Lunar Net—A Proposal in Response to an ESA M3 Call in 2010 for a Medium Sized Mission

Total Page:16

File Type:pdf, Size:1020Kb

Lunar Net—A Proposal in Response to an ESA M3 Call in 2010 for a Medium Sized Mission Exp Astron DOI 10.1007/s10686-011-9250-5 ORIGINAL ARTICLE Lunar Net—a proposal in response to an ESA M3 call in 2010 for a medium sized mission Alan Smith · I. A. Crawford · Robert Anthony Gowen · R. Ambrosi · M. Anand · B. Banerdt · N. Bannister · N. Bowles · C. Braithwaite · P. Brown · J. Chela-Flores · T. Cholinser · P. Church · A. J. Coates · T. Colaprete · G. Collins · G. Collinson · T. Cook · R. Elphic · G. Fraser · Y. Gao · E. Gibson · T. Glotch · M. Grande · A. Griffiths · J. Grygorczuk · M. Gudipati · A. Hagermann · J. Heldmann · L. L. Hood · A. P. Jones · K. H. Joy · O. B. Khavroshkin · G. Klingelhoefer · M. Knapmeyer · G. Kramer · D. Lawrence · W. Marczewski · S. McKenna-Lawlor · K. Miljkovic · S. Narendranath · E. Palomba · A. Phipps · W. T. Pike · D. Pullan · J. Rask · D. T. Richard · K. Seweryn · S. Sheridan · M. Sims · M. Sweeting · T. Swindle · D. Talboys · L. Taylor · N. Teanby · V. Tong · S. Ulamec · R. Wawrzaszek · M. Wieczorek · L. Wilson · IWright Received: 31 March 2011 / Accepted: 4 August 2011 © Springer Science+Business Media B.V. 2011 A. Smith · R. A. Gowen (B) · A. J. Coates · A. Griffiths Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking, Surrey, RH5 6NT, UK e-mail: [email protected] A. Smith e-mail: [email protected] I. A. Crawford · V. Tong Department of Earth and Planetary Sciences, Birkbeck College, University of London, London, UK P. Brown · G. Collins · W. T. Pike · K. Miljkovic · W. T. Pike Imperial College London, London, UK A. P. Jones Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, London, UK Y. Gao Surrey Space Centre, University of Surrey, Guildford, UK P. Church QinetiQ Ltd., Fort Halsted, Sevenoaks, UK M. Anand · A. Hagermann · S. Sheridan · I. Wright CEPSAR, Open University, Milton Keynes, UK R. Ambrosi · N. Bannister · G. Fraser · D. Pullan · M. Sims · D. Talboys University of Leicester, Leicester, UK Exp Astron Abstract Emplacement of four or more kinetic penetrators geographically distributed over the lunar surface can enable a broad range of scientific explo- ration objectives of high priority and provide significant synergy with planned orbital missions. Whilst past landed missions achieved a great deal, they have not included a far-side lander, or investigation of the lunar interior apart from a very small area on the near side. Though the LCROSS mission detected water from a permanently shadowed polar crater, there remains in-situ confirmation, knowledge of concentration levels, and detailed identification of potential organic chemistry of astrobiology interest. The planned investigations will also address issues relating to the origin and evolution of the Earth–Moon system and other Solar System planetary bodies. Manned missions would be enhanced with use of water as a potential in-situ resource; knowledge of potential risks from damaging surface Moonquakes, and exploitation of lunar regolith for radiation shielding. LunarNet is an evolution of the 2007 LunarEX proposal to ESA (European Space Agency) which draws on recent significant advances in mission definition and feasibility. In particular, the successful Pendine full-scale impact trials have proved impact survivability for many of the key technology items, and a penetrator system study has greatly improved C. Braithwaite Cavendish Laboratory, Cambridge, UK A. Phipps · M. Sweeting SSTL, Tycho House, 20 Stephenson Road, Guildford, UK L. Wilson Lancaster University, Lancaster, UK N. Teanby School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen’s Road Bristol, BS8 1RJ, UK N. Bowles Oxford University, Oxford, UK T. Cook · M. Grande Institute of Mathematical and Physical Sciences, University of Wales Aberystwyth, Aberystwyth, UK S. McKenna-Lawlor Space Technology Ireland, National University of Ireland, Maynooth, Co. Kildare, Ireland J. Grygorczuk · W. Marczewski · K. Seweryn · R. Wawrzaszek Space Research Centre, Polish Academy of Sciences, Warsaw, Poland E. Palomba IFSI-INAF, Rome, Italy J. Chela-Flores The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy Exp Astron the definition of descent systems, detailed penetrator designs, and required resources. LunarNet is hereby proposed as an exciting stand-alone mission, though is also well