First-Class Type Classes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1=Haskell =1=Making Our Own Types and Typeclasses
Haskell Making Our Own Types and Typeclasses http://igm.univ-mlv.fr/~vialette/?section=teaching St´ephaneVialette LIGM, Universit´eParis-Est Marne-la-Vall´ee November 13, 2016 Making Our Own Types and Typeclasses Algebraic data types intro So far, we've run into a lot of data types: Bool, Int, Char, Maybe, etc. But how do we make our own? One way is to use the data keyword to define a type. Let's see how the Bool type is defined in the standard library. data Bool= False| True data means that we're defining a new data type. Making Our Own Types and Typeclasses Algebraic data types intro data Bool= False| True The part before the = denotes the type, which is Bool. The parts after the = are value constructors. They specify the different values that this type can have. The | is read as or. So we can read this as: the Bool type can have a value of True or False. Both the type name and the value constructors have to be capital cased. Making Our Own Types and Typeclasses Algebraic data types intro We can think of the Int type as being defined like this: data Int=-2147483648|-2147483647| ...|-1|0|1|2| ...| 2147483647 The first and last value constructors are the minimum and maximum possible values of Int. It's not actually defined like this, the ellipses are here because we omitted a heapload of numbers, so this is just for illustrative purposes. Shape let's think about how we would represent a shape in Haskell. -
A Polymorphic Type System for Extensible Records and Variants
A Polymorphic Typ e System for Extensible Records and Variants Benedict R. Gaster and Mark P. Jones Technical rep ort NOTTCS-TR-96-3, November 1996 Department of Computer Science, University of Nottingham, University Park, Nottingham NG7 2RD, England. fbrg,[email protected] Abstract b oard, and another indicating a mouse click at a par- ticular p oint on the screen: Records and variants provide exible ways to construct Event = Char + Point : datatyp es, but the restrictions imp osed by practical typ e systems can prevent them from b eing used in ex- These de nitions are adequate, but they are not par- ible ways. These limitations are often the result of con- ticularly easy to work with in practice. For example, it cerns ab out eciency or typ e inference, or of the di- is easy to confuse datatyp e comp onents when they are culty in providing accurate typ es for key op erations. accessed by their p osition within a pro duct or sum, and This pap er describ es a new typ e system that reme- programs written in this way can b e hard to maintain. dies these problems: it supp orts extensible records and To avoid these problems, many programming lan- variants, with a full complement of p olymorphic op era- guages allow the comp onents of pro ducts, and the al- tions on each; and it o ers an e ective type inference al- ternatives of sums, to b e identi ed using names drawn gorithm and a simple compilation metho d. -
Typescript Language Specification
TypeScript Language Specification Version 1.8 January, 2016 Microsoft is making this Specification available under the Open Web Foundation Final Specification Agreement Version 1.0 ("OWF 1.0") as of October 1, 2012. The OWF 1.0 is available at http://www.openwebfoundation.org/legal/the-owf-1-0-agreements/owfa-1-0. TypeScript is a trademark of Microsoft Corporation. Table of Contents 1 Introduction ................................................................................................................................................................................... 1 1.1 Ambient Declarations ..................................................................................................................................................... 3 1.2 Function Types .................................................................................................................................................................. 3 1.3 Object Types ...................................................................................................................................................................... 4 1.4 Structural Subtyping ....................................................................................................................................................... 6 1.5 Contextual Typing ............................................................................................................................................................ 7 1.6 Classes ................................................................................................................................................................................. -
A System of Constructor Classes: Overloading and Implicit Higher-Order Polymorphism
