Python Programming
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Type-Safe Composition of Object Modules*
International Conference on Computer Systems and Education I ISc Bangalore Typ esafe Comp osition of Ob ject Mo dules Guruduth Banavar Gary Lindstrom Douglas Orr Department of Computer Science University of Utah Salt LakeCity Utah USA Abstract Intro duction It is widely agreed that strong typing in We describ e a facility that enables routine creases the reliability and eciency of soft typ echecking during the linkage of exter ware However compilers for statically typ ed nal declarations and denitions of separately languages suchasC and C in tradi compiled programs in ANSI C The primary tional nonintegrated programming environ advantage of our serverstyle typ echecked ments guarantee complete typ esafety only linkage facility is the ability to program the within a compilation unit but not across comp osition of ob ject mo dules via a suite of suchunits Longstanding and widely avail strongly typ ed mo dule combination op era able linkers comp ose separately compiled tors Such programmability enables one to units bymatching symb ols purely byname easily incorp orate programmerdened data equivalence with no regard to their typ es format conversion stubs at linktime In ad Such common denominator linkers accom dition our linkage facility is able to automat mo date ob ject mo dules from various source ically generate safe co ercion stubs for com languages by simply ignoring the static se patible encapsulated data mantics of the language Moreover com monly used ob ject le formats are not de signed to incorp orate source language typ e -
Ironpython in Action
IronPytho IN ACTION Michael J. Foord Christian Muirhead FOREWORD BY JIM HUGUNIN MANNING IronPython in Action Download at Boykma.Com Licensed to Deborah Christiansen <[email protected]> Download at Boykma.Com Licensed to Deborah Christiansen <[email protected]> IronPython in Action MICHAEL J. FOORD CHRISTIAN MUIRHEAD MANNING Greenwich (74° w. long.) Download at Boykma.Com Licensed to Deborah Christiansen <[email protected]> For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact Special Sales Department Manning Publications Co. Sound View Court 3B fax: (609) 877-8256 Greenwich, CT 06830 email: [email protected] ©2009 by Manning Publications Co. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps. Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15% recycled and processed without the use of elemental chlorine. -
Typescript Language Specification
TypeScript Language Specification Version 1.8 January, 2016 Microsoft is making this Specification available under the Open Web Foundation Final Specification Agreement Version 1.0 ("OWF 1.0") as of October 1, 2012. The OWF 1.0 is available at http://www.openwebfoundation.org/legal/the-owf-1-0-agreements/owfa-1-0. TypeScript is a trademark of Microsoft Corporation. Table of Contents 1 Introduction ................................................................................................................................................................................... 1 1.1 Ambient Declarations ..................................................................................................................................................... 3 1.2 Function Types .................................................................................................................................................................. 3 1.3 Object Types ...................................................................................................................................................................... 4 1.4 Structural Subtyping ....................................................................................................................................................... 6 1.5 Contextual Typing ............................................................................................................................................................ 7 1.6 Classes ................................................................................................................................................................................. -
5. Data Types