suited in whole or in-part to contribute to the jigsaw of upcoming lunar missions, including that of a significant element to the ILN (International Lunar Network). Keywords Moon · Lunar · Penetrators · Space · Technology · MEMS 1 Overview LunarNet is a proposal for a penetrator mission to the Moon, submitted to ESA in December 2010 in response to ESA’s call for medium class missions suitable for launch in 2022 [12]. This paper presents that proposal in full, together with some small changes to incorporate additional knowledge gained since submission. G. Klingelhoefer Institute for Inorganic and Analytic Chemistry, Johannes Gutenberg-University, Mainz, Germany M. Wieczorek Institut de Physique du Globe de Paris, Univ Paris Diderot, Paris, France M. Knapmeyer DLR, Institute of Planetary Research, Berlin, Germany S. Ulamec DLR-MUSC, Cologne, Germany O. B. Khavroshkin Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russia S. Narendranath ISRO, Bangalore, India T. Cholinser Hong Kong, China G. Collinson NASA Goddard Spaceflight Center, Greenbelt, MD 20771, USA T. Colaprete · J. Rask NASA Ames, Moffett Field, CA 94035, USA D. Lawrence Johns Hopkins APL, 11100 Johns Hopkins Road, Laurel, MD 20723, USA T. Glotch Stony Brook University, Stony Brook, NY 11794, USA Exp Astron While the surface missions to the Moon of the 1970s achieved a great deal scientifically, major questions in lunar science were left unresolved. The recent plethora of lunar missions (flown and proposed) reflects a major resurgence of interest in the Moon, not only in its own right, but also as a record of the early solar system including the formation and evolution of the early Earth. Results from recent orbiter missions have shown evidence of ice within shadowed craters at the lunar poles, and Chandrayaan-1 has detected OH-HOH over major portions of the Moon. We propose a highly cost effective M-class lunar mission that will place four or more scientifically instrumented penetrators into the shallow lunar surface. LunarNet will address key issues related to the origin and evolution of plan- etary bodies as well as the astrobiologically important possibilities associated with polar ice. LunarNet will provide important information about: • The size and physical state of the lunar core • The deep structure of the lunar mantle • The thickness of the far-side lunar crust • The nature of natural Moonquakes, in particular the origin of shallow Moonquakes • The composition and thermal evolution of the Moon’s interior • The existence, nature and origin of polar ice—exciting scientifically and key to future manned exploration of the Moon and beyond The penetrators will be globally dispersed (unlike the Apollo and Luna missions) with landing sites on the nearside Procellarum KREEP Terrane, poles and far-side, and will operate 2–5 m beneath the lunar surface for 1 year. L. L. Hood · T. Swindle Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA D. T. Richard San Jose State University/NASA Ames Research Center MS 245–3, Moffett Field, CA 94035 USA R. Elphic · J. Heldmann NASA Ames Research Center, Moffett Field, CA 94035-1000, USA L. Taylor University of Tennessee, Knoxville, 37996, USA E. Gibson NASA Johnson Space Center, 2101 NASA Road 1, Houston, TX 77058, USA B. Banerdt · M. Gudipati Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109, USA K. H. Joy · G. Kramer Center for Lunar Science and Exploration, Lunar and Planetary Institute, 3600 Bay Area Blvd., Houston, TX 77058, USA Exp Astron Each penetrator will include a suite of scientific instruments including micro-seismometers, a geochemistry package, a water/volatiles detector, a heat flow experiment, and an impact accelerometer. For an instrument to survive an impact at 300 m s−1 is entirely feasible and a vast amount of resources have been devoted to developing such capability within a defence context. ‘Penetrators’ are common-place within that sector and instrumentation is available off-the-shelf which will survive impacts of >50,000 gee1 (LunarNet expects <20,000 gee). This expertise is by no means purely empirical in nature; and a very sophisticated predictive modelling capability also exists. The UK penetrator consortium has already drawn on this expertise to rapidly achieve the successful full-scale ground demonstration of impact survivability into a lunar regolith simulant. Also, Mars 96 [60], DS- 2[58], and Lunar-A [38] penetrator development programmes