A Comparative Study of Language Support for Generic Programming

Total Page:16

File Type:pdf, Size:1020Kb

A Comparative Study of Language Support for Generic Programming A Comparative Study of Language Support for Generic Programming Ronald Garcia Jaakko J¨arvi Andrew Lumsdaine Jeremy Siek Jeremiah Willcock Open Systems Lab Indiana University Bloomington Bloomington, IN USA {garcia,jajarvi,lums,jsiek,jewillco}@osl.iu.edu ABSTRACT 1. INTRODUCTION Many modern programming languages support basic generic pro- Generic programming is an increasingly popular and important gramming, sufficient to implement type-safe polymorphic contain- paradigm for software development and many modern program- ers. Some languages have moved beyond this basic support to ming languages provide basic support for it. For example, the use a broader, more powerful interpretation of generic programming, of type-safe polymorphic containers is routine programming prac- and their extensions have proven valuable in practice. This pa- tice today. Some languages have moved beyond elementary gener- per reports on a comprehensive comparison of generics in six pro- ics to a broader, more powerful interpretation, and their extensions gramming languages: C++, Standard ML, Haskell, Eiffel, Java (with have proven valuable in practice. One domain where generic pro- its proposed generics extension), and Generic C#. By implement- gramming has been particularly effective is reusable libraries of ing a substantial example in each of these languages, we identify software components, an example of which is the Standard Tem- eight language features that support this broader view of generic plate Library (STL), now part of the C++ Standard Library [23, 45]. programming. We find these features are necessary to avoid awk- As the generic programming paradigm gains momentum, it is im- ward designs, poor maintainability, unnecessary run-time checks, portant to clearly and deeply understand the language issues. In and painfully verbose code. As languages increasingly support particular, it is important to understand what language features are generics, it is important that language designers understand the fea- required to support the broader notion of generic programming. tures necessary to provide powerful generics and that their absence To aid in this process, we present results of an in-depth study causes serious difficulties for programmers. comparing six programming languages that support generics: Stan- dard ML [35], C++ [17], Haskell [21], Eiffel [30], Java (with the pro- posed genericity extension) [6], and Generic C# [24, 33]. The first Categories and Subject Descriptors four currently support generics while the latter two have proposed extensions (and prototype implementations) that do so. These lan- D.2.13 [Software Engineering]: Reusable Software—reusable li- guages were selected because they are widely used and represent braries; D.3.2 [Programming Languages]: Language Classifica- the state of the art in programming languages with generics. tions—multiparadigm languages; D.3.3 [Programming Langua- Our high-level goals for this study were the following: ges]: Language Constructs and Features—abstract data types, con- straints, polymorphism • Understand what language features are necessary to support generic programming; General Terms • Understand the extent to which specific languages support generic programming; Languages, Design, Standardization • Provide guidance for development of language support for generics; and Keywords • Illuminate for the community some of the power and sub- generics, generic programming, polymorphism, C++, Standard ML, tleties of generic programming. Haskell, Eiffel, Java, C# It is decidedly not a goal of this paper to demonstrate that one lan- guage is “better” than any other language. This paper is also not a comparison of generic programming to object-oriented program- Permission to make digital or hard copies of all or part of this work for ming (or to any other paradigm). personal or classroom use is granted without fee provided that copies are To conduct the study, we designed a model library by extract- not made or distributed for profit or commercial advantage and that copies ing a small but significant example of generic programming from a bear this notice and the full citation on the first page. To copy otherwise, to state-of-the art generic library (the Boost Graph Library [41]). The republish, to post on servers or to redistribute to lists, requires prior specific model library was fully implemented in all six target languages. permission and/or a fee. OOPSLA’03, October 26–30, 2003, Anaheim, California, USA. This example was chosen because it includes a variety of generic Copyright 2003 ACM 1-58113-712-5/03/0010 ...$5.00. programming techniques (some beyond the scope of, say, the STL) 1 115 and could therefore expose many subtleties of generic program- Generic programming is a sub-discipline of computer science ming. We attempted to create a uniform implementation across that deals with finding abstract representations of efficient al- all of the languages while still using the standard techniques and gorithms, data structures, and other software concepts, and idioms of each language. For each implementation, we evaluated with their systematic organization. The goal of generic pro- the language features available to realize different facets of generic gramming is to express algorithms and data structures in a programming. In addition, we evaluated each implementation with broadly adaptable, interoperable form that allows their direct respect to software