ABSTRACT LI, MIN. Forensic Analysis of Organic Dyes on Trace Fibers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ANTHRAQUINONE and ANTHRONE SERIES Part IX
ANTHRAQUINONE AND ANTHRONE SERIES Part IX. Chromatographic Adsorption of Aminoanthraquinones on Alumina BY N. R. RAo, K. H. SHAH AND K. VENKATARAMAN, F.A.Sc. (Department of Chemical Technology. University of Bombay, Bombay) Received November 10, 1951 CORRELATIONS between chemical constitution and chromatograpl~c behaviour can only be attempted in molecales of the same or similar types and under specified conditions of chromatographic treatment, since complex solvent- adsorbent, solute-solvent and solute-adsorbent relationships are involved. Changes in the sequence of adsorption of the constituents in a mixture have been observed, ooth when the adsorbent is changed and when the deve- loping solvent is changed. Thus Strain was able tc separate some ternary mixtures in four of the six pessible sequences by changing the solvent1; and LeRosen found that cryptoxanthin is aloove lycopene on alumina and on calcium carbonate columns, but the order is inverted on a column of calcium hydroxide, using benzene as developer with all the three adsoroents. 2 An inversion of the sequence of adsorption of N-ethyl-N, N'-diphenylurea and 4-nitro-N-ethylaniline was observed by Schroeder when a slight alteration in the composition of the developer (2 or 5~o of ethyl acetate in light petro- leum) was made. 3 LeRosen has defined the adsorption affinity R as the rate of movement of the adsorptive zone (mm./min.) divided by the rate of flow of developing solvent. 2 R values have been used for standardizing adsorbents and for determining the efficiency of developers; using the same adsorbent and solvent, R values provide a quantitative measure of the adsorption affinities of a series of compounds which can then be correlated with their chemical constitution. -
Removal of Acid Blue 25 Dye by Using Dried Water Hyacinth from Aqueous Solution
REMOVAL OF ACID BLUE 25 DYE BY USING DRIED WATER HYACINTH FROM AQUEOUS SOLUTION A thesis submitted in the the fulfillment of the requirements for the award of the degree of Bachelor of Chemical Engineering Faculty of Chemical Engineering & Natural Resources Universiti Malaysia Pahang iv ABSTRACT Water hyacinth (Eichhornia crassipes) is a free floating aquatic weeds that robustness in its growth used as an adsorbent to remove Acid Blue 25 dye from aqueous solution. The parameters studied include the adsorbent dosage, initial dye concentration, pH, and also contact time in a batch adsorption process at room temperature 21ºC. The results shows the optimum conditions for each parameter studied, adsorbent dosage at 0.60 g, initial concentration 400 mg/L, pH 2 and 100 minutes contact time. The samples after the dye uptake were analyzed by using UV-Vis spectrophotometer. Furthermore, before and after the experiments, FTIR analyses were studied to know the functional groups of the water hyacinth. In addition, the equilibrium data fitted well pseudo-second order kinetics, Langmuir and Freundlich isotherm. The maximum sorption capacities for Langmuir equation were 83.33 mg/g whereas the amount of n for Freundlich is favourable. While for pseudo-second-order kinetics, it has a low error for equilibrium sorption capacity for experimental and calculated values. This study is favourable and economically feasible for the removal of Acid Blue 25. v ABSTRAK Keladi bunting merupakan gulma air yang mengambang yang digunakan sebagai adsorben untuk menyingkirkan pewarna Asid Biru 25 dari akuas larutan. Parameter yang dipelajari meliputi dos adsorben, kepekatan pewarna awal, pH, dan juga masa tindakbalas dalam proses jerapan batch pada suhu bilik 21º C. -
Real Time Analysis and Control of Batch Dyeing Processes