IEEE FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011 5. Data types The e language has a number of predefined data types, including the integer and Boolean scalar types common to most programming languages. In addition, new scalar data types (enumerated types) that are appropriate for programming, modeling hardware, and interfacing with hardware simulators can be created. The e language also provides a powerful mechanism for defining OO hierarchical data structures (structs) and ordered collections of elements of the same type (lists). The following subclauses provide a basic explanation of e data types. 5.1 e data types Most e expressions have an explicit data type, as follows: — Scalar types — Scalar subtypes — Enumerated scalar types — Casting of enumerated types in comparisons — Struct types — Struct subtypes — Referencing fields in when constructs — List types — The set type — The string type — The real type — The external_pointer type — The “untyped” pseudo type Certain expressions, such as HDL objects, have no explicit data type. See 5.2 for information on how these expressions are handled. 5.1.1 Scalar types Scalar types in e are one of the following: numeric, Boolean, or enumerated. Table 17 shows the predefined numeric and Boolean types. Both signed and unsigned integers can be of any size and, thus, of any range. See 5.1.2 for information on how to specify the size and range of a scalar field or variable explicitly. See also Clause 4. 5.1.2 Scalar subtypes A scalar subtype can be named and created by using a scalar modifier to specify the range or bit width of a scalar type. -
A System of Constructor Classes: Overloading and Implicit Higher-Order Polymorphism
A system of constructor classes: overloading and implicit higher-order polymorphism Mark P. Jones Yale University, Department of Computer Science, P.O. Box 2158 Yale Station, New Haven, CT 06520-2158. [email protected] Abstract range of other data types, as illustrated by the following examples: This paper describes a flexible type system which combines overloading and higher-order polymorphism in an implicitly data Tree a = Leaf a | Tree a :ˆ: Tree a typed language using a system of constructor classes – a mapTree :: (a → b) → (Tree a → Tree b) natural generalization of type classes in Haskell. mapTree f (Leaf x) = Leaf (f x) We present a wide range of examples which demonstrate mapTree f (l :ˆ: r) = mapTree f l :ˆ: mapTree f r the usefulness of such a system. In particular, we show how data Opt a = Just a | Nothing constructor classes can be used to support the use of monads mapOpt :: (a → b) → (Opt a → Opt b) in a functional language. mapOpt f (Just x) = Just (f x) The underlying type system permits higher-order polymor- mapOpt f Nothing = Nothing phism but retains many of many of the attractive features that have made the use of Hindley/Milner type systems so Each of these functions has a similar type to that of the popular. In particular, there is an effective algorithm which original map and also satisfies the functor laws given above. can be used to calculate principal types without the need for With this in mind, it seems a shame that we have to use explicit type or kind annotations. -
Implementation of Calfem for Python
IMPLEMENTATION OF CALFEM FOR PYTHON ANDREAS OTTOSSON Structural Master’s Dissertation Mechanics Detta är en tom sida! Department of Construction Sciences Structural Mechanics ISRN LUTVDG/TVSM--10/5167--SE (1-47) ISSN 0281-6679 IMPLEMENTATION OF CALFEM FOR PYTHON Master’s Dissertation by ANDREAS OTTOSSON Supervisors: Jonas Lindemann, PhD, Div. of Structural Mechanics Examiner: Ola Dahlblom, Professor, Div. of Structural Mechanics Copyright © 2010 by Structural Mechanics, LTH, Sweden. Printed by Wallin & Dalholm Digital AB, Lund, Sweden, August, 2010 (Pl). For information, address: Division of Structural Mechanics, LTH, Lund University, Box 118, SE-221 00 Lund, Sweden. Homepage: http://www.byggmek.lth.se Detta är en tom sida! Preface The work presented in this masters’s thesis was carried out during the period June 2009 to August 2010 at the Division of Structural Mechanics at the Faculty of Engineering, Lund University, Sweden. I would like to thank the staff of the Department of Structural Mechanics, es- pecially my supervisor Jonas Lindemann, for help during this work. I would also like to thank my Jennie, and both our families, for their support throughout my education. Lund, August 2010 Andreas Ottosson i Contents 1 Introduction 1 1.1Background.............................. 1 1.2WhyCALFEMforPython?..................... 1 1.3 Objective ............................... 1 2MATLAB 3 2.1Background.............................. 3 2.2 Objects ................................ 3 3 Python and NumPy 5 3.1Python................................ 5 3.1.1 Background.......................... 5 3.1.2 Influences ........................... 5 3.1.3 Objects ............................ 6 3.2NumPy................................ 6 3.2.1 Objects ............................ 7 3.2.2 Commonmatrixoperations................. 8 4 Integrated Development Environments 11 4.1MATLAB............................... 11 4.2PythonIDLE............................. 12 4.3IPython............................... -
Run Python Program from Terminal