quality issues that generic programming en- use in software construction. Key ideas include: ables, such as modularity, safety, and conciseness of expression. • The results of this process constitute the main results of this pa- Expressing algorithms with minimal assumptions about per and are summarized in Table 1. The table lists the eight lan- data abstractions, and vice versa, thus making them as guage features that we identified as being important to generic pro- interoperable as possible. gramming and shows the level of support for that feature in each • Lifting of a concrete algorithm to as general a level as language. We find these features are necessary for the development possible without losing efficiency; i.e., the most abstract of high-quality generic libraries. Incomplete support of these fea- form such that when specialized back to the concrete tures can result in awkward designs, poor maintainability, unnec- case the result is just as efficient as the original algo- essary run-time checks, and painfully verbose code. As languages rithm. increasingly support generics, it is important that language design- ers understand the features necessary to provide powerful generics • When the result of lifting is not general enough to cover and that their absence causes serious difficulties for programmers. all uses of an algorithm, additionally providing a more The rest of this paper describes how we reached the conclusions general form, but ensuring that the most efficient spe- in the table and why those language properties are important. The cialized form is automatically chosen when applicable. paper is organized as follows. Section 2 provides a brief introduc- • tion to generic programming and defines the terminology we use Providing more than one generic algorithm for the same in the paper. Section 3 describes the design of the generic graph li- purpose and at the same level of abstraction, when none brary that forms the basis for our comparisons. Sections 4 through 9 dominates the others in efficiency for all inputs. This present the individual implementations of the graph library in the introduces the necessity to provide sufficiently precise selected languages. Each of these sections also evaluates the level characterizations of the domain for which each algo- of support for generic programming provided by each language. rithm is the most efficient. In Section 10 we discuss in detail the most important issues we Figure 1: Definition of Generic Programming encountered during the course of this study and provide a detailed explanation of Table 1. We present some conclusions in Section 11. concepts are used to constrain type parameters. Traditionally, a concept consists of associated types, valid ex- 2. GENERIC PROGRAMMING pressions, semantic invariants, and complexity guarantees. The Definitions of generic programming vary. Typically, generic pro- associated types of a concept specify mappings from the model- gramming involves type parameters for data types and functions. ing type to other collaborating types (see Figure 4 for an example). While it is true that type parameters are required for generic pro- Valid expressions specify the operations that must be implemented gramming, there is much more to generic programming than just for the modeling type. At this point in the state of the art, type sys- type parameters. Inspired by the STL, we take a broader view of tems typically do not include semantic invariants and complexity generic programming and use the definition from [18] reproduced guarantees. Therefore, we state that for a type to properly model a in Figure 1. concept, the associated types and valid expressions specified by the Associated with this definition, terminology and techniques for concept must be defined. carrying out generic programming (and for supporting these key These primary aspects of generic programming, i.e., generic al- ideas) have emerged. gorithms, concepts, refinement, modeling, and constraints, are re- alized in different ways in our different target programming lan- Terminology guages. The specific language features that are
Recommended publications
  • 1=Haskell =1=Making Our Own Types and Typeclasses
    Haskell Making Our Own Types and Typeclasses http://igm.univ-mlv.fr/~vialette/?section=teaching St´ephaneVialette LIGM, Universit´eParis-Est Marne-la-Vall´ee November 13, 2016 Making Our Own Types and Typeclasses Algebraic data types intro So far, we've run into a lot of data types: Bool, Int, Char, Maybe, etc. But how do we make our own? One way is to use the data keyword to define a type. Let's see how the Bool type is defined in the standard library. data Bool= False| True data means that we're defining a new data type. Making Our Own Types and Typeclasses Algebraic data types intro data Bool= False| True The part before the = denotes the type, which is Bool. The parts after the = are value constructors. They specify the different values that this type can have. The | is read as or. So we can read this as: the Bool type can have a value of True or False. Both the type name and the value constructors have to be capital cased. Making Our Own Types and Typeclasses Algebraic data types intro We can think of the Int type as being defined like this: data Int=-2147483648|-2147483647| ...|-1|0|1|2| ...| 2147483647 The first and last value constructors are the minimum and maximum possible values of Int. It's not actually defined like this, the ellipses are here because we omitted a heapload of numbers, so this is just for illustrative purposes. Shape let's think about how we would represent a shape in Haskell.