A system of constructor classes: overloading and implicit higher-order polymorphism Mark P. Jones Yale University, Department of Computer Science, P.O. Box 2158 Yale Station, New Haven, CT 06520-2158. [email protected] Abstract range of other data types, as illustrated by the following examples: This paper describes a flexible type system which combines overloading and higher-order polymorphism in an implicitly data Tree a = Leaf a | Tree a :ˆ: Tree a typed language using a system of constructor classes – a mapTree :: (a → b) → (Tree a → Tree b) natural generalization of type classes in Haskell. mapTree f (Leaf x) = Leaf (f x) We present a wide range of examples which demonstrate mapTree f (l :ˆ: r) = mapTree f l :ˆ: mapTree f r the usefulness of such a system. In particular, we show how data Opt a = Just a | Nothing constructor classes can be used to support the use of monads mapOpt :: (a → b) → (Opt a → Opt b) in a functional language. mapOpt f (Just x) = Just (f x) The underlying type system permits higher-order polymor- mapOpt f Nothing = Nothing phism but retains many of many of the attractive features that have made the use of Hindley/Milner type systems so Each of these functions has a similar type to that of the popular. In particular, there is an effective algorithm which original map and also satisfies the functor laws given above. can be used to calculate principal types without the need for With this in mind, it seems a shame that we have to use explicit type or kind annotations. -
Design and Implementation of Generics for the .NET Common Language Runtime
Design and Implementation of Generics for the .NET Common Language Runtime Andrew Kennedy Don Syme Microsoft Research, Cambridge, U.K. fakeÒÒ¸d×ÝÑeg@ÑicÖÓ×ÓfغcÓÑ Abstract cally through an interface definition language, or IDL) that is nec- essary for language interoperation. The Microsoft .NET Common Language Runtime provides a This paper describes the design and implementation of support shared type system, intermediate language and dynamic execution for parametric polymorphism in the CLR. In its initial release, the environment for the implementation and inter-operation of multiple CLR has no support for polymorphism, an omission shared by the source languages. In this paper we extend it with direct support for JVM. Of course, it is always possible to “compile away” polymor- parametric polymorphism (also known as generics), describing the phism by translation, as has been demonstrated in a number of ex- design through examples written in an extended version of the C# tensions to Java [14, 4, 6, 13, 2, 16] that require no change to the programming language, and explaining aspects of implementation JVM, and in compilers for polymorphic languages that target the by reference to a prototype extension to the runtime. JVM or CLR (MLj [3], Haskell, Eiffel, Mercury). However, such Our design is very expressive, supporting parameterized types, systems inevitably suffer drawbacks of some kind, whether through polymorphic static, instance and virtual methods, “F-bounded” source language restrictions (disallowing primitive type instanti- type parameters, instantiation at pointer and value types, polymor- ations to enable a simple erasure-based translation, as in GJ and phic recursion, and exact run-time types. -
Python Programming
Python Programming Wikibooks.org June 22, 2012 On the 28th of April 2012 the contents of the English as well as German Wikibooks and Wikipedia projects were licensed under Creative Commons Attribution-ShareAlike 3.0 Unported license. An URI to this license is given in the list of figures on page 149. If this document is a derived work from the contents of one of these projects and the content was still licensed by the project under this license at the time of derivation this document has to be licensed under the same, a similar or a compatible license, as stated in section 4b of the license. The list of contributors is included in chapter Contributors on page 143. The licenses GPL, LGPL and GFDL are included in chapter Licenses on page 153, since this book and/or parts of it may or may not be licensed under one or more of these licenses, and thus require inclusion of these licenses. The licenses of the figures are given in the list of figures on page 149. This PDF was generated by the LATEX typesetting software. The LATEX source code is included as an attachment (source.7z.txt) in this PDF file. To extract the source from the PDF file, we recommend the use of http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/ utility or clicking the paper clip attachment symbol on the lower left of your PDF Viewer, selecting Save Attachment. After extracting it from the PDF file you have to rename it to source.7z. To uncompress the resulting archive we recommend the use of http://www.7-zip.org/. -
Refinement Types for ML
