STUDIES on REPRESENTATION and IDEALIZATION By
Total Page:16
File Type:pdf, Size:1020Kb
ASSUME A SPHERICAL COW: STUDIES ON REPRESENTATION AND IDEALIZATION by Elay Shech B.A., Philosophy, Boston University, 2007 B.A., Physics, Boston University, 2007 M.A., Philosophy, University of Pittsburgh, 2012 M.A., History and Philosophy of Science, University of Pittsburgh, 2012 Submitted to the Graduate Faculty of the Kenneth P. Dietrich School of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy in History and Philosophy of Science University of Pittsburgh 2015 UNIVERSITY OF PITTSBURGH KENNETH P. DIETRICH SCHOOL OF ARTS AND SCIENCES This dissertation was presented by Elay Shech It was defended on March 30th, 2015 and approved by John D. Norton, PhD, History and Philosophy of Science John Earman, PhD, History and Philosophy of Science Robert Batterman, PhD, Philosophy Giovanni Valente, PhD, Philosophy Laura Ruetsche, PhD, Philosophy (University of Michigan) Dissertation Advisors: John D. Norton, PhD, History and Philosophy of Science John Earman, PhD, History and Philosophy of Science ii Copyright © by Elay Shech 2015 iii ASSUME A SPHERICAL COW: STUDIES ON REPRESENTATION AND IDEALIZATION Elay Shech, PhD University of Pittsburgh, 2015 This dissertation concerns the philosophical underpinnings of representation and idealization in science. I begin by looking at the philosophical debate revolving around phase transitions and use it as a foil to bring out what I take to be most interesting about phase transitions, namely, the manner by which they illustrate the problem of essential idealizations. I continue to solve the problem in several steps. First, I conduct an interdisciplinary comparative study of different types of representations (e.g., mental, linguistic, pictorial) and consequently promote a content- based account of scientific representation intended to accommodate the practice of idealization and misrepresentation. I then critically asses the literature on idealizations in science in order to identify the manner by which to justify appeals to idealizations in science, and implement such techniques in two case studies that merit special attention: the Aharonov-Bohm effect and the quantum Hall effects. I proceed to offer a characterization of essential idealizations meant to alleviate the woes associated with said problem, and argue that particular types of idealizations, dubbed pathological idealizations, ought to be dispensed with. My motto is that idealizations are essential to explanation and representation, as well as to methodology and pedagogy, but they essentially misrepresent. Implications for the debate on platonism about mathematical objects are outlined. Keywords: philosophy of physics, philosophy of science, philosophy of mathematics, representation, idealization, phase transitions, Aharonov-Bohm effect, fractional quantum statistics, quantum Hall effects. iv Dedicated to my parents, Orit & Aharon Shech v TABLE OF CONTENTS LIST OF TABLES ...................................................................................................................... XI LIST OF FIGURES .................................................................................................................. XII PREFACE ................................................................................................................................... XV 1.0 INTRODUCTION ........................................................................................................ 1 1.1 CHAPTER-BY-CHAPTER SUMMARY .......................................................... 7 2.0 THE PARADOX OF PHASE TRANSITIONS ....................................................... 15 2.1 WHAT IS THE “PARADOX OF PHASE TRANSITIONS”? ...................... 15 2.2 IDENTIFYING THE “PARADOX” OF PHASE TRANSITIONS .............. 20 2.2.1 The Bona Fide Paradox of Phase Transitions and its Generalization ...... 23 2.3 THE ESSENTIAL IDEALIZATION PROBLEM ......................................... 30 3.0 SCIENTIFIC MISREPRESENTATION AND GUIDES TO ONTOLOGY ....... 33 3.1 INTRODUCTION ............................................................................................. 33 3.2 SCIENTIFIC MISREPRESENTATION ........................................................ 36 3.3 REPRESENTATION ........................................................................................ 41 3.3.1 Intentionality, Reference, Contents and Code ............................................ 42 3.4 THE INFERENTIAL ACCOUNT AND REPRESENTATIONAL CODE . 45 3.5 THE INTERPRETATIONAL ACCOUNT AND REPRESENTATIONAL CONTENTS ........................................................................................................................ 51 vi 3.5.1 Contessa’s Analytical Interpretation ........................................................... 53 3.5.2 The Need for Representational Contents .................................................... 55 3.6 MISREPRESENTATION, FAITHFUL REPRESENTATION, AND GUIDES TO ONTOLOGY ............................................................................................... 62 3.7 THE ROAD AHEAD ......................................................................................... 68 4.0 IDEALIZATIONS IN SCIENCE ............................................................................. 74 4.1 INTRODUCTION ............................................................................................. 74 4.2 IDEALIZATIONS, ABSTRACTIONS AND APPROXIMATIONS............ 77 4.3 TAXANOMIES OF IDEALIZATIONS .......................................................... 82 4.3.1 McMullin on Idealizations ............................................................................ 83 4.3.2 Weisberg on Idealizations ............................................................................. 86 4.3.3 Poznan School on Idealizations .................................................................... 92 4.3.4 Shaffer on Idealizations................................................................................. 94 4.3.5 Conclusion: The Earman-Ruetsche Sound Principle ................................. 98 4.4 IDEALIZATIONS IN PHILOSOPHY OF SCIENCE ................................. 100 4.4.1 Laws of Nature ............................................................................................. 101 4.4.2 Scientific Confirmation ............................................................................... 104 4.4.3 Scientific Explanation.................................................................................. 107 4.4.4 Scientific Realism ......................................................................................... 109 5.0 PATHOLOGICAL IDEALIZATIONS ................................................................. 115 5.1 LIMIT PROPERTIES AND LIMIT SYSTEMS .......................................... 115 5.2 THREE TYPES OF INCOMPATIBILITIES............................................... 123 5.3 CONCLUSION ................................................................................................ 125 vii 6.0 IDEALIZATIONS IN THE AHARONOV-BOHM EFFECT ............................. 127 6.1 INTRODUCTION ........................................................................................... 127 6.2 THE RECEIVED VIEW OF THE AB EFFECT ......................................... 128 6.3 THE PARADOX OF THE AB EFFECT....................................................... 135 6.4 JUSTIFYING THE AB EFFECT: A NON-TOPOLOGICAL INTERPRETATION ........................................................................................................ 138 6.5 CONCLUSION ................................................................................................ 145 7.0 TWO APPROACHES TO FRACTIONAL QUANTUM STATISTICS: PATHOLOGICAL IDEALIZATIONS AND THE CURIOUS CASE OF THE ANYON 147 7.1 FRACTIONAL QUANTUM STATISTICS AND THE CURIOUS CASE OF THE ANYON .................................................................................................................... 148 7.2 INTRODUCTION TO THE QUANTUM HALL EFFECTS ...................... 151 7.2.1 The Classical Hall Effect ............................................................................. 151 7.2.2 The Quantum Hall Effects .......................................................................... 155 7.3 THE TOPOLOGICAL APPROACH TO FRACTIONAL STATISTICS . 161 7.3.1 The Configuration Space Framework and QM on Multiply Connected Space ....................................................................................................................... 162 7.4 THE GEOMETRIC APPROACH TO FRACTIONAL STATISTICS ...... 168 7.5 CONCLUSION ................................................................................................ 175 8.0 CAN AN IDEALIZATION BE ESSENTIAL? ..................................................... 178 8.1 INTRODUCTION ........................................................................................... 178 8.2 ROLES FOR DEALIZATIONS IN SCIENCE ............................................ 181 8.2.1 Pedagogical Role .......................................................................................... 181 viii 8.2.2 Methodological Role .................................................................................... 184 8.3 ASYMPTOTIC EXPLANATION AND MINIMAL MODELS.................. 187 8.3.1 An Essentialist Objection ............................................................................ 195 8.4 A CHARACTERIZATION ............................................................................ 198 8.4.1 Emergence