    [Show full text]
  • A Polymorphic Type System for Extensible Records and Variants
    A Polymorphic Typ e System for Extensible Records and Variants Benedict R. Gaster and Mark P. Jones Technical rep ort NOTTCS-TR-96-3, November 1996 Department of Computer Science, University of Nottingham, University Park, Nottingham NG7 2RD, England. fbrg,[email protected] Abstract b oard, and another indicating a mouse click at a par- ticular p oint on the screen: Records and variants provide exible ways to construct Event = Char + Point : datatyp es, but the restrictions imp osed by practical typ e systems can prevent them from b eing used in ex- These de nitions are adequate, but they are not par- ible ways. These limitations are often the result of con- ticularly easy to work with in practice. For example, it cerns ab out eciency or typ e inference, or of the di- is easy to confuse datatyp e comp onents when they are culty in providing accurate typ es for key op erations. accessed by their p osition within a pro duct or sum, and This pap er describ es a new typ e system that reme- programs written in this way can b e hard to maintain. dies these problems: it supp orts extensible records and To avoid these problems, many programming lan- variants, with a full complement of p olymorphic op era- guages allow the comp onents of pro ducts, and the al- tions on each; and it o ers an e ective type inference al- ternatives of sums, to b e identi ed using names drawn gorithm and a simple compilation metho d.
    [Show full text]
  • Safety Properties Liveness Properties
    Computer security Goal: prevent bad things from happening PLDI’06 Tutorial T1: Clients not paying for services Enforcing and Expressing Security Critical service unavailable with Programming Languages Confidential information leaked Important information damaged System used to violate laws (e.g., copyright) Andrew Myers Conventional security mechanisms aren’t Cornell University up to the challenge http://www.cs.cornell.edu/andru PLDI Tutorial: Enforcing and Expressing Security with Programming Languages - Andrew Myers 2 Harder & more important Language-based security In the ’70s, computing systems were isolated. Conventional security: program is black box software updates done infrequently by an experienced Encryption administrator. Firewalls you trusted the (few) programs you ran. System calls/privileged mode physical access was required. Process-level privilege and permissions-based access control crashes and outages didn’t cost billions. The Internet has changed all of this. Prevents addressing important security issues: Downloaded and mobile code we depend upon the infrastructure for everyday services you have no idea what programs do. Buffer overruns and other safety problems software is constantly updated – sometimes without your knowledge Extensible systems or consent. Application-level security policies a hacker in the Philippines is as close as your neighbor. System-level security validation everything is executable (e.g., web pages, email). Languages and compilers to the rescue! PLDI Tutorial: Enforcing
    [Show full text]
  • Cyclone: a Type-Safe Dialect of C∗
    Cyclone: A Type-Safe Dialect of C∗ Dan Grossman Michael Hicks Trevor Jim Greg Morrisett If any bug has achieved celebrity status, it is the • In C, an array of structs will be laid out contigu- buffer overflow. It made front-page news as early ously in memory, which is good for cache locality. as 1987, as the enabler of the Morris worm, the first In Java, the decision of how to lay out an array worm to spread through the Internet. In recent years, of objects is made by the compiler, and probably attacks exploiting buffer overflows have become more has indirections. frequent, and more virulent. This year, for exam- ple, the Witty worm was released to the wild less • C has data types that match hardware data than 48 hours after a buffer overflow vulnerability types and operations. Java abstracts from the was publicly announced; in 45 minutes, it infected hardware (“write once, run anywhere”). the entire world-wide population of 12,000 machines running the vulnerable programs. • C has manual memory management, whereas Notably, buffer overflows are a problem only for the Java has garbage collection. Garbage collec- C and C++ languages—Java and other “safe” lan- tion is safe and convenient, but places little con- guages have built-in protection against them. More- trol over performance in the hands of the pro- over, buffer overflows appear in C programs written grammer, and indeed encourages an allocation- by expert programmers who are security concious— intensive style. programs such as OpenSSH, Kerberos, and the com- In short, C programmers can see the costs of their mercial intrusion detection programs that were the programs simply by looking at them, and they can target of Witty.