Run Python Program From Terminal Crunchiest and representationalism Alfonzo intertwines while slim Archy belly-flopped her redactions also and recapping pleasingly. Swampy Sivert somebreakaway: gracelessness he spreads jauntily. his Seoul Somerville and consecutively. Parliamentary and autecologic Carlyle infuriates her screwer borates while Jessey belie On the script from python test cases, for some experience, you can do you are Now you will connect with a great for the main file format instead of wine before we are distributed in python idle to our latest tutorials. This way you can interpret python programs that you might want to reverse a step in terminals as an excellent idea. In python program or run the id and. This program from websites and terminal window that are welcome our programs. At this topic, we go ahead and find the zip file in the map concept. This run it runs on terminal and code. For mac users and terminal commands using ssh for working with the python interactive mode by entering the run python program from terminal by system that i made. Python programming language is run your python available on the results in terminals as and. Passionate about some of terminal looks like python programming task! Spyder and functions and schedule scripts in web development environment where you. Hopefully you from our programs are running untrusted python programming? These other python running the run your path you can open a script will end, and scp or directly download. Path of files recursively on windows background application makes use for? Create programs from. Food notifier example of your file, we can also effective bu the utilities folder you see the full path to install both locally and how can put it accepts two orders or terminal program from python? Debugging mode by running. -
Php Editor Mac Freeware Download
Php editor mac freeware download Davor's PHP Editor (DPHPEdit) is a free PHP IDE (Integrated Development Environment) which allows Project Creation and Management, Editing with. Notepad++ is a free and open source code editor for Windows. It comes with syntax highlighting for many languages including PHP, JavaScript, HTML, and BBEdit costs $, you can also download a free trial version. PHP editor for Mac OS X, Windows, macOS, and Linux features such as the PHP code builder, the PHP code assistant, and the PHP function list tool. Browse, upload, download, rename, and delete files and directories and much more. PHP Editor free download. Get the latest version now. PHP Editor. CodeLite is an open source, free, cross platform IDE specialized in C, C++, PHP and ) programming languages which runs best on all major Platforms (OSX, Windows and Linux). You can Download CodeLite for the following OSs. Aptana Studio (Windows, Linux, Mac OS X) (FREE) Built-in macro language; Plugins can be downloaded and installed from within jEdit using . EditPlus is a text editor, HTML editor, PHP editor and Java editor for Windows. Download For Mac For macOS or later Release notes - Other platforms Atom is a text editor that's modern, approachable, yet hackable to the core—a tool. Komodo Edit is a simple, polyglot editor that provides the basic functionality you need for programming. unit testing, collaboration, or integration with build systems, download Komodo IDE and start your day trial. (x86), Mac OS X. Download your free trial of Zend Studio - the leading PHP Editor for Zend Studio - Mac OS bit fdbbdea, Download. -
Refinement Types for ML
Refinement Types for ML Tim Freeman Frank Pfenning [email protected] [email protected] School of Computer Science School of Computer Science Carnegie Mellon University Carnegie Mellon University Pittsburgh, Pennsylvania 15213-3890 Pittsburgh, Pennsylvania 15213-3890 Abstract tended to the full Standard ML language. To see the opportunity to improve ML’s type system, We describe a refinement of ML’s type system allow- consider the following function which returns the last ing the specification of recursively defined subtypes of cons cell in a list: user-defined datatypes. The resulting system of refine- ment types preserves desirable properties of ML such as datatype α list = nil | cons of α * α list decidability of type inference, while at the same time fun lastcons (last as cons(hd,nil)) = last allowing more errors to be detected at compile-time. | lastcons (cons(hd,tl)) = lastcons tl The type system combines abstract interpretation with We know that this function will be undefined when ideas from the intersection type discipline, but remains called on an empty list, so we would like to obtain a closely tied to ML in that refinement types are given type error at compile-time when lastcons is called with only to programs which are already well-typed in ML. an argument of nil. Using refinement types this can be achieved, thus preventing runtime errors which could be 1 Introduction caught at compile-time. Similarly, we would like to be able to write code such as Standard ML [MTH90] is a practical programming lan- case lastcons y of guage with higher-order functions, polymorphic types, cons(x,nil) => print x and a well-developed module system. -