have already overcome many key problems and demonstrated payload survivability in ground tests. The penetrator delivery to the lunar surface will take place in two stages: • The penetrators will be transferred to lunar orbit as the payload of what will become a polar orbit communications relay satellite • Release, de-orbit and descent. Each penetrator will have an attached de- orbit motor and attitude control system (both of which are ejected before impact) The mission is compatible with a single Soyuz-Fregat launch for a nominal four penetrator payload with a 30% mass contingency. LunarNet will fill an important gap within the proposed international lunar mission portfolio (including the ILN) and facilitate future scientific exploration
Recommended publications
  • No. 40. the System of Lunar Craters, Quadrant Ii Alice P
    NO. 40. THE SYSTEM OF LUNAR CRATERS, QUADRANT II by D. W. G. ARTHUR, ALICE P. AGNIERAY, RUTH A. HORVATH ,tl l C.A. WOOD AND C. R. CHAPMAN \_9 (_ /_) March 14, 1964 ABSTRACT The designation, diameter, position, central-peak information, and state of completeness arc listed for each discernible crater in the second lunar quadrant with a diameter exceeding 3.5 km. The catalog contains more than 2,000 items and is illustrated by a map in 11 sections. his Communication is the second part of The However, since we also have suppressed many Greek System of Lunar Craters, which is a catalog in letters used by these authorities, there was need for four parts of all craters recognizable with reasonable some care in the incorporation of new letters to certainty on photographs and having diameters avoid confusion. Accordingly, the Greek letters greater than 3.5 kilometers. Thus it is a continua- added by us are always different from those that tion of Comm. LPL No. 30 of September 1963. The have been suppressed. Observers who wish may use format is the same except for some minor changes the omitted symbols of Blagg and Miiller without to improve clarity and legibility. The information in fear of ambiguity. the text of Comm. LPL No. 30 therefore applies to The photographic coverage of the second quad- this Communication also. rant is by no means uniform in quality, and certain Some of the minor changes mentioned above phases are not well represented. Thus for small cra- have been introduced because of the particular ters in certain longitudes there are no good determi- nature of the second lunar quadrant, most of which nations of the diameters, and our values are little is covered by the dark areas Mare Imbrium and better than rough estimates.
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • MOONLITE : the SCIENTIFIC CASE. IA Crawford1, AJ Ball2, L. Wilson3
    Lunar and Planetary Science XXXIX (2008) 1069.pdf * MOONLITE : THE SCIENTIFIC CASE. I.A. Crawford1, A.J. Ball2, L. Wilson3, A. Smith4, Y. Gao5 and the UK Pene- trator Consortium6. 1School of Earth Sciences, Birkbeck College, London, WC1E 7HX, UK. 2Planetary and Space Sciences Research Institute, Open University, Milton Keynes, UK. 3Department of Environmental Science, Lancaster University, UK. 4Mullard Space Science Laboratory, University College London, UK. 5Surrey Space Centre, University of Surrey, UK.6www.mssl.ucl.ac.uk/pages/general/news/UKLPC/UKLPC.pdf. *MoonLITE is a UK-led initiative which is currently the focus of a joint UK-NASA study. (Email: [email protected]). Introduction: The principal scientific importance the lunar crust and upper mantle [4,5]. However, the of the Moon is as a recorder of geological processes deep interior of the Moon was only very loosely con- active in the early history of terrestrial planets (e.g. strained by Apollo seismology due to the geographi- planetary differentiation, magma ocean formation and cally limited coverage of the network (essentially a evolution, etc), and of the near-Earth cosmic environ- triangle between the Apollo 12/14, 15 and 16 sites), so ment throughout Solar System history [1,2]. Although the information obtained on crustal thickness and man- the Clementine and Lunar Prospector missions have in tle structure may not be globally representative. There recent years greatly added to our knowledge of the is now a pressing need for a more widely-spaced net- geochemical and mineralogical makeup of the lunar work of lunar seismic stations, including stations at surface, and these observations will soon be supple- high latitudes and on the farside.