Refinement Types for ML Tim Freeman Frank Pfenning [email protected] [email protected] School of Computer Science School of Computer Science Carnegie Mellon University Carnegie Mellon University Pittsburgh, Pennsylvania 15213-3890 Pittsburgh, Pennsylvania 15213-3890 Abstract tended to the full Standard ML language. To see the opportunity to improve ML’s type system, We describe a refinement of ML’s type system allow- consider the following function which returns the last ing the specification of recursively defined subtypes of cons cell in a list: user-defined datatypes. The resulting system of refine- ment types preserves desirable properties of ML such as datatype α list = nil | cons of α * α list decidability of type inference, while at the same time fun lastcons (last as cons(hd,nil)) = last allowing more errors to be detected at compile-time. | lastcons (cons(hd,tl)) = lastcons tl The type system combines abstract interpretation with We know that this function will be undefined when ideas from the intersection type discipline, but remains called on an empty list, so we would like to obtain a closely tied to ML in that refinement types are given type error at compile-time when lastcons is called with only to programs which are already well-typed in ML. an argument of nil. Using refinement types this can be achieved, thus preventing runtime errors which could be 1 Introduction caught at compile-time. Similarly, we would like to be able to write code such as Standard ML [MTH90] is a practical programming lan- case lastcons y of guage with higher-order functions, polymorphic types, cons(x,nil) => print x and a well-developed module system. -
Parametric Polymorphism Parametric Polymorphism
Parametric Polymorphism Parametric Polymorphism • is a way to make a language more expressive, while still maintaining full static type-safety (every Haskell expression has a type, and types are all checked at compile-time; programs with type errors will not even compile) • using parametric polymorphism, a function or a data type can be written generically so that it can handle values identically without depending on their type • such functions and data types are called generic functions and generic datatypes Polymorphism in Haskell • Two kinds of polymorphism in Haskell – parametric and ad hoc (coming later!) • Both kinds involve type variables, standing for arbitrary types. • Easy to spot because they start with lower case letters • Usually we just use one letter on its own, e.g. a, b, c • When we use a polymorphic function we will usually do so at a specific type, called an instance. The process is called instantiation. Identity function Consider the identity function: id x = x Prelude> :t id id :: a -> a It does not do anything with the input other than returning it, therefore it places no constraints on the input's type. Prelude> :t id id :: a -> a Prelude> id 3 3 Prelude> id "hello" "hello" Prelude> id 'c' 'c' Polymorphic datatypes • The identity function is the simplest possible polymorphic function but not very interesting • Most useful polymorphic functions involve polymorphic types • Notation – write the name(s) of the type variable(s) used to the left of the = symbol Maybe data Maybe a = Nothing | Just a • a is the type variable • When we instantiate a to something, e.g. -
Generic Programming
Generic Programming July 21, 1998 A Dagstuhl Seminar on the topic of Generic Programming was held April 27– May 1, 1998, with forty seven participants from ten countries. During the meeting there were thirty seven lectures, a panel session, and several problem sessions. The outcomes of the meeting include • A collection of abstracts of the lectures, made publicly available via this booklet and a web site at http://www-ca.informatik.uni-tuebingen.de/dagstuhl/gpdag.html. • Plans for a proceedings volume of papers submitted after the seminar that present (possibly extended) discussions of the topics covered in the lectures, problem sessions, and the panel session. • A list of generic programming projects and open problems, which will be maintained publicly on the World Wide Web at http://www-ca.informatik.uni-tuebingen.de/people/musser/gp/pop/index.html http://www.cs.rpi.edu/˜musser/gp/pop/index.html. 1 Contents 1 Motivation 3 2 Standards Panel 4 3 Lectures 4 3.1 Foundations and Methodology Comparisons ........ 4 Fundamentals of Generic Programming.................. 4 Jim Dehnert and Alex Stepanov Automatic Program Specialization by Partial Evaluation........ 4 Robert Gl¨uck Evaluating Generic Programming in Practice............... 6 Mehdi Jazayeri Polytypic Programming........................... 6 Johan Jeuring Recasting Algorithms As Objects: AnAlternativetoIterators . 7 Murali Sitaraman Using Genericity to Improve OO Designs................. 8 Karsten Weihe Inheritance, Genericity, and Class Hierarchies.............. 8 Wolf Zimmermann 3.2 Programming Methodology ................... 9 Hierarchical Iterators and Algorithms................... 9 Matt Austern Generic Programming in C++: Matrix Case Study........... 9 Krzysztof Czarnecki Generative Programming: Beyond Generic Programming........ 10 Ulrich Eisenecker Generic Programming Using Adaptive and Aspect-Oriented Programming . -
CSE 307: Principles of Programming Languages Classes and Inheritance
OOP Introduction Type & Subtype Inheritance Overloading and Overriding CSE 307: Principles of Programming Languages Classes and Inheritance R. Sekar 1 / 52 OOP Introduction Type & Subtype Inheritance Overloading and Overriding Topics 1. OOP Introduction 3. Inheritance 2. Type & Subtype 4. Overloading and Overriding 2 / 52 OOP Introduction Type & Subtype Inheritance Overloading and Overriding Section 1 OOP Introduction 3 / 52 OOP Introduction Type & Subtype Inheritance Overloading and Overriding OOP (Object Oriented Programming) So far the languages that we encountered treat data and computation separately. In OOP, the data and computation are combined into an “object”. 4 / 52 OOP Introduction Type & Subtype Inheritance Overloading and Overriding Benefits of OOP more convenient: collects related information together, rather than distributing it. Example: C++ iostream class collects all I/O related operations together into one central place. Contrast with C I/O library, which consists of many distinct functions such as getchar, printf, scanf, sscanf, etc. centralizes and regulates access to data. If there is an error that corrupts object data, we need to look for the error only within its class Contrast with C programs, where access/modification code is distributed throughout the program 5 / 52 OOP Introduction Type & Subtype Inheritance Overloading and Overriding Benefits of OOP (Continued) Promotes reuse. by separating interface from implementation. We can replace the implementation of an object without changing client code. Contrast with C, where the implementation of a data structure such as a linked list is integrated into the client code by permitting extension of new objects via inheritance. Inheritance allows a new class to reuse the features of an existing class. -
Java Secrets.Pdf
Java Secrets by Elliotte Rusty Harold IDG Books, IDG Books Worldwide, Inc. ISBN: 0764580078 Pub Date: 05/01/97 Buy It Preface About the Author Part I—How Java Works Chapter 1—Introducing Java SECRETS A Little Knowledge Can Be a Dangerous Thing What’s in This Book? Part I: How Java Works Part II: The sun Classes Part III: Platform-Dependent Java Why Java Secrets? Broader applicability More power Inspiration Where Did the Secrets Come From? Where is the documentation? The source code The API documentation What Versions of Java Are Covered? Some Objections Java is supposed to be platform independent Why aren’t these things documented? FUD (fear, uncertainty, and doubt) How secret is this, anyway? Summary Chapter 2—Primitive Data Types Bytes in Memory Variables, Values, and Identifiers Place-Value Number Systems Binary notation Hexadecimal notation Octal notation Integers ints Long, short, and byte Floating-Point Numbers Representing floating-point numbers in binary code Special values Denormalized floating-point numbers CHAR ASCII ISO Latin-1 Unicode UTF8 Boolean Cross-Platform Issues Byte order Unsigned integers Integer widths Conversions and Casting Using a cast The mechanics of conversion Bit-Level Operators Some terminology Bitwise operators Bit shift operators Summary Chapter 2—Primitive Data Types Bytes in Memory Variables, Values, and Identifiers Place-Value Number Systems Binary notation Hexadecimal notation Octal notation Integers ints Long, short, and byte Floating-Point Numbers Representing floating-point numbers in binary code -
INF 102 CONCEPTS of PROG. LANGS Type Systems
INF 102 CONCEPTS OF PROG. LANGS Type Systems Instructors: James Jones Copyright © Instructors. What is a Data Type? • A type is a collection of computational entities that share some common property • Programming languages are designed to help programmers organize computational constructs and use them correctly. Many programming languages organize data and computations into collections called types. • Some examples of types are: o the type Int of integers o the type (Int→Int) of functions from integers to integers Why do we need them? • Consider “untyped” universes: • Bit string in computer memory • λ-expressions in λ calculus • Sets in set theory • “untyped” = there’s only 1 type • Types arise naturally to categorize objects according to patterns of use • E.g. all integer numbers have same set of applicable operations Use of Types • Identifying and preventing meaningless errors in the program o Compile-time checking o Run-time checking • Program Organization and documentation o Separate types for separate concepts o Indicates intended use declared identifiers • Supports Optimization o Short integers require fewer bits o Access record component by known offset Type Errors • A type error occurs when a computational entity, such as a function or a data value, is used in a manner that is inconsistent with the concept it represents • Languages represent values as sequences of bits. A "type error" occurs when a bit sequence written for one type is used as a bit sequence for another type • A simple example can be assigning a string to an integer