A Microtonal Wind Controller Building on Yamaha’S Technology to Facilitate the Performance of Music Based on the “19-EDO” Scale
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Microphone-Based Electronic Wind Instrument by Feature Extraction from Breath Signals
MICROPHONE-BASED ELECTRONIC WIND INSTRUMENT BY FEATURE EXTRACTION FROM BREATH SIGNALS Francesco Bigoni Pelle Juul Christensen Rasmus Eklund Aalborg University – Copenhagen Aalborg University – Copenhagen Aalborg University – Copenhagen [email protected] [email protected] [email protected] Javier Molina Garcia Cumhur Erkut Aalborg University – Copenhagen Aalborg University – Copenhagen [email protected] [email protected] ABSTRACT of acoustic wind instruments to abstract synthesizers. Although the interfaces for electronic wind instruments An electronic wind instrument is an analog or digital went through many years of development and refinement, electronic instrument actuated by blowing onto an they are still disconnected from their acoustic counterparts electronic sensor. Through the history of electronic wind when it comes to sound production techniques. The instruments, the refinement of the physical interfaces has development of a ”good” saxophone sound requires a large not been followed by major innovations regarding breath degree of control over embouchure, reed pressure, air flow and embouchure detection: the industry is still largely and vocal tract configuration; extended techniques such as relying on pressure sensors for measuring air flow. We growling (singing into the horn while blowing), flutter- argue that many sound production techniques for acoustic tonguing (vibrating the false vocal folds while blowing) wind instruments depend on breath quality in addition and multiphonics (playing several tones at the -
Viscount Chorum
viscount Chorum Tremolo Tremolo Tremolo User Manual - English Ver. USA - 1.1 Viscount Chorum User Manual TABLE OF CONTENTS 1. Important notes ............................................................................................................................... 2 1.1 Looking after the product ............................................................................................................................. 2 1.2 Notes about the manual ................................................................................................................................ 2 2. General description ......................................................................................................................... 4 3. Switching on and main video page .............................................................................................. 12 3.1 The Main Menu ............................................................................................................................................ 13 4. Volume settings (Volumes function) ............................................................................................ 14 5. Instrument general settings (Settings menu) ............................................................................... 15 5.1 Selecting reverb type (Reverb parameter) ................................................................................................. 16 5.2 Adjust equalizers (Equalizers functions) .................................................................................................. -
Universal Tuning Editor
Universal Tuning Editor Ηπ INSTRUMENTS Aaron Andrew Hunt Ηπ INSTRUMENTS hpi.zentral.zone · Universal Tuning Editor · documentation v11 1.May.2021 Changes from Previous Documentation 5 Current Version, v11 — 1. May 2021 ....................................................................5 Previous Versions ............................................................................................5 Introduction 9 Features List .................................................................................................9 User Interface Basics ......................................................................................11 Maximising the Detail View ..............................................................................12 Maximising the Tuning List ..............................................................................13 Toolbar .......................................................................................................13 Bug Reporting & Feedback ...............................................................................14 Feature Requests ..........................................................................................14 File Handling 15 Preferences ..................................................................................................15 Auto store unsaved projects internally ...............................................................15 Restore external projects at next session ...........................................................15 Prompt to handle each open project -
Harmonic Analysis for Music Transcription and Characterization