C95S4 Page 1 Project Title: Real Time Analysis And Control of Batch Dyeing Processes Project Number: C95-S4 PI(s): R. McGregor (Leader NCSU), K. R. Beck, G. K. F. Lee, C. B. Smith, W J. Jasper Graduate Students: M. S. Arora, C. E. Bright, R. P. Joshi, M. R. Lefeber Wallace, J. T. Merritt. Industrial Collaborator: W. Hunter (Cotton Inc.). Goals: The overall objective of this project is to optimize batch-dye process control by monitoring dyebaths, and by understanding and controlling the state of the dyeing process, both in the laboratory and commercial dyeing machines. Specific objectives are to: 1. Educate graduate students and advance dyeing knowledge and technology. 2. Develop neural network/fuzzy logic control for dyebath monitoring and colorant formulation. 3. Develop control systems and strategies for closed loop control via dosing, fuzzy logic and neural networks. 4. Comparatively evaluate control strategies and the absolute levels of control possible. 5. Develop useful theoretical kinetic and thermodynamic models and generic process models. Abstract: This report describes our (Dye Applications Research Group, DARG) recent progress in real-time monitoring, modeling, and controlling batch dyeing processes. The flow injection analysis (FIA) system was modified to allow injection of a small volume of dyebath into a high performance liquid chromatograph (HPLC). This FIAIHPLC system is being used to study four different procedures for exhaust dyeing cotton with reactive dyes. Data are reported for isothermal dyeings at different temperatures. Preliminary work to develop a spectrophotometric method for monitoring exhaustion of vat dyes, especially indigo, is reported. Calibration models developed from indigo powder and indigo paste under a nitrogen atmosphere indicate significant differences in the purity of the dye in these two forms. -
United States Patent (19) 11 3,923,453 Lazar Et Al
United States Patent (19) 11 3,923,453 Lazar et al. (45) Dec. 2, 1975 54 NEW DYE COMPOSITIONS twenty parts by weight of a dye assist consisting of a 75 Inventors: Remus I. Lazar, Berwyn; Richard C. mixture of benzyl alcohol and Reichel, Chicago, both of Ill. 73) Assignee: Welsicol Chemical Corporation, Chicago, Ill. 22 Filed: Dec. 3, 1973 (21) Appl. No.: 420,998 52 U.S. Ci............................ 8/39; 8/42 R; 8/42 B; 8/93; 81173 5 l l Int. Cl......................... D06P 1120; D06P 5/04 (58) Field of Search................... 8/93, 173, 39, 42 R Primary Examiner-Lewis T. Jacobs having a boiling point of about 1 17°C at 9 mm Hg Attorney, Agent, or Firm-Robert J. Schwarz; Dietmar pressure, a refractive index of about 1.5262 at 20°C H. Olesch and an infrared spectrum having strong bands at about 9.4, 10. 1, 12.7 and 14.4 microns, in a weight ratio of (57) ABSTRACT from 4:1 to 1:4. This invention discloses a dye composition comprising one part by weight of an acid dyestuff and from one to 5 Claims, No Drawings 3,923,453 1 2 anthraquinone, exemplified by CI Blue 45 (C.I. No. NEW DYE COMPOSITIONS 63010); azine, exemplified by CI Acid Blue 59 (C.I. This invention relates to dye compositions which are No. 50315); and quinoline, exemplified by CI Acid useful in the dyeing of natural proteinaceous and syn Yellow 3 (C.I. No. 47005). thetic polyamide fibers. r The mordant acid dyes similarly fall into several The art of dyeing is a complex procedure requiring a chemical types, such as anthraquinone, exemplified by variety of techniques and chemicals: The dyeing of nat CI Mordant Red 3 (C.I. -
Adsorption of Food Dyes Onto Chitosan: Optimization Process and Kinetic
Carbohydrate Polymers 84 (2011) 231–238 Contents lists available at ScienceDirect Carbohydrate Polymers journal homepage: www.elsevier.com/locate/carbpol Adsorption of food dyes onto chitosan: Optimization process and kinetic G.L. Dotto, L.A.A. Pinto ∗ Unit Operation Laboratory, School of Chemistry and Food, Federal University of Rio Grande – FURG, Rio Grande, RS, Brazil article info abstract Article history: Adsorption of food dyes acid blue 9 and food yellow 3 onto chitosan was optimized. Chitosan was obtained Received 5 October 2010 from shrimp wastes and characterized. A full factorial design was used to analyze the effects of pH, stirring Received in revised form rate and contact time in adsorption capacity. In the optimal conditions, adsorption kinetics was studied 10 November 2010 and the experimental data were fitted with three kinetic models. The produced chitosan showed good Accepted 11 November 2010 characteristics for dye adsorption. The optimal conditions were: pH 3, 150 rpm and 60 min for acid blue 9 Available online 19 November 2010 and pH 3, 50 rpm and 60 min for food yellow 3. In these conditions, the adsorption capacities values were 210 mg g−1 and 295 mg g−1 for acid blue 9 and food yellow 3, respectively. The Elovich kinetic model was Keywords: Acid blue 9 the best fit for experimental data and it showed the chemical nature of dyes adsorption onto chitosan. Adsorption capacity © 2010 Elsevier Ltd. All rights reserved. Elovich model Food dye Food yellow 3 1. Introduction mainly aromatic structures, which are biologically non-degradable (Srinivasan & Viraraghavan, 2010). Adsorption is found a good way Chitosan, a de-N-acetylated analog of chitin, is a heteropolysac- to treat industrial waste effluents, it has significant advantages in charide consisting of linear b-1,4-linked GlcN and GlcNAc units comparison with conventional methods, especially from econom- (Harish Prashanth & Tharanathan, 2007). -
