Geographical Distribution of African Freshwater Fishes

Total Page:16

File Type:pdf, Size:1020Kb

Geographical Distribution of African Freshwater Fishes Zool. J. Linn. S o c 57: 249-319. With 17 figures December 1975 Geographical distribution of African freshwater fishes TYSON R. ROBERTS Museum o f Comparative Zoology, Cambridge, Massachusetts 02138, U.S.A. Accepted for publication December 1974 Geographical distribution of African freshwater fishes is discussed with emphasis on the effects of major continental features, hydrographic history, and Pleistocene climatic fluctuations. Differences in the modes of dispersal and biological interactions among various categories of fishes, ecological as well as phyletic, have also had marked effects on distribution. The African continent can be divided into ten ichthyofaunal provinces. The geography of these provinces and composition of their fish faunas is briefly described. The paper concludes with a consideration of the faunistic relationships of African lakes with endemic fishes. CONTENTS I n t r o d u c t i o n ........................................................................................................................................ 250 Biological background .....................................................................................................................253 Primary, secondary, and peripheral divisions of freshwater f i s h e s ..........................253 Tolerance of deoxygenated water; air-breathing f i s h e s ............................................. 256 Mountain-climbing or orobatic f i s h e s ..............................................................................257 Biological interactions among various categories of fishes (complementary distribution patterns) ...........................................................................................259 The taxon cycle in African freshwater f i s h e s .................................................................264 Geographical background .............................................................................................................. 265 Intercontinental r e l a t i o n s h i p s ...........................................................................................266 A r a b i a ........................................................................................................................................ 267 Changes of sea l e v e l .............................................................................................................. 268 M a l a g a s y ..................................................................................................................................268 Low Africa and High Africa ...........................................................................................269 Continental drainage pattern ...........................................................................................271 Mountains ........................................................................................................................... 271 Great Rift valleys .............................................................................................................. 273 Volcanism ........................................................................................................................... 274 Deserts ..................................................................................................................................274 Pleistocene climatic fluctuations .................................................................................... 276 African freshwater fishes and the fossil record ...........................................................279 Ichthyofaunal provinces .............................................................................................................. 281 Maghreb ichthyofaunal province .................................................................................... 282 Abyssinian highlands and Nilo-Sudan ichthyofaunal p ro v in ces ................................ 288 Upper Guinea, Lower Guinea, and Zaire ichthyofaunal provinces .... 298 East coast, Zambesi, and Quanza ichthyofaunal p ro v in c e s .......................................303 Cape of Good Hope ichthyofaunal p r o v i n c e .................................................................307 Relationships of lakes with endemic fishes to the ichthyofaunal provinces . 309 A d d e n d a ...............................................................................................................................................314 References ........................................................................................................................................ 315 17 249 250 T. R. ROBERTS INTRODUCTION The freshwater fishes of Africa deserve the attention of evolutionists and biogeographers for various reasons. African rivers and swamps harbor an extraordinary assortment of archaic and phyletically isolated fish groups, most of them endemic, and several bizarrely modified. Some of the non-endemic groups, characoids for example, appear to have a Gondwanic distribution. Africa has been a major center for spciation and adaptive radiation of freshwater fishes, including Ostariophysans, the dominant fishes in the continental freshwaters of the globe, and mormyroids, an endemic electrogenic group. Africa provides the foremost examples of adaptive radiation of fishes in ancient lakes. The great majority of archaic and phyletically isolated fishes occur in continental fresh-waters, and Africa has more of such species than any other continent, representing the Polypteridae, Lepidosirenidae, Denticipitidae, Osteoglossidae, Pantodontidae, Mormyridae, Gymnarchidae, Notopteridae, Kneriidae, and Phractolaemidae. Of these families, only Lepidosirenidae, Osteoglossidae, and Notopteridae occur beyond Africa. (South America, Europe, Asia, and Australia have relatively few archaic fishes; the second richest continent in this respect is North America, with Petromyzontidae, Acipenseridae, Polyodontidae, Amiidae, Lepisosteidae, Hiodontidae, Esocidae, Umbridae, Percopsidae, and Aphredoderidae.) Polypteridae are regarded by some investigators as close relatives of the paleoniscoids of the Paleozoic era. Polypterid relationships are discussed by Daget (1950) and by several authors in the volume on interrelationships of fishes edited by Greenwood, Miles & Patterson (1973); the consensus is that they are sarcopterygians. Denticipitidae is known only from the monotypic genus Denticeps, living in forested coastal streams in Dahomey and W. Nigeria, and Paleodenticeps, an extinct form from Miocene deposits in Tanzania. Greenwood (1968) considered that Denticipitidae might be the unspecialized sister-group of all other living clupeomorphs; he also found some characters indicating possible relationships with Osteoglossomorpha. Pantodontidae, Mormyridae, and Gymnarchidae are highly modified osteoglossomorphs. Mormyridae and Gymnarchidae are provided with electrogenic and electrosensory organs, and mormyrids have undergone an extensive adaptive radiation paralleling in many ways the radiation of the Neotropical gymnotoids, the only other freshwater group with comparable structures. Kneriidae are the most generalized freshwater members of the Gonorynchiformes, an order regarded by Rosen & Greenwood (1970) as the unspecialized sister-group of Ostariophysi. Phractolaemidae is represented by a monotypic genus found only in rain-forest swamps. Anatomical studies by Thys (1961) indicate it is air-breathing and related to Gonorynchiformes, but otherwise virtually nothing is known about the biology or past history of this strange fish. Lepidosirenidae, Osteoglossidae, Characidae, Cichlidae, Nandidae, and Cyprinodontidae are shared (not all of them exclusively) with South America, possibly dating from before the break-up of Gondwanaland. Similarities between some African and South American catfish families may also be related to this event. Salmoniform fishes of the family Galaxiidae have also been cited as having a Gondwanic distribution. The family occurs in southern South DISTRIBUTION OF AFRICAN FISHES 251 America, the S.W. portion of the Cape of Good Hope, Australia, New Zealand, and several other isolated islands in the S. temperate zone. Some galaxiids are known to enter the sea, and members of the family such as Galaxias maculatus presumably crossed wide expanses of ocean. It seems unlikely that the distribution of Galaxiidae has anything to do with the break-up of Gondwana (Myers, 1951; McDowall, 1964, 1970, 1973) (see Addenda, p. 314). Notopteridae, Bagridae, Clariidae, Schilbeidae, Channidae, Anabantidae, and Mastacembelidae are shared exclusively with Asia. Ichthyologists have long been intrigued by this pattern, but the questions raised as to the place of origin and the route and timing of dispersal of these families from one continent to the other remain unresolved. Bagridae and Clariidae are known from Miocene and Pliocene deposits in Africa, but fossils of the other families have not yet been found there. Ostariophysi probably originated in Gondwanaland before the separation of Africa and South America, but there is no agreement as to where and when the three main branches of Ostariophysi first appeared. Africa is the only major continental area where characoids, cyprinoids, and siluroids occur together, and they have been there a relatively long time. The earliest known African fossils of characoids are Oligocene in age, while those of cyprinoids and freshwater siluroids are from Miocene deposits. Characoids are the most generalized Ostariophysi; they
Recommended publications
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • The Freshwater Herring of Lake Tanganyika Are the Product of a Marine Invasion Into West Africa
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Open Marine Archive Marine Incursion: The Freshwater Herring of Lake Tanganyika Are the Product of a Marine Invasion into West Africa Anthony B. Wilson1,2¤*, Guy G. Teugels3, Axel Meyer1 1 Department of Biology, University of Konstanz, Konstanz, Germany, 2 Zoological Museum, University of Zurich, Zurich, Switzerland, 3 Ichthyology Laboratory, Royal Museum for Central Africa, Tervuren, Belgium Abstract The spectacular marine-like diversity of the endemic fauna of Lake Tanganyika, the oldest of the African Great Lakes, led early researchers to suggest that the lake must have once been connected to the ocean. Recent geophysical reconstructions clearly indicate that Lake Tanganyika formed by rifting in the African subcontinent and was never directly linked to the sea. Although the Lake has a high proportion of specialized endemics, the absence of close relatives outside Tanganyika has complicated phylogeographic reconstructions of the timing of lake colonization and intralacustrine diversification. The freshwater herring of Lake Tanganyika are members of a large group of pellonuline herring found in western and southern Africa, offering one of the best opportunities to trace the evolutionary history of members of Tanganyika’s biota. Molecular phylogenetic reconstructions indicate that herring colonized West Africa 25–50MYA, at the end of a major marine incursion in the region. Pellonuline herring subsequently experienced an evolutionary radiation in West Africa, spreading across the continent and reaching East Africa’s Lake Tanganyika during its early formation. While Lake Tanganyika has never been directly connected with the sea, the endemic freshwater herring of the lake are the descendents of an ancient marine incursion, a scenario which may also explain the origin of other Tanganyikan endemics.
    [Show full text]
  • Evidence of Hidden Diversity and Taxonomic Conflicts in Five Stream Fishes from the Eastern Zimbabwe Highlands Freshwater Ecoregion
    A peer-reviewed open-access journal ZooKeys 768: 69–95Evidence (2018) of hidden diversity and taxonomic conflicts in five stream fishes... 69 doi: 10.3897/zookeys.768.21944 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Evidence of hidden diversity and taxonomic conflicts in five stream fishes from the Eastern Zimbabwe Highlands freshwater ecoregion Albert Chakona1,2, Wilbert T. Kadye2, Taurai Bere3, Daniel N. Mazungula1,2, Emmanuel Vreven4,5 1 South African Institute for Aquatic Biodiversity, Private Bag 1015, Grahamstown, South Africa, 6140 2 Department of Ichthyology and Fisheries Science, Rhodes University, P.O. Box 94, Grahamstown, South Africa, 6140 3 School of Wildlife, Ecology and Conservation, Chinhoyi University of Technology, P. Bag 7724, Chinhoyi, Zimbabwe 4 Royal Museum for Central Africa, Section of Vertebrates, Ichthyology, Leuvensesteenweg 13, 3080, Tervuren, Belgium 5 KU Leuven, Department of Biology, Laboratory of Biodiversity and Evolutio- nary Genomics, Deberiotstraat 32, 3000 Leuven, Belgium Corresponding author: Albert Chakona ([email protected]) Academic editor: N. Bogutskaya | Received 30 October 2018 | Accepted 25 April 2018 | Published 19 June 2018 http://zoobank.org/9621930C-8C43-40D0-8554-684035E99FAA Citation: Chakona A, Kadye WT, Bere T, Mazungula DN, Vreven E (2018) Evidence of hidden diversity and taxonomic conflicts in five stream fishes from the Eastern Zimbabwe Highlands freshwater ecoregion. ZooKeys 768: 69–95. https://doi.org/10.3897/zookeys.768.21944 Abstract
    [Show full text]
  • Climatic Effects on Lake Basins. Part I: Modeling Tropical Lake Levels
    15 JUNE 2011 R I C K O E T A L . 2983 Climatic Effects on Lake Basins. Part I: Modeling Tropical Lake Levels MARTINA RICKO AND JAMES A. CARTON Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland CHARON BIRKETT Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland (Manuscript received 28 December 2009, in final form 9 December 2010) ABSTRACT The availability of satellite estimates of rainfall and lake levels offers exciting new opportunities to estimate the hydrologic properties of lake systems. Combined with simple basin models, connections to climatic variations can then be explored with a focus on a future ability to predict changes in storage volume for water resources or natural hazards concerns. This study examines the capability of a simple basin model to estimate variations in water level for 12 tropical lakes and reservoirs during a 16-yr remotely sensed observation period (1992–2007). The model is constructed with two empirical parameters: effective catchment to lake area ratio and time delay between freshwater flux and lake level response. Rainfall datasets, one reanalysis and two satellite-based observational products, and two radar-altimetry-derived lake level datasets are explored and cross checked. Good agreement is observed between the two lake level datasets with the lowest correlations occurring for the two small lakes Kainji and Tana (0.87 and 0.89). Fitting observations to the simple basin model provides a set of delay times between rainfall and level rise ranging up to 105 days and effective catchment to lake ratios ranging between 2 and 27.
    [Show full text]
  • Fish, Various Invertebrates
    Zambezi Basin Wetlands Volume II : Chapters 7 - 11 - Contents i Back to links page CONTENTS VOLUME II Technical Reviews Page CHAPTER 7 : FRESHWATER FISHES .............................. 393 7.1 Introduction .................................................................... 393 7.2 The origin and zoogeography of Zambezian fishes ....... 393 7.3 Ichthyological regions of the Zambezi .......................... 404 7.4 Threats to biodiversity ................................................... 416 7.5 Wetlands of special interest .......................................... 432 7.6 Conservation and future directions ............................... 440 7.7 References ..................................................................... 443 TABLE 7.2: The fishes of the Zambezi River system .............. 449 APPENDIX 7.1 : Zambezi Delta Survey .................................. 461 CHAPTER 8 : FRESHWATER MOLLUSCS ................... 487 8.1 Introduction ................................................................. 487 8.2 Literature review ......................................................... 488 8.3 The Zambezi River basin ............................................ 489 8.4 The Molluscan fauna .................................................. 491 8.5 Biogeography ............................................................... 508 8.6 Biomphalaria, Bulinis and Schistosomiasis ................ 515 8.7 Conservation ................................................................ 516 8.8 Further investigations .................................................