UNIVERSITA` DEGLI STUDI DI BRESCIA FACOLTA` DI INGEGNERIA Dipartimento di Ingegneria dell'Informazione DOTTORATO DI RICERCA IN INGEGNERIA DELLE TELECOMUNICAZIONI XXVII CICLO SSD: ING-INF/03 Harmonic Analysis for Music Transcription and Characterization Ph.D. Candidate: Ing. Alessio Degani .............................................. Ph.D. Supervisor: Prof. Pierangelo Migliorati .............................................. Ph.D. Coordinator: Prof. Riccardo Leonardi .............................................. ANNO ACCADEMICO 2013/2014 to my family Sommario L'oggetto di questa tesi `elo studio dei vari metodi per la stima dell'informazione tonale in un brano musicale digitale. Il lavoro si colloca nel settore scientifico de- nomitato Music Information Retrieval, il quale studia le innumerevoli tematiche che riguardano l'estrazione di informazioni di alto livello attraverso l'analisi del segnale audio. Nello specifico, in questa dissertazione andremo ad analizzare quelle procedure atte ad estrarre l'informazione tonale e armonica a diversi lev- elli di astrazione. Come prima cosa verr`apresentato un metodo per stimare la presenza e la precisa localizzazione frequenziale delle componenti sinusoidali stazionarie a breve termine, ovvero le componenti fondamentali che indentificano note e accordi, quindi l'informazione tonale/armonica. Successivamente verr`aesposta un'analisi esaustiva dei metodi di stima della frequenza di riferimento (usata per accordare gli strumenti musicali) basati sui picchi spettrali. Di solito la frequenza di riferimento `econsiderata standard e associata al valore di 440 Hz, ma non sempre `ecos`ı. Vedremo quindi che per migliorare le prestazioni dei vari metodi che si affidano ad una stima del contenuto armonico e melodico per determinati scopi, `efondamentale avere una stima coerente e robusta della freqeunza di riferimento. In seguito, verr`apresentato un sistema innovativo per per misurare la rile- vanza di una data componente frequenziale sinusoidale in un ambiente polifonico. -
The Keywi: an Expressive and Accessible Electronic Wind Instrument
The KeyWI: An Expressive and Accessible Electronic Wind Instrument Matthew Caren,a Romain Michon,a;b and Matthew Wrighta aCCRMA, Stanford University, USA bGRAME-CNCM, Lyon, France [email protected] ABSTRACT be used as a platform for development and be replicated by This paper presents the KeyWI, an electronic wind instru- anyone with access to sufficient tools. ment based on the melodica that improves upon limitations in current systems and is general and powerful enough to support a variety of applications. Four opportunities for growth are identified in current electronic wind instrument systems, which then are used to focus the development and evaluation of the instrument. The KeyWI features a breath pressure sensor with a large dynamic range, a keyboard that allows for polyphonic pitch selection, and a completely in- tegrated construction. Sound synthesis is performed with Faust code compiled to the Bela Mini, which offers low- latency audio and a simple yet powerful development work- flow. In order to be as accessible and versatile as possible, the hardware and software is entirely open-source, and fab- rication requires only common maker tools. Figure 1: A KeyWI (without cover), including a Author Keywords Bela Mini, custom PCB, enclosure, and sensors electronic wind instruments, breath controller, digital mu- sical instruments, development platform The KeyWI's design is based on the melodica, a handheld wind instrument where pitches are selected using a piano- style keyboard and dynamics are controlled by blowing into CCS Concepts a mouthpiece attached to the side of the instrument. •Applied computing ! Sound and music comput- The use of a keyboard as a pitch controller rather than the ing; Performing arts; •Hardware ! Sensor devices more common woodwind-key-inspired designs aims to be and platforms; accessible to users who may not have prior experience with the specialized fingerings required for wind instruments, as 1. -
Eolos: a Wireless MIDI Wind Controller
Eolos: a wireless MIDI wind controller Juan Mariano Ramos Desarrollos Tecnológicos Aplicados a las Artes Escuela Universitaria de Artes – Universidad Nacional de Quilmes Buenos Aires, Argentina [email protected] ABSTRACT wireless operation, but retail at $8301 and $11302 (USD) This paper presents a description of the design and usage of respectively. Eolos' estimated total cost is less than $200 Eolos, a wireless MIDI wind controller. The main goal of Eolos (USD), although it's difficult to establish a precise value due to is to provide an interface that facilitates the production of music component availability, or even the fact that some parts were for any individual, regardless of their playing skills or previous hand crafted. musical knowledge. Its features are: open design, lower cost There are also many well documented non-commercial, open than commercial alternatives, wireless MIDI operation, or DIY related electronic wind instruments. An early initiative rechargeable battery power, graphical user interface, tactile which predates the MIDI era is the Electronic Valve Instrument keys, sensitivity to air pressure, left-right reversible design and (EVI) [3], created by Nyle Steiner in the 1970's, who later two FSR sensors. There is also a mention about its participation helped to design the Akai EWI. in the 1st Collaborative Concert over the Internet between Other more recent products include the Epipe [4] (which Argentina and Cuba "Tradición y Nuevas Sonoridades". features continuous tonehole coverage capacitive sensing), MiniWI3 (based on the EWI), or the CyberWhistle [2]. Eolos, in addition to common characteristics such as breath and finger Author Keywords sensing, features an open design that focuses on the ease of use NIME, Eolos, Wind, Wireless, MIDI Controller, Digital (both for novices and experienced wind players), a low building Musical Instrument cost, and offers a wireless MIDI communication. -