USE and ASSESSMENT of MARKER DYES USED with HERBICIDES
SERA TR 96-21-07-03b USE and ASSESSMENT OF MARKER DYES USED WITH HERBICIDES Submitted to: Leslie Rubin, COTR Animal and Plant Health Inspection Service (APHIS) Policy and Program Development Environmental Analysis and Documentation United States Department of Agriculture Suite 5A44, Unit 149 4700 River Road Riverdale, MD 20737 Task No. 10 USDA Order Nos. 43-3187-7-0408 USDA Contract No. 53-3187-5-12 Submitted by: Syracuse Environmental Research Associates, Inc. 5100 Highbridge St., 42C Fayetteville, New York 13066-0950 Telephone: (315) 637-9560 Fax: (315) 637-0445 Internet: [email protected] December 21, 1997 USE and ASSESSMENT OF MARKER DYES USED WITH HERBICIDES Prepared by: Michelle Pepling1, Phillip H. Howard1, Patrick R. Durkin2, 1Syracuse Research Corporation 6225 Running Ridge Road North Syracuse, New York 13212-2509 2Syracuse Environmental Research Associates, Inc. 5100 Highbridge St., Building 42C Fayetteville, New York 13066-0950 Submitted to: Leslie Rubin, COTR Animal and Plant Health Inspection Service (APHIS) Policy and Program Development Environmental Analysis and Documentation United States Department of Agriculture Suite 5A44, Unit 149 4700 River Road Riverdale, MD 20737 Task No. 10 USDA Order Nos. 43-3187-7-0408 USDA Contract No. 53-3187-5-12 Submitted by: Syracuse Environmental Research Associates, Inc. 5100 Highbridge St., 42C Fayetteville, New York 13066-0950 Telephone: (315) 637-9560 Fax: (315) 637-0445 Internet: [email protected] December 21, 1997 TABLE OF CONTENTS TABLE OF CONTENTS .....................................................ii ACRONYMS, ABBREVIATIONS, AND SYMBOLS .............................. iii 1. INTRODUCTION .....................................................1 2. CURRENT PRACTICE .................................................2 3. GENERAL CONSIDERATIONS .........................................3 3.1. DEFINITIONS .................................................3 3.2. CLASSES OF DYES .............................................4 3.3. -
Opinion on the SCCNFP on Disperse Violet 1 Impurified with Disperse Red
SCCNFP/0504/01, final OPINION OF THE SCIENTIFIC COMMITTEE ON COSMETIC PRODUCTS AND NON-FOOD PRODUCTS INTENDED FOR CONSUMERS CONCERNING DISPERSE VIOLET 1 IMPURIFIED WITH DISPERSE RED 15 Colipa n° C64 & C61 adopted by the SCCNFP during the 19th Plenary meeting of 27 February 2002 SCCNFP/0504/01, final Evaluation and opinion on : Disperse Violet 1 impurified with Disperse Red 15 ____________________________________________________________________________________________ 1. Terms of Reference 1.1 Context of the question The adaptation to technical progress of the Annexes to Council Directive 76/768/EEC of 27 July 1976 on the approximation of the laws of the Member States relating to cosmetic products. 1.2 Request to the SCCNFP The SCCNFP is requested to answer the following questions : * Is Disperse Violet 1 impurified with Disperse Red 15 safe for use in cosmetic products? * Does the SCCNFP propose any restrictions or conditions for its use in cosmetic products? 1.3 Statement on the toxicological evaluation The SCCNFP is the scientific advisory body to the European Commission in matters of consumer protection with respect to cosmetics and non-food products intended for consumers. The Commission’s general policy regarding research on animals supports the development of alternative methods to replace or to reduce animal testing when possible. In this context, the SCCNFP has a specific working group on alternatives to animal testing which, in co-operation with other Commission services such as ECVAM (European Centre for Validation of Alternative Methods), evaluates these methods. The extent to which these validated methods are applicable to cosmetic products and its ingredients is a matter of the SCCNFP. -
95[.95]Functionalizable Glyconanoparticles for A