Jupyter Tutorial Release 0.8.0
Jupyter Tutorial Release 0.8.0 Veit Schiele Oct 01, 2021 CONTENTS 1 Introduction 3 1.1 Status...................................................3 1.2 Target group...............................................3 1.3 Structure of the Jupyter tutorial.....................................3 1.4 Why Jupyter?...............................................4 1.5 Jupyter infrastructure...........................................4 2 First steps 5 2.1 Install Jupyter Notebook.........................................5 2.2 Create notebook.............................................7 2.3 Example................................................. 10 2.4 Installation................................................ 13 2.5 Follow us................................................. 15 2.6 Pull-Requests............................................... 15 3 Workspace 17 3.1 IPython.................................................. 17 3.2 Jupyter.................................................. 50 4 Read, persist and provide data 143 4.1 Open data................................................. 143 4.2 Serialisation formats........................................... 144 4.3 Requests................................................. 154 4.4 BeautifulSoup.............................................. 159 4.5 Intake................................................... 160 4.6 PostgreSQL................................................ 174 4.7 NoSQL databases............................................ 199 4.8 Application Programming Interface (API).............................. -
The Turbogears Toolbox and Other Tools
19 The TurboGears Toolbox and Other Tools In This Chapter ■ 19.1 Toolbox Overview 372 ■ 19.2 ModelDesigner 373 ■ 19.3 CatWalk 375 ■ 19.4 WebConsole 377 ■ 19.5 Widget Browser 378 ■ 19.6 Admi18n and System Info 379 ■ 19.7 The tg-admin Command 380 ■ 19.8 Other TurboGears Tools 380 ■ 19.9 Summary 381 371 226Ramm_ch19i_indd.indd6Ramm_ch19i_indd.indd 337171 110/17/060/17/06 111:50:421:50:42 AAMM urboGears includes a number of nice features to make your life as a de- Tveloper just a little bit easier. The TurboGears Toolbox provides tools for creating and charting your database model, adding data to your database with a web based GUI while you are still in development, debugging system problems, browsing all of the installed widgets, and internationalizing your application. 19.1 Toolbox Overview The TurboGears Toolbox is started with the tg-admin toolbox command. Your browser should automatically pop up when you start the Toolbox, but if it doesn’t you should still be able to browse to http://localhost:7654, where you’ll see a web page with links for each of the tools in the toolbox (as seen in Figure 19.1). FIGURE 19.1 The TurboGears Toolbox home page Each of the components in the Toolbox is also a TurboGears application, so you can also look at them as examples of how TurboGears applications are built. 372 226Ramm_ch19i_indd.indd6Ramm_ch19i_indd.indd 337272 110/17/060/17/06 111:50:431:50:43 AAMM 19.2 ModelDesigner 373 Because there isn’t anything in TurboGears that can’t be done in code or from the command line, the use of the Toolbox is entirely optional. -
The Kilobot Gym
The Kilobot Gym Gregor H.W. Gebhardt1 and Gerhard Neumann2 Abstract— Simulation is a crucial tool when learning control policies for robotic systems. The evaluation of a control policy is a recurring task in most learning algorithms which can be significantly sped up when using a simulation instead of the real system. This improvement in learning speed becomes even more significant when working with robot swarms which usually operate rather slow and need to be tediously initialized by hand. In this paper, we present a novel simulator for swarm Fig. 1. Left: a scene with a small swarm of Kilobots with an object in the robotics. Our simulator is inspired by the Kilobot platform and background. Right: a swarm of Kilobots in our simulation framework with builds on the OpenAI gym. This allows to evaluate a wide range with four square objects. of learning algorithms using a unified interface for controlling the swarm. The code of our simulation framework is available at [3]. time step. The implementation uses JavaScript embedded in HTML files which results in code that is hard to use for I. INTRODUCTION programmatic evaluations and, furthermore, the reusability Learning the parameters of a control policy is usually of JavaScripts without any modularity goes towards zero. an iterative process of evaluating the parameters on the Another approach to simulate a swarm of Kilobots is to system and improving the parameters based on the evaluation use the robot simulator V-REP [6]. The simulations are results. In robotics, the most time consuming task is often the performed in 3D, where the user can select between different evaluation of the parameters on a real robotic system.