    [Show full text]
  • Special Catalogue Milestones of Lunar Mapping and Photography Four Centuries of Selenography on the Occasion of the 50Th Anniversary of Apollo 11 Moon Landing
    Special Catalogue Milestones of Lunar Mapping and Photography Four Centuries of Selenography On the occasion of the 50th anniversary of Apollo 11 moon landing Please note: A specific item in this catalogue may be sold or is on hold if the provided link to our online inventory (by clicking on the blue-highlighted author name) doesn't work! Milestones of Science Books phone +49 (0) 177 – 2 41 0006 www.milestone-books.de [email protected] Member of ILAB and VDA Catalogue 07-2019 Copyright © 2019 Milestones of Science Books. All rights reserved Page 2 of 71 Authors in Chronological Order Author Year No. Author Year No. BIRT, William 1869 7 SCHEINER, Christoph 1614 72 PROCTOR, Richard 1873 66 WILKINS, John 1640 87 NASMYTH, James 1874 58, 59, 60, 61 SCHYRLEUS DE RHEITA, Anton 1645 77 NEISON, Edmund 1876 62, 63 HEVELIUS, Johannes 1647 29 LOHRMANN, Wilhelm 1878 42, 43, 44 RICCIOLI, Giambattista 1651 67 SCHMIDT, Johann 1878 75 GALILEI, Galileo 1653 22 WEINEK, Ladislaus 1885 84 KIRCHER, Athanasius 1660 31 PRINZ, Wilhelm 1894 65 CHERUBIN D'ORLEANS, Capuchin 1671 8 ELGER, Thomas Gwyn 1895 15 EIMMART, Georg Christoph 1696 14 FAUTH, Philipp 1895 17 KEILL, John 1718 30 KRIEGER, Johann 1898 33 BIANCHINI, Francesco 1728 6 LOEWY, Maurice 1899 39, 40 DOPPELMAYR, Johann Gabriel 1730 11 FRANZ, Julius Heinrich 1901 21 MAUPERTUIS, Pierre Louis 1741 50 PICKERING, William 1904 64 WOLFF, Christian von 1747 88 FAUTH, Philipp 1907 18 CLAIRAUT, Alexis-Claude 1765 9 GOODACRE, Walter 1910 23 MAYER, Johann Tobias 1770 51 KRIEGER, Johann 1912 34 SAVOY, Gaspare 1770 71 LE MORVAN, Charles 1914 37 EULER, Leonhard 1772 16 WEGENER, Alfred 1921 83 MAYER, Johann Tobias 1775 52 GOODACRE, Walter 1931 24 SCHRÖTER, Johann Hieronymus 1791 76 FAUTH, Philipp 1932 19 GRUITHUISEN, Franz von Paula 1825 25 WILKINS, Hugh Percy 1937 86 LOHRMANN, Wilhelm Gotthelf 1824 41 USSR ACADEMY 1959 1 BEER, Wilhelm 1834 4 ARTHUR, David 1960 3 BEER, Wilhelm 1837 5 HACKMAN, Robert 1960 27 MÄDLER, Johann Heinrich 1837 49 KUIPER Gerard P.