nanomaterials Communication Functionalizable Glyconanoparticles for a Versatile Redox Platform Marie Carrière 1,2, Paulo Henrique M. Buzzetti 1 , Karine Gorgy 1, Muhammad Mumtaz 2, Christophe Travelet 2 , Redouane Borsali 2,* and Serge Cosnier 1,* 1 UMR 5250, Département de Chimie Moléculaire, CNRS, Université Grenoble Alpes, CEDEX 09, 38058 Grenoble, France; [email protected] (M.C.); [email protected] (P.H.M.B.); [email protected] (K.G.) 2 CERMAV, UPR 5301, CNRS, Université Grenoble Alpes, CEDEX 09, 38058 Grenoble, France; [email protected] (M.M.); [email protected] (C.T.) * Correspondence: [email protected] (R.B.); [email protected] (S.C.) Abstract: A series of new glyconanoparticles (GNPs) was obtained by self-assembly by direct nano- precipitation of a mixture of two carbohydrate amphiphilic copolymers consisting of polystyrene- block-β-cyclodextrin and polystyrene-block-maltoheptaose with different mass ratios, respectively 0–100, 10–90, 50–50 and 0–100%. Characterizations for all these GNPs were achieved using dynamic light scattering, scanning and transmission electron microscopy techniques, highlighting their spher- ical morphology and their nanometric size (diameter range 20–40 nm). In addition, by using the inclusion properties of cyclodextrin, these glyconanoparticles were successfully post-functionalized using a water-soluble redox compound, such as anthraquinone sulfonate (AQS) and characterized by cyclic voltammetry. The resulting glyconanoparticles exhibit the classical electroactivity of free AQS in solution. The amount of AQS immobilized by host–guest interactions is proportional to the percentage of polystyrene-block-β-cyclodextrin entering into the composition of GNPs. -
Structural Changes and Dynamic Behaviour of Vanadium Oxide‐Based Catalysts for Gas‐Phase Selective Oxidations
Alma Mater Studiorum ‐ Università di Bologna Facoltà di Chimica Industriale Dipartimento di Chimica Industriale e dei Materiali Structural changes and dynamic behaviour of vanadium oxide‐based catalysts for gas‐phase selective oxidations Tesi di Dottorato di Ricerca Presentata da: Relatore: Dott.ssa Silvia Luciani Prof. Fabrizio Cavani Co‐relatore: Dott. Nicola Ballarini Coordinatore: Chiar.mo Prof. Luigi Angiolini Dottorato di Ricerca in Chimica Industriale (settore CHIM/04) ciclo XXI Esame finale anno 2009 Index INDEX ABSTRACT 1 PART A 5 1 Introduction 7 1.1 Maleic Anhydride: production and uses 7 1.1.1 Maleic Anhydride uses 8 1.1.2 Maleic Anhydride production 9 1.2 Catalytic System 16 1.2.1 Synthesis of vanadyl pyrophosphate 16 1.2.2 P/V ratio 21 1.2.3 The role of the different V species 21 1.2.4 Supported systems 22 1.2.5 Recent developments to improve the catalytic system 25 1.3 Reaction scheme and mechanism 28 1.3.1 Reaction scheme 28 1.3.2 Reaction mechanism 30 1.3.3 Nature of active sites 31 1.4 References 34 2 Experimental 41 2.1 Catalysts synthesis 41 2.1.1 Synthesis of vanadyl pyrophosphate, (VO)2P2O7 41 2.1.2 Synthesis of supported catalysts 42 2.2 Samples characterization 42 2.3 Catalytic tests 43 2.3.1 Bench scale plant 43 2.3.2 Analytical system 45 2.3.3 Elaboration of catalytic data 46 I Index 3 Surface dynamic of V/P/O catalyst 47 3.1 Introduction 47 3.2 Experimental 48 3.3 Results and discussion 49 3.3.1 “In‐situ” calcination 49 3.3.2 Ex‐situ characterization 52 3.3.3 “In‐situ” Raman spectroscopy 55 3.3.4 Steady state -
1 ADVANCES in DISCRIMINATION of DYED TEXTILE FIBERS USING CAPILLARY ELECTROPHORESIS/MASS SPECTROMETRY Stephen L. Morgan, Brandi
1 ADVANCES IN DISCRIMINATION OF DYED TEXTILE FIBERS USING CAPILLARY ELECTROPHORESIS/MASS SPECTROMETRY Stephen L. Morgan,1 Brandi C. Vann,2 Brittany M. Baguley,3 and Amy R. Stefan1 1Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208. 2Present address: Counterterrorism and Forensic Science Research Unit, FBI Laboratory, Quantico, VA 22035. 