    [Show full text]
  • Flamingo Newsletter 17, 2009
    ABOUT THE GROUP The Flamingo Specialist Group (FSG) is a global network of flamingo specialists (both scientists and non-scientists) concerned with the study, monitoring, management and conservation of the world’s six flamingo species populations. Its role is to actively promote flamingo research, conservation and education worldwide by encouraging information exchange and cooperation among these specialists, and with other relevant organisations, particularly the IUCN Species Survival Commission (SSC), the Ramsar Convention on Wetlands, the Convention on Conservation of Migratory Species (CMS), the African-Eurasian Migratory Waterbird Agreement (AEWA), and BirdLife International. The group is coordinated from the Wildfowl & Wetlands Trust, Slimbridge, UK, as part of the IUCN-SSC/Wetlands International Waterbird Network. FSG members include experts in both in-situ (wild) and ex-situ (captive) flamingo conservation, as well as in fields ranging from research surveys to breeding biology, infectious diseases, toxicology, movement tracking and data management. There are currently 286 members representing 206 organisations around the world, from India to Chile, and from France to South Africa. Further information about the FSG, its membership, the membership list serve, or this bulletin can be obtained from Brooks Childress at the address below. Chair Dr. Brooks Childress Wildfowl & Wetlands Trust Slimbridge Glos. GL2 7BT, UK Tel: +44 (0)1453 860437 Fax: +44 (0)1453 860437 [email protected] Eastern Hemisphere Chair Western Hemisphere Chair Dr. Arnaud Béchet Dr. Felicity Arengo Station biologique, Tour du Valat American Museum of Natural History Le Sambuc Central Park West at 79th Street 13200 Arles, France New York, NY 10024 USA Tel : +33 (0) 4 90 97 20 13 Tel: +1 212 313-7076 Fax : +33 (0) 4 90 97 20 19 Fax: +1 212 769-5292 [email protected] [email protected] Citation: Childress, B., Arengo, F.
    [Show full text]
  • Consistency of Individual Differences in Behaviour of the Lion-Headed Cichlid, Steatocranus Casuarius
    Behavioural Processes 48 (1999) 49–55 www.elsevier.com/locate/behavproc Consistency of individual differences in behaviour of the lion-headed cichlid, Steatocranus casuarius Sergey V. Budaev *, Dmitry D. Zworykin, Andrei D. Mochek A.N. Se6ertso6 Institute of Ecology and E6olution, Russian Academy of Sciences, Leninsky prospect 33, 117071 Moscow, Russia Received 29 April 1999; received in revised form 9 September 1999; accepted 14 September 1999 Abstract The development of individual differences in behaviour in a novel environment, in the presence of a strange fish and during aggressive interactions with a mirror-image was studied in the lion-headed cichlid (Steatocranus casuarius, Teleostei, Cichlidae). No consistency in behaviour was found at 4–5.5 months of age. However, behaviours scored in situations involving a discrete source of stress (a strange fish or conspecific) become significantly consistent at the age of 12 months. At 4–5.5 but not 12 months of age, larger individuals approached and attacked the strange fish significantly more than smaller ones. These patterns may be associated with development and integration of motivational systems and alternative coping strategies. © 1999 Elsevier Science B.V. All rights reserved. Keywords: Aggression; Consistency; Individual differences; Exploratory behaviour; Temperament 1. Introduction ysis of the development of individuality. More- over, while various aspects of its ontogeny have Individual differences and alternative strategies been studied in mammals (e.g. Fox, 1972; Mac- have been documented in animals of many spe- Donald, 1983; Stevenson-Hinde, 1983; Lyons et cies. It is known that they may be adaptive and al., 1988; Loughry and Lazari, 1994), the develop- arise within the population for a variety of rea- ment of individual differences in behaviour, espe- sons (Slater, 1981; Clark and Ehlinger, 1987; cially in consistent behavioural traits, is almost an Magurran, 1993; Wilson et al., 1994).
    [Show full text]
  • AN ECOLOGICAL and SYSTEMATIC SURVEY of FISHES in the RAPIDS of the LOWER ZA.Fre OR CONGO RIVER
    AN ECOLOGICAL AND SYSTEMATIC SURVEY OF FISHES IN THE RAPIDS OF THE LOWER ZA.fRE OR CONGO RIVER TYSON R. ROBERTS1 and DONALD J. STEWART2 CONTENTS the rapids habitats, and the adaptations and mode of reproduction of the fishes discussed. Abstract ______________ ----------------------------------------------- 239 Nineteen new species are described from the Acknowledgments ----------------------------------- 240 Lower Zaire rapids, belonging to the genera Introduction _______________________________________________ 240 Mormyrus, Alestes, Labeo, Bagrus, Chrysichthys, Limnology ---------------------------------------------------------- 242 Notoglanidium, Gymnallabes, Chiloglanis, Lampro­ Collecting Methods and Localities __________________ 244 logus, Nanochromis, Steatocranus, Teleogramma, Tabulation of species ---------------------------------------- 249 and Mastacembelus, most of them with obvious Systematics -------------------------------------------------------- 249 modifications for life in the rapids. Caecomasta­ Campylomormyrus _______________ 255 cembelus is placed in the synonymy of Mastacem­ M ormyrus ____ --------------------------------- _______________ 268 belus, and morphologically intermediate hybrids Alestes __________________ _________________ 270 reported between blind, depigmented Mastacem­ Bryconaethiops -------------------------------------------- 271 belus brichardi and normally eyed, darkly pig­ Labeo ---------------------------------------------------- _______ 274 mented M astacembelus brachyrhinus. The genera Bagrus
    [Show full text]
  • Fish Diversity, Community Structure, Feeding Ecology, and Fisheries of Lower Omo River and the Ethiopian Part of Lake Turkana, East Africa
    Fish Diversity, Community Structure, Feeding Ecology, and Fisheries of Lower Omo River and the Ethiopian Part of Lake Turkana, East Africa Mulugeta Wakjira Addis Ababa University June 2016 Cover photos: Lower Omo River at Omorate town about 50 km upstream of the delta (upper photo); Lake Turkana from Ethiopian side (lower photo). © Mulugeta Wakjira and Abebe Getahun Fish diversity, Community structure, Feeding ecology, and Fisheries of lower Omo River and the Ethiopian part of Lake Turkana, East Africa Mulugeta Wakjira A Thesis Submitted to the Department of Zoological Sciences, Addis Ababa University, Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biology (Fisheries and Aquatic Sciences) June 2016 ADDIS ABABA UNIVERSITY SCHOOL OF GRADUATE PROGRAM This is to certify that the thesis prepared by Mulugeta Wakjira entitled, "Fish Diversity, Community Structure, Feeding Ecology, and Fisheries of lower Omo River and the Ethiopian part of Lake Turkana, East Africa", and submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology (Fisheries and Aquatic Science) complies with the regulations of the university and meets the accepted standards with respect to originality and quality. Signed by the Examining Committee Examiner (external): Dr. Leo Nagelkerke Signature ____________ Date_________ Examiner (internal): Dr. Elias Dadebo Signature ____________ Date_________ Advisor: Dr. Abebe Getahun Signature ____________ Date__________ ____________________________________________________________ Chair of Department or Graduate Program Coordinator Abstract Ethiopia has a freshwater system in nine major drainage basins which fall into four ichthyofaunal provinces and one subprovince. Omo-Turkana Basin, spanning considerable geographic area in southwestern Ethiopia and northern Kenya, essentially consists of Omo River (also known as Omo-Gibe) and Lake Turkana.
    [Show full text]
  • Feeding Habits and Trace Metal Concentrations in the Muscle of Lapping Minnow Garra Quadrimaculata (Rüppell, 1835) (Pisces: Cyprinidae) in Lake Hawassa, Ethiopia
    Research Article http://dx.doi.org/10.4314/mejs.v8i2.2 Feeding habits and trace metal concentrations in the muscle of lapping minnow Garra quadrimaculata (Rüppell, 1835) (Pisces: Cyprinidae) in Lake Hawassa, Ethiopia Yosef Tekle-Giorgis1*, Hiwot Yilma2 and Elias Dadebo2 1School of Animal and Range Sciences, College of Agriculture, P.O. Box 336, Hawassa University, Hawassa, Ethiopia (*[email protected]). 2Department of Biology, College of Natural and Computational Sciences, P.O. Box 5, Hawassa University, Hawassa, Ethiopia. ABSTRACT Diet composition and trace metal concentration in the muscle of the lapping minnow Garra quadrimaculata (Rüppell, 1835) was investigated to study the trophic status of the species as well as to assess the level of bioaccumulation of heavy metals in the body of the fish. The study was conducted based on 328 gut samples collected from February to March (dry months) and from August to September (wet months) of the year 2011. Frequency of occurrence and volumetric methods were employed in this study. Detritus, fish eggs, macrophytes, phytoplankton and insects occurred in 54.9%, 16.2%, 43.9%, 56.4% and 26.6% of the guts, respectively and comprised 27.1%, 22.2%, 18.2%, 18.2% and 14.1% of the total volume of food, respectively. The proportions of different food items consumed varied during the dry and wet months. Fish eggs and detritus were the dominant food items during the dry months. Macrophytes and insects were also common in the diet. During the wet months, phytoplankton was the most dominant food item (33.5% by volume). Macrophytes, detritus and insects were also important in the diet.