Tuning Presets in the MOTM
Tuning Presets in the Sequential Prophet X Compiled by Robert Rich, September 2018 Comments for tunings 17-65 derived from the Scala library. Many thanks to Max Magic Microtuner for conversion assistance. R. Rich Notes: All of the presets except for #1 (12 Tone Equal Temperament) can be over-written by sending a tuning in the MTS format (Midi Tuning Standard.) The presets #2-17 match the Prophet 12, P6 and OB6, and began as a selection I made for the Synthesis Technology MOTM 650 Midi-CV module. Actual program numbers within the MTS messages start at #0 for the built-in 12ET, #1-64 for the user tunings. The display shows these as #2-65, with 12ET as #1. I intend these tunings only as an introduction, and I did not research their historical accuracy. For convenience, I used the software’s default 1/1 of C4 (Midi note 60), although this is not the original 1/1 for some of the tunings shown. Some of these tunings come very close to standard 12ET, and some of them are downright wacky, sometimes specific to a particular composer or piece of music. The tunings from 18 to 65 are organized only by alphabet, culled from the Scala library, not in any logical order. 1. 12 Tone Equal Temperament (non-erasable) The default Western tuning, based on the twelfth root of two. Good fourths and fifths, horrible thirds and sixths. 2. Harmonic Series MIDI notes 36-95 reflect harmonics 2 through 60 based on the fundamental of A = 27.5 Hz. -
Conference Paper
the next level. The theremin, as an infinitely variable Electronic Music Interaction: instrument, that requires years of practice as well as a near perfect pitch ear to master, is an ideal candidate for our modern and alternative intermediary device, a pitch-to-MIDI converter. This device can take any analog instrument and allow pitch- interactions with music devices mapping, and arpeggiated control, as well as direct Anthony A. Adu, Kenzo A. Mendoza, Thomas feedback for practice. This complements our theme of ease-in-interaction in proficient playing, as well as gives C. Spalding, Florence T. Trinh any analog instrument social and adaptable input to our Dept. of Electrical Engineering and Computer performance device hub. Science, University of Central Florida, Orlando, Florida, 32816-2450 II. ELECTONIC MUSIC INTERACTON COMPONENTS The Electronic Music Interaction (E.M.I.) device set Abstract — This project explores the theme of creating a consists of three major devices: uWave Theremin, virtuosic experience through high customizability, SenseBox and Expandome. The block diagram in Fig. 1 modularity, and simplicity. This theme was developed by below demonstrates how each device communicates with pairing the fluidly-noted analog theremin, one of the first each other. electronic musical instruments, to a highly adaptable set of MIDI-capable devices. These themes are further enhanced by the immediate usability of the devices to users on a different level. A primary motivation of this project was to engender a direct-feedback environment that facilitates the learning experience for a device that is considered to be a very difficult instrument to master. Thusly, these goals are accomplished by developing a pitch-to-MIDI converter, and a set of expandable easy-grid MIDI controller devices to accompany the theremin. -
Skoogmusic User Guide Version 1.6 2 Contents
Skoogmusic User Guide Version 1.6 2 Contents Chapter 1 Introducing the Skoog ................................1 Chapter 3 Support .......................................................... 25 1.1 Setting up your Skoog ����������������������������������������������������������������������� 2 3.1 Keeping your Skoog happy ����������������������������������������������������������26 1.2 Getting to know the Skoogmusic software �������������������������� 3 3.2 Troubleshooting ���������������������������������������������������������������������������������27 1.3 Handling your Skoog ������������������������������������������������������������������������� 4 3.3 Warranty & Usage Guidelines ���������������������������������������������������29 1.4 Playing considerations ����������������������������������������������������������������������� 5 3.4 Customer Support ��������������������������������������������������������������������������29 Chapter 2 Software Guide ���������������������������������������������7 Glossary ................................................................................ 30 2.1 Skoogmusic Window ����������������������������������������������������������������������� 8 2.2 Skoog Window ������������������������������������������������������������������������������������� 9 2.3 Skoog Panel ������������������������������������������������������������������������������������������10 2.4 Notes Panel �����������������������������������������������������������������������������������������11 2.5 Skores Panel �����������������������������������������������������������������������������������������13 -
Medium of Performance Thesaurus for Music
A clarinet (soprano) albogue tubes in a frame. USE clarinet BT double reed instrument UF kechruk a-jaeng alghōzā BT xylophone USE ajaeng USE algōjā anklung (rattle) accordeon alg̲hozah USE angklung (rattle) USE accordion USE algōjā antara accordion algōjā USE panpipes UF accordeon A pair of end-blown flutes played simultaneously, anzad garmon widespread in the Indian subcontinent. USE imzad piano accordion UF alghōzā anzhad BT free reed instrument alg̲hozah USE imzad NT button-key accordion algōzā Appalachian dulcimer lõõtspill bīnõn UF American dulcimer accordion band do nally Appalachian mountain dulcimer An ensemble consisting of two or more accordions, jorhi dulcimer, American with or without percussion and other instruments. jorī dulcimer, Appalachian UF accordion orchestra ngoze dulcimer, Kentucky BT instrumental ensemble pāvā dulcimer, lap accordion orchestra pāwā dulcimer, mountain USE accordion band satāra dulcimer, plucked acoustic bass guitar BT duct flute Kentucky dulcimer UF bass guitar, acoustic algōzā mountain dulcimer folk bass guitar USE algōjā lap dulcimer BT guitar Almglocke plucked dulcimer acoustic guitar USE cowbell BT plucked string instrument USE guitar alpenhorn zither acoustic guitar, electric USE alphorn Appalachian mountain dulcimer USE electric guitar alphorn USE Appalachian dulcimer actor UF alpenhorn arame, viola da An actor in a non-singing role who is explicitly alpine horn USE viola d'arame required for the performance of a musical BT natural horn composition that is not in a traditionally dramatic arará form. alpine horn A drum constructed by the Arará people of Cuba. BT performer USE alphorn BT drum adufo alto (singer) arched-top guitar USE tambourine USE alto voice USE guitar aenas alto clarinet archicembalo An alto member of the clarinet family that is USE arcicembalo USE launeddas associated with Western art music and is normally aeolian harp pitched in E♭. -
A New Approach to Onset Detection: Towards an Empirical Grounding of Theoretical and Speculative Ideologies of Musical Performance
Milligan, K., Bailey, N. and Hair, G. (2016) A new approach to onset detection: towards an empirical grounding of theoretical and speculative ideologies of musical performance. Scottish Music Review, 4(1), This is the author’s final accepted version. There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it. http://eprints.gla.ac.uk/150678/ Deposited on: 27 October 2017 Enlighten – Research publications by members of the University of Glasgow http://eprints.gla.ac.uk w e i v e r A New Approach to Onset Detection: Towards an Empirical c i Grounding of Theoretical and Speculative Ideologies of s u Musical Performance m h Keziah Milligan Nick Bailey Graham Hair s i t t o c s 1: A summary of the current empirical study This article assesses aspects of the current state of a project which aims, with the help of computers and computer software, to segment soundfiles of vocal melodies into their component notes, identi- fying precisely when the onset of each note occurs, and then tracking the pitch trajectory of each note, especially in melodies employing a variety of non-standard temperaments, in which musical intervals smaller than 100 cents are ubiquitous. From there, we may proceed further, to describe many other “micro-features” of each of the notes, but for now our focus is on the onset times and pitch trajectories. Stated in such bald terms, such a description makes the current project sound like a quite small and modest one, but in fact, the very first hurdle, automated onset detection, presents a quite difficult challenge, and attempts to solve it have thus far met with only patchy success. -
Yamaha-WX5-Manual-English.Pdf
SPECIAL MESSAGE SECTION This product utilizes batteries or an external power supply (adapter). DO NOT used to produce them, meet these goals. In keeping with both the letter and connect this product to any power supply or adapter other than one described the spirit of the law, we want you to be aware of the following: in the manual, on the name plate, or specifically recommended by Yamaha. Battery Notice: WARNING: Do not place this product in a position where anyone could walk on, This product MAY contain a small non-rechargeable battery which (if applicable) trip over ,or roll anything over power or connecting cords of any kind. The use of is soldered in place. The average life span of this type of battery is approximately an extension cord is not recommended! IF you must use an extension cord, the five years. When replacement becomes necessary, contact a qualified service minimum wire size for a 25' cord (or less ) is 18 AWG. NOTE: The smaller the AWG representative to perform the replacement. number ,the larger the current handling capacity. For longer extension cords, consult a local electrician. This product may also use “household” type batteries. Some of these may be rechargeable. Make sure that the battery being charged is a rechargeable type This product should be used only with the components supplied or; a cart, rack, and that the charger is intended for the battery being charged. or stand that is recommended by Yamaha. If a cart, etc., is used, please observe all safety markings and instructions that accompany the accessory product.