3Present address: Washoe Co. Sheriff Forensic Science Division, 911 Parr Blvd., Reno, NV 89512. Abstract The premise of this research is that improved forensic discrimination for forensic fiber examinations may be achievable by extraction of the dye from the fiber, followed by trace analysis by a high resolution separation technique. Protocols have been developed for extraction of unknown dyes from textile fibers based on three CE methods for dyes from six textile dye classes. Although capillary electrophoresis (CE)/diode array detection (DAD) is useful for longer fiber lengths, a more sensitive and selective technique such as CE/mass spectrometry (MS) is needed to analyze the small amount of dye (2-200 ng) present on forensically relevant fiber samples. Although this approach is destructive to the sample, only an extremely small sample is required (~2 mm of a single 15 μ diameter fiber). Automated micro-extractions and CE offer reproducible sensitive analyses. CE/MS can separate extracted dye components and provide semi-quantitative estimates of dye amounts as well as qualitative information to identify dyes. Introduction Fibers have achieved growing forensic significance because of their ubiquitous presence in commercial products and at crime scenes. However, discovery of a fiber and its identification as a particular fiber type may not, by itself, provide support for a forensic investigation. -
Process for Preparation of Hydrogen Peroxide
Europaisches Patentamt J) European Patent Office ® Publication number: 0 286 610 Office europeen des brevets A2 EUROPEAN PATENT APPLICATION Application number: 88850082.4 ® Int.CI.4: C 01 B 15/023 Date of filing: 09.03.88 Priority: 27.03.87 SE 8701293 @ Applicant: Eka Nobel Aktiebolag S-44501Surte (SE) Date of publication of application: 12.10.88 Bulletin 88/41 @ Inventor: Bengtsson, Erik Alvar Asbacken 45 Designated Contracting States: S-44500Surte (SE) AT BE DE FR GB IT SE Andersson, Ulf, Mikael Bangegatan 2B S-41504G6teborg (SE) @ Representative: Schold, Zaid c/o Nobel Industries Sweden AB Patent Department Box 11554 S-1 00 61 Stockholm (SE) @ Process for preparation of hydrogen peroxide. (57) A process for the production of hydrogen peroxide according to the anthraquinone process. According to the process certain alkyl substituted caprolactames are used as solvents, and particularly as solvents for anthrahydroquinones. The substituted caprolactames, which for example can be hexyl caprolactam and octyl caprolactam, give a very good solubility for anthrahydroquinones and also for anthraquinones. The compounds can be used as the sole solvent at the production of hydrogen peroxide or in combination with conventionally used solvents such CM as hydrocarbons. < O to CO 00 CM Q_ LLJ Bundesdruckerei Berlin 0 286 610 , Description A process for the production of hydrogen peroxide The present invention relates to the production of hydrogen peroxide according to the per se well known anthraquinone process. More particularly the invention relates to the production of hydrogen peroxide 5 according to the anthraquinone process using particular solvents which give very good solubility for anthrahydroquinones and also for anthraquinones. -
The Anthraquinone Process
COVER STORY: H₂O₂ BACKGROUND How H₂O₂ is produced: The anthraquinone process Healthy and durable: In The industrial production of hydrogen peroxide began in the town of Weißenstein in the Austrian state of the food industry, PET bottles are sterilized Carinthia. This is where the Österreichische Chemische Werke company operated the world’s first hydrogen with hydrogen peroxide peroxide factory using electrolysis. Today this production plant is part of Evonik. The Weißenstein process before being filled made it possible to produce hydrogen peroxide on an industrial scale for the first time. Today this plant uses the autoxidation process, as do almost all the other hydrogen peroxide factories in the world. This process was developed by Georg Pfleiderer and Hans-Joachim Riedl at IG Farben in Ludwigshafen between 1935 and 1945, and since then it has been continuously refined. The process is based on the cyclical reduction and oxidation of an alkylated anthraquinone. The first step, hydrogenation, takes place in a reactor full of a solution of the anthraquinone (the “working solution”). “In the reactor, in the presence of a palladium catalyst hydrogen combines with the reaction carrier, a quinone derivative, to form a hydroquinone,” explains Dr. Jürgen Glenneberg, Head of Process Engineering at the Active Oxygens Business Line. The catalyst is then completely filtered out of the working solution. In the second step, the oxidation stage, huge compressors pump air into a bubble reactor that is full of the working solution. When the hydroquinone in the organic phase comes into contact with the oxygen in the air, it oxidizes spontaneously back into quinone, forming hydrogen peroxide in the process.