    [Show full text]
  • Teleostei, Clupeiformes)
    Old Dominion University ODU Digital Commons Biological Sciences Theses & Dissertations Biological Sciences Fall 2019 Global Conservation Status and Threat Patterns of the World’s Most Prominent Forage Fishes (Teleostei, Clupeiformes) Tiffany L. Birge Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/biology_etds Part of the Biodiversity Commons, Biology Commons, Ecology and Evolutionary Biology Commons, and the Natural Resources and Conservation Commons Recommended Citation Birge, Tiffany L.. "Global Conservation Status and Threat Patterns of the World’s Most Prominent Forage Fishes (Teleostei, Clupeiformes)" (2019). Master of Science (MS), Thesis, Biological Sciences, Old Dominion University, DOI: 10.25777/8m64-bg07 https://digitalcommons.odu.edu/biology_etds/109 This Thesis is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion in Biological Sciences Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. GLOBAL CONSERVATION STATUS AND THREAT PATTERNS OF THE WORLD’S MOST PROMINENT FORAGE FISHES (TELEOSTEI, CLUPEIFORMES) by Tiffany L. Birge A.S. May 2014, Tidewater Community College B.S. May 2016, Old Dominion University A Thesis Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE BIOLOGY OLD DOMINION UNIVERSITY December 2019 Approved by: Kent E. Carpenter (Advisor) Sara Maxwell (Member) Thomas Munroe (Member) ABSTRACT GLOBAL CONSERVATION STATUS AND THREAT PATTERNS OF THE WORLD’S MOST PROMINENT FORAGE FISHES (TELEOSTEI, CLUPEIFORMES) Tiffany L. Birge Old Dominion University, 2019 Advisor: Dr. Kent E.
    [Show full text]
  • Fishery Studies of Ribb River, Lake
    - Fishery Studies of Ribb River, Lake !Ib @b Tana Basin, Ethiopia #!b Public Disclosure Authorized * m b !!B Final Report lib- Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized Presented to the World Bank-financed Ethiopian-Nile Irrigation and Drainage Project Coordination Office, Ministry of Water Resources BY: Abebe Getahun (PhD) ------LeadAquatic Ecologist Eshete Dejen (PhD) -------Aquatic Ecologist Public Disclosure Authorized Wassie Anteneh (MSc) -------Aquatic Ecologist January 2008 Addis Ababa, Ethiopia Ribb River Fishery Studies: Final Report January 2008 Table of Contents Content Page Table of contents i List of Tables 11 .. List of Figures 111 Acknowledgments iv Acronyms vi Executive Summary 1 Background 5 Ethiopian Drainage basins 5 Ethiopian Freshwater fishes 5 Lake Tana 7 Lake Tana fishes and fisheries 8 Migration in fishes 9 The effects of dam building on fishes 10 The initiation and execution of this study 13 Objectives of the study 14 Study sites, Materials and Methods 14 Study sites 14 Materials and Methods 19 Results and Discussions 22 Fish species diversity from Ribb River and its tributaries 22 Fish species abundance in the Ribb River and its tributaries 2 5 Length-weight relationship of the dominant Labeobarbus spp. 2 8 Role of Labeobarbus spp in the food web of Lake Tana 30 Gonad Maturity status and migration behavior of Labeobarbus spp. 3 1 Spawning Segregations 36 Spatial segregation 36 Temporal segregation 38 Suitable spawning habitats in the Ribb River and its tributaries 3 8 Farmer's use of fish from Ribb River and its tributaries 43 The contribution of Ribb fishes to Lake Tana fish ecology and production 44 Species composition of Labeobarbus spp.
    [Show full text]