    [Show full text]
  • Scientific Rationale and Requirements for a Global Seismic Network on Mars
    SCIENTIFIC RATIONALE AND REQUIREMENTS FOR A GLOBAL SEISMIC NETWORK ON MARS MARS Model AR 90 EARTH 180 (NASA-CR-188806) SCIENTIFIC RATIONALE AND N92-14949 REQUIREMENTS FOR A GLOBAL SEISMIC NETWORK ON MARS (Lunar and Planetary Inst.) 48 p CSCL 03B Unclas G3/91 0040098 LPI Technical Report Number 91-02 LUNAR AND PLANETARY INSTITUTE 3303 NASA ROAD 1 HOUSTON TX 77058-4399 LPI/TR-91-02 SCIENTIFIC RATIONALE AND REQUIREMENTS FOR A GLOBAL SEISMIC NETWORK ON MARS Sean C. Solomon, Don L. Anderson, W. Bruce Banerdt, Rhett G. Butler, Paul M. Davis, Frederick K. Duennebier, Yosio Nakamura, Emile A. Okal, and Roger J. Phillips Report of a Workshop Held at Morro Bay, California May 7-9, 1990 Lunar and Planetary Institute 3303 NASA Road 1 Houston TX 77058 LPI Technical Report Number 91-02 LPI/TR-91-02 Compiled in 1991 by the LUNAR AND PLANETARY INSTITUTE The Institute is operated by Universities Space Research Association under Contract NASW-4574 with the National Aeronautics and Space Administration. Material in this document may be copied without restraint for library, abstract service, educational, or personal research purposes; however, republication of any portion requires the written permission of the authors as well as appropriate acknowledgment of this publication. This report may be cited as: Solomon S. C. et al. (1991) Scientific Rationale and Requirements far a Global Seismic Network on Mars. LPI Tech. Rpt. 91-02, Lunar and Planetary Institute, Houston. 51 pp. This report is distributed by: ORDER DEPARTMENT Lunar and Planetary Institute 3303 NASA Road 1 Houston TX 77058-4399 Mail order requestors will be invoiced for the cost of shipping and handling.
    [Show full text]
  • JPL to Map the Moon on India Mission
    I n s i d e May 19, 2006 Volume 36 Number 10 News Briefs ............... 2 Griffin Visits Lab ............ 3 Special Events Calendar ...... 2 Passings, Letters ........... 4 Spitzer Sees Comet Breakup... 2 Retirees, Classifieds ......... 4 Jet Propulsion Laborator y A JPL state-of-the-art imaging spectrometer that will provide the first high-resolution spectral map of the JPL to entire lunar surface successfully completed its critical design review this week. The Moon Mineralogy Mapper, also known as “M3,” is one of two in- materials across the surface at high spatial resolution. This data map the struments that NASA is contributing to India’s first mission to the moon, will provide a much-needed long-term baseline for future exploration scheduled to launch in late 2007 or early 2008. By mapping the mineral activities. composition of the lunar surface, the mission will both provide clues to The mission’s observations will address several important scientific moon the early development of the solar system and guide future astronauts to issues, including early evolution of the solar system; fundamental stores of precious resources. processes acting on planets that shape their character; assessment of on India Chandrayaan-1 is India’s first deep-space mission as well as its first potential impact hazards to Earth; and assessment of space resources. lunar mission. “The entire M3 team feels honored to be able to partici- From its vantage point in orbit around the moon, the spacecraft will mission pate,” said Project Manager Tom Glavich of JPL. measure the sunlight reflected by all of the rocks and soil over which The instrument is well on its way to being delivered to the Chandray- it passes.
    [Show full text]
  • Moonlite: a UK-Led Mission to the Moon Downloaded from by Guest on 24 September 2021
    CRAWFORD, SMITH: MOONLITE MoonLITE: A UK-led mission to the Moon Downloaded from https://academic.oup.com/astrogeo/article/49/3/3.11/218588 by guest on 24 September 2021 Ian 1: Farside view of the Moon Crawford as seen by the and Alan Clementine spacecraft. Smith Penetrators discuss the launched by the MoonLITE orbiter scientific would allow surface objectives of investigations in areas not visited by Luna, the proposed Surveyor or Apollo missions. MoonLITE mission. (NASA/JPL/USGS) hile the surface missions to during the Apollo programme (see Wiec- the Moon of the 1960s and 1970s zorek et al. 2006, for a review). Moreover, the Wachieved a great deal, scientifically recent remote-sensing missions have themselves much was also left unresolved. The recent ABSTRACT raised questions that will require new surface plethora of lunar missions (flown or proposed) measurements for their resolution, of which reflects a resurgence in interest in the Moon, not MoonLITE is a proposal for a UK-led one of the most important is the circumstantial only in its own right, but also as a recorder of mission to the Moon that will place four evidence for water ice, and by implication other the early history of the Earth–Moon system and penetrