Manual Mellotron V - WELCOME to the MELLOTRON the Company Was Called Mellotronics, and the First Product, the Mellotron Mark 1, Appeared in 1963
USER MANUAL Special Thanks DIRECTION Frédéric BRUN Kévin MOLCARD DEVELOPMENT Pierre-Lin LANEYRIE Benjamin RENARD Marie PAULI Samuel LIMIER Baptiste AUBRY Corentin COMTE Mathieu NOCENTI Simon CONAN Geoffrey GORMOND Florian MARIN Matthieu COUROUBLE Timothée BÉHÉTY Arnaud BARBIER Germain MARZIN Maxime AUDFRAY Yann BURRER Adrien BARDET Kevin ARCAS Pierre PFISTER Alexandre ADAM Loris DE MARCO Raynald DANTIGNY DESIGN Baptiste LE GOFF Morgan PERRIER Shaun ELLWOOD Jonas SELLAMI SOUND DESIGN Victor MORELLO Boele GERKES Ed Ten EYCK Paul SCHILLING SPECIAL THANKS Terry MARDSEN Ben EGGEHORN Jay JANSSEN Paolo NEGRI Andrew CAPON Boele GERKES Jeffrey CECIL Peter TOMLINSON Fernando Manuel Chuck CAPSIS Jose Gerardo RENDON Richard COURTEL RODRIGUES Hans HOLEMA SANTANA JK SWOPES Marco CORREIA Greg COLE Luca LEFÈVRE Dwight DAVIES Gustavo BRAVETTI Ken Flux PIERCE George WARE Tony Flying SQUIRREL Matt PIKE Marc GIJSMAN Mat JONES Ernesto ROMEO Adrien KANTER Jason CHENEVAS-PAULE Neil HESTER MANUAL Fernando M RODRIGUES Vincent LE HEN (editor) Jose RENDON (Author) Minoru KOIKE Holger STEINBRINK Stephan VANKOV Charlotte METAIS Jack VAN © ARTURIA SA – 2019 – All rights reserved. 11 Chemin de la Dhuy 38240 Meylan FRANCE www.arturia.com Information contained in this manual is subject to change without notice and does not represent a commitment on the part of Arturia. The software described in this manual is provided under the terms of a license agreement or non-disclosure agreement. The software license agreement specifies the terms and conditions for its lawful use. No part of this manual may be reproduced or transmitted in any form or by any purpose other than purchaser’s personal use, without the express written permission of ARTURIA S.A. -
USB MIDI CONTROLLER INTRODUCTION This Is an Ultra-Compact MIDI Controller Which Serves to Control Music Software
USB MIDI CONTROLLER INTRODUCTION This is an ultra-compact MIDI controller which serves to control music software. It is equipped with 25/49/61 velocity-sensitive keys as well as 1 fader and 4 rotary controls. The controller connects both PC and Mac(OTG convertor cable is required for connecting to Mobile phone and Pad). You can do without a bulky power adapter as power supply is via the USB bus. It’s also available to download the full user manual and other setting instructions from http://en.worlde.com.cn/. 2 STEPS FOR KS TO WORK 1) Connect your KS to the computer by USB cable. 2) Open your DAW in your computer and select KS as your hardware controller in your DAW. Now you are ready to go. CONNECTING A COMPUTER Use the included USB cable to connect the USB MIDI controller to a USB2.0 port on your computer. The power will turn on. Select the KS as MIDI controller within your music software and you are ready to go. DEVICE SETUP IN SOFTWARE To select KS as a controller for your digital audio workstation (DAW): 1. Connect KS to your computer using a standard USB cable. (If you are connecting KS to a USB hub, make sure it is a powered hub. If another device with USB3.0 is connected to USB hub at the same time, KS will not work properly at this time.) 2. Open your DAW. 3. Open your DAW's Preferences, Options, or Device Setup, select KS as your hardware controller, and then close t hat window. -
El Padre Del Sinte Y, Quizá, El Hombre Más Influyente En La
Pioneros FM BOB MOOG La gente corriente conoce muy pocos nombres de creadores de instrumentos –Stradivarius, Hammond, Wurlitzer, Fender, Gibson… y por supuesto, Moog OB MOOG, en una revista de electrónica. EL padre del De repente, en plena adolescencia, sintetizador y, “El padre del sinte y, ya estaba haciendo y vendiendo kits con quizá, el hombre su pequeña empresa R.A. Moog Co. más influyente quizá, el hombre más En 1961, siendo todavía un estudiante, en la música publicó un diseño de theremin a durante las transistores del cual vendió más de mil últimas cinco influyente en la música unidades, bien como kits de montaje Bdécadas, murió el pasado 21 de Agosto. de los últimos 50 años” o como instrumentos finalizados. Tenía 71 años –una edad respetable para A partir de entonces, conoció muchos, pero no para él. Cualquiera al pionero de la música electrónica que haya podido compartir algún Raymond Scott, quien producía jingles momento con el entrañable Bob antes para importantes cadenas de TV de que le diagnosticaran un tumor cerebral en disfrutar durante unas horas de su inspiradora, con su enorme muro de equipos electrónicos. Abril de este mismo año, te confirmará que carismática y entrañable compañía. Es posible que aquello le inspirase, porque estaba lleno de energía, humor y vitalidad, así Por no molestar, Moog prefería viajar en tren a principios de los 60, Moog presentó, que es una auténtica pena que no haya podido o en autobús antes que aceptar el ofrecimiento de posiblemente, la mayor revolución de la música seguir algunas décadas más entre nosotros. -
USB MIDI CONTROLLER INTRODUCTION This Is an Ultra-Compact and Light-Weight MIDI Controller Which Serves to Control Music Software
USB MIDI CONTROLLER INTRODUCTION This is an ultra-compact and light-weight MIDI controller which serves to control music software. It is equipped with 25 velocity-sensitive keys, and 8 velocity-sensitive drum pads as well as 4 faders and 4 rotary controls. The controller connects both PC and Mac(OTG convertor cable is required for connecting to Mobile phone and Pad). You can do without a bulky power adapter as power supply is via the USB bus. The unit is supplied with a software editor which you can download from WORLDE website. The software editor will let you customize this USB MIDI controller to your own requirements. It’s also available to download the full user manual and other setting instructions from http://en.worlde.com.cn/. 3 STEPS FOR PANDAMINI TO WORK 1) Connect your PANDAMINI to the computer by USB cable. 2) Download the software editor from the download page of WORLDE website and customize all editable controllers, and create, save and load presets. 3) Open your DAW in your computer and select PANDAMINI as your hardware controller in your DAW. Now you are ready to go. CONNECTING A COMPUTER Use the included USB cable to connect the USB MIDI controller to a USB2.0 port on your computer. The power will turn on and the scene LED will light up. Select the PANDAMINI as MIDI controller within your music software and you are ready to go. FIRST STEPS WITH THE EDITOR The editor will let you customize all editable controllers, and create, save and load presets. -
User's Manual Anisotropic Synth Engine
ANISOTROPIC SYNTH ENGINE USER’S MANUAL Animoog is a professional polyphonic synthesizer that carries on Dr. Robert STARTUP PAGE- Startup loads the default preset and displays the X/Y PAD (8x16 Moog's exploration of touch-surface technologies to create new and expressive grid) which corresponds top to bottom with the 8 dynamically evolving waveforms musical instruments. selected in the TIMBRE array page. Active voices are displayed as colored dots with modulation in the X/Y space shown as comet trails. The resulting output waveform is The new Anisotropic Synthesis Engine (ASE) is the heart of Animoog. It is a dynamic displayed on the X/Y PAD in real time. waveform animator comprised of an X/Y grid with 8 TIMBRES containing 16 waveforms each. These TIMBRES include sources derived from Moog synthesizers, the MF-103 12-Stage Phaser, and the MF-105 MURF. The waveform morphs and evolves as ASE is TABS: Touch each of the tabs (X/Y PAD, KB SCALE, ENV/MOD, TIMBRE, and SETUP) modulated throughout the X/Y space, allowing you to see and hear dramatic changes of to display that page's parameters. To the right are MODULES for the FILTER, PATH, timbre in real time. This constantly evolving soundscape is then fed into a traditional and ORBIT (left slot), and DELAY, THICK, and RECORDER (right slot). Touch the up or Moog-style synthesis architecture including classic Moog ladder filters with overdrive. down arrows to cycle through each module. Below the display screen is the PRESET selector. Tap the PRESET bar to open the preset list. -
Microphone-Based Electronic Wind Instrument by Feature Extraction from Breath Signals
MICROPHONE-BASED ELECTRONIC WIND INSTRUMENT BY FEATURE EXTRACTION FROM BREATH SIGNALS Francesco Bigoni Pelle Juul Christensen Rasmus Eklund Aalborg University – Copenhagen Aalborg University – Copenhagen Aalborg University – Copenhagen [email protected] [email protected] [email protected] Javier Molina Garcia Cumhur Erkut Aalborg University – Copenhagen Aalborg University – Copenhagen [email protected] [email protected] ABSTRACT of acoustic wind instruments to abstract synthesizers. Although the interfaces for electronic wind instruments An electronic wind instrument is an analog or digital went through many years of development and refinement, electronic instrument actuated by blowing onto an they are still disconnected from their acoustic counterparts electronic sensor. Through the history of electronic wind when it comes to sound production techniques. The instruments, the refinement of the physical interfaces has development of a ”good” saxophone sound requires a large not been followed by major innovations regarding breath degree of control over embouchure, reed pressure, air flow and embouchure detection: the industry is still largely and vocal tract configuration; extended techniques such as relying on pressure sensors for measuring air flow. We growling (singing into the horn while blowing), flutter- argue that many sound production techniques for acoustic tonguing (vibrating the false vocal folds while blowing) wind instruments depend on breath quality in addition and multiphonics (playing several tones at the