    [Show full text]
  • Cs164: Introduction to Programming Languages and Compilers
    Lecture 19 Flow Analysis flow analysis in prolog; applications of flow analysis Ras Bodik Hack Your Language! CS164: Introduction to Programming Ali and Mangpo Languages and Compilers, Spring 2013 UC Berkeley 1 Today Static program analysis what it computes and how are its results used Points-to analysis analysis for understanding flow of pointer values Andersen’s algorithm approximation of programs: how and why Andersen’s algorithm in Prolog points-to analysis expressed via just four deduction rules Andersen’s algorithm via CYK parsing (optional) expressed as CYK parsing of a graph representing the pgm Static Analysis of Programs definition and motivation 3 Static program analysis Computes program properties used by a range of clients: compiler optimizers, static debuggers, security audit tools, IDEs, … Static analysis == at compile time – that is, prior to seeing the actual input ==> analysis answer must be correct for all possible inputs Sample program properties: does variable x has a constant value (for all inputs)? does foo() return a table (whenever called, on all inputs)? 4 Client 1: Program Optimization Optimize program by finding constant subexpressions Ex: replace x[i] with x[1] if we know that i is always 1. This optimizations saves the address computation. This analysis is called constant propagation i = 2 … i = i+2 … if (…) { …} … x[i] = x[i-1] 5 Client 2: Find security vulnerabilities One specific analysis: find broken sanitization In a web server program, as whether a value can flow from POST (untrusted source) to the SQL interpreter (trusted sink) without passing through the cgi.escape() sanitizer? This is taint analysis.
    [Show full text]
  • An Operational Semantics and Type Safety Proof for Multiple Inheritance in C++
    An Operational Semantics and Type Safety Proof for Multiple Inheritance in C++ Daniel Wasserrab Tobias Nipkow Gregor Snelting Frank Tip Universitat¨ Passau Technische Universitat¨ Universitat¨ Passau IBM T.J. Watson Research [email protected] Munchen¨ [email protected] Center passau.de [email protected] passau.de [email protected] Abstract pected type, or end with an exception. The semantics and proof are formalized and machine-checked using the Isabelle/HOL theorem We present an operational semantics and type safety proof for 1 multiple inheritance in C++. The semantics models the behaviour prover [15] and are available online . of method calls, field accesses, and two forms of casts in C++ class One of the main sources of complexity in C++ is a complex hierarchies exactly, and the type safety proof was formalized and form of multiple inheritance, in which a combination of shared machine-checked in Isabelle/HOL. Our semantics enables one, for (“virtual”) and repeated (“nonvirtual”) inheritance is permitted. Be- the first time, to understand the behaviour of operations on C++ cause of this complexity, the behaviour of operations on C++ class class hierarchies without referring to implementation-level artifacts hierarchies has traditionally been defined informally [29], and in such as virtual function tables. Moreover, it can—as the semantics terms of implementation-level constructs such as v-tables. We are is executable—act as a reference for compilers, and it can form only aware of a few formal treatments—and of no operational the basis for more advanced correctness proofs of, e.g., automated semantics—for C++-like languages with shared and repeated mul- program transformations.
    [Show full text]
  • Chapter 8 Automation Using Powershell
    Chapter 8 Automation Using PowerShell Virtual Machine Manager is one of the first Microsoft software products to fully adopt Windows PowerShell and offer its users a complete management interface tailored for script- ing. From the first release of VMM 2007, the Virtual Machine Manager Administrator Console was written on top of Windows PowerShell, utilizing the many cmdlets that VMM offers. This approach made VMM very extensible and partner friendly and allows customers to accomplish anything that VMM offers in the Administrator Console via scripts and automation. Windows PowerShell is also the only public application programming interface (API) that VMM offers, giving both developers and administrators a single point of reference for managing VMM. Writing scripts that interface with VMM, Hyper-V, or Virtual Server can be made very easy using Windows PowerShell’s support for WMI, .NET, and COM. In this chapter, you will learn to: ◆ Describe the main benefits that PowerShell offers for VMM ◆ Use the VMM PowerShell cmdlets ◆ Create scheduled PowerShell scripts VMM and Windows PowerShell System Center Virtual Machine Manager (VMM) 2007, the first release of VMM, was one of the first products to develop its entire graphical user interface (the VMM Administrator Con- sole) on top of Windows PowerShell (previously known as Monad). This approach proved very advantageous for customers that wanted all of the VMM functionality to be available through some form of an API. The VMM team made early bets on Windows PowerShell as its public management interface, and they have not been disappointed with the results. With its consis- tent grammar, the great integration with .NET, and the abundance of cmdlets, PowerShell is quickly becoming the management interface of choice for enterprise applications.
    [Show full text]
  • Mastering Powershellpowershell
    CopyrightCopyright © 2009 BBS Technologies ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced, transmitted, stored, or used in any form or by any means graphic, electronic, or mechanical, including but not limited to photocopying, recording, scanning, digitizing, taping, Web distribution, information networks, or information storage and retrieval systems except as permitted under Section 107 or 108 of the 1976 United States Copyright Act without the prior written permission of the publisher. For permission to use material from the text please contact Idera at [email protected]. Microsoft® Windows PowerShell® and Microsoft® SQL Server® are registered trademarks of Microsoft Corporation in the United Stated and other countries. All other trademarks are the property of their respective owners. AboutAbout thethe AuthorAuthor Dr. Tobias Weltner is one of the most visible PowerShell MVPs in Europe. He has published more than 80 books on Windows and Scripting Techniques with Microsoft Press and other publishers, is a regular speaker at conferences and road shows and does high level PowerShell and Scripting trainings for companies throughout Europe. He created the powershell.com website and community in an effort to help people adopt and use PowerShell more efficiently. As software architect, he created a number of award-winning scripting tools such as SystemScripter (VBScript), the original PowerShell IDE and PowerShell Plus, a comprehensive integrated PowerShell development system. AcknowledgmentsAcknowledgments First and foremost, I’d like to thank my family who is always a source of inspiration and encouragement. A special thanks to Idera, Rick Pleczko, David Fargo, Richard Giles, Conley Smith and David Twamley for helping to bring this book to the English speaking world.
    [Show full text]
  • Java Secrets.Pdf
    Java Secrets by Elliotte Rusty Harold IDG Books, IDG Books Worldwide, Inc. ISBN: 0764580078 Pub Date: 05/01/97 Buy It Preface About the Author Part I—How Java Works Chapter 1—Introducing Java SECRETS A Little Knowledge Can Be a Dangerous Thing What’s in This Book? Part I: How Java Works Part II: The sun Classes Part III: Platform-Dependent Java Why Java Secrets? Broader applicability More power Inspiration Where Did the Secrets Come From? Where is the documentation? The source code The API documentation What Versions of Java Are Covered? Some Objections Java is supposed to be platform independent Why aren’t these things documented? FUD (fear, uncertainty, and doubt) How secret is this, anyway? Summary Chapter 2—Primitive Data Types Bytes in Memory Variables, Values, and Identifiers Place-Value Number Systems Binary notation Hexadecimal notation Octal notation Integers ints Long, short, and byte Floating-Point Numbers Representing floating-point numbers in binary code Special values Denormalized floating-point numbers CHAR ASCII ISO Latin-1 Unicode UTF8 Boolean Cross-Platform Issues Byte order Unsigned integers Integer widths Conversions and Casting Using a cast The mechanics of conversion Bit-Level Operators Some terminology Bitwise operators Bit shift operators Summary Chapter 2—Primitive Data Types Bytes in Memory Variables, Values, and Identifiers Place-Value Number Systems Binary notation Hexadecimal notation Octal notation Integers ints Long, short, and byte Floating-Point Numbers Representing floating-point numbers in binary code
    [Show full text]
  • Lecture Slides
    Outline Meta-Classes Guy Wiener Introduction AOP Classes Generation 1 Introduction Meta-Classes in Python Logging 2 Meta-Classes in Python Delegation Meta-Classes vs. Traditional OOP 3 Meta-Classes vs. Traditional OOP Outline Meta-Classes Guy Wiener Introduction AOP Classes Generation 1 Introduction Meta-Classes in Python Logging 2 Meta-Classes in Python Delegation Meta-Classes vs. Traditional OOP 3 Meta-Classes vs. Traditional OOP What is Meta-Programming? Meta-Classes Definition Guy Wiener Meta-Program A program that: Introduction AOP Classes One of its inputs is a program Generation (possibly itself) Meta-Classes in Python Its output is a program Logging Delegation Meta-Classes vs. Traditional OOP Meta-Programs Nowadays Meta-Classes Guy Wiener Introduction AOP Classes Generation Compilers Meta-Classes in Python Code Generators Logging Delegation Model-Driven Development Meta-Classes vs. Traditional Templates OOP Syntactic macros (Lisp-like) Meta-Classes The Problem With Static Programming Meta-Classes Guy Wiener Introduction AOP Classes Generation Meta-Classes How to share features between classes and class hierarchies? in Python Logging Share static attributes Delegation Meta-Classes Force classes to adhere to the same protocol vs. Traditional OOP Share code between similar methods Meta-Classes Meta-Classes Guy Wiener Introduction AOP Classes Definition Generation Meta-Classes in Python Meta-Class A class that creates classes Logging Delegation Objects that are instances of the same class Meta-Classes share the same behavior vs. Traditional OOP Classes that are instances of the same meta-class share the same behavior Meta-Classes Meta-Classes Guy Wiener Introduction AOP Classes Definition Generation Meta-Classes in Python Meta-Class A class that creates classes Logging Delegation Objects that are instances of the same class Meta-Classes share the same behavior vs.
    [Show full text]
  • Haskell-Style Type Classes with Isabelle/Isar
    Isar ∀ Isabelle= α λ β → Haskell-style type classes with Isabelle/Isar Florian Haftmann 20 February 2021 Abstract This tutorial introduces Isar type classes, which are a convenient mech- anism for organizing specifications. Essentially, they combine an op- erational aspect (in the manner of Haskell) with a logical aspect, both managed uniformly. 1 INTRODUCTION 1 1 Introduction Type classes were introduced by Wadler and Blott [8] into the Haskell lan- guage to allow for a reasonable implementation of overloading1. As a canon- ical example, a polymorphic equality function eq :: α ) α ) bool which is overloaded on different types for α, which is achieved by splitting introduc- tion of the eq function from its overloaded definitions by means of class and instance declarations: 2 class eq where eq :: α ) α ) bool instance nat :: eq where eq 0 0 = True eq 0 - = False eq - 0 = False eq (Suc n)(Suc m) = eq n m instance (α::eq; β::eq) pair :: eq where eq (x1; y1) (x2; y2) = eq x1 x2 ^ eq y1 y2 class ord extends eq where less-eq :: α ) α ) bool less :: α ) α ) bool Type variables are annotated with (finitely many) classes; these annotations are assertions that a particular polymorphic type provides definitions for overloaded functions. Indeed, type classes not only allow for simple overloading but form a generic calculus, an instance of order-sorted algebra [5, 6, 10]. From a software engineering point of view, type classes roughly correspond to interfaces in object-oriented languages like Java; so, it is naturally desirable that type classes do not only provide functions (class parameters) but also state specifications implementations must obey.
    [Show full text]
  • OMG Meta Object Facility (MOF) Core Specification
    Date : October 2019 OMG Meta Object Facility (MOF) Core Specification Version 2.5.1 OMG Document Number: formal/2019-10-01 Standard document URL: https://www.omg.org/spec/MOF/2.5.1 Normative Machine-Readable Files: https://www.omg.org/spec/MOF/20131001/MOF.xmi Informative Machine-Readable Files: https://www.omg.org/spec/MOF/20131001/CMOFConstraints.ocl https://www.omg.org/spec/MOF/20131001/EMOFConstraints.ocl Copyright © 2003, Adaptive Copyright © 2003, Ceira Technologies, Inc. Copyright © 2003, Compuware Corporation Copyright © 2003, Data Access Technologies, Inc. Copyright © 2003, DSTC Copyright © 2003, Gentleware Copyright © 2003, Hewlett-Packard Copyright © 2003, International Business Machines Copyright © 2003, IONA Copyright © 2003, MetaMatrix Copyright © 2015, Object Management Group Copyright © 2003, Softeam Copyright © 2003, SUN Copyright © 2003, Telelogic AB Copyright © 2003, Unisys USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES The material in this document details an Object Management Group specification in accordance with the terms, conditions and notices set forth below. This document does not represent a commitment to implement any portion of this specification in any company's products. The information contained in this document is subject to change without notice. LICENSES The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in the included material of any such copyright holder by reason of having used the specification set forth herein or having conformed any computer software to the specification.
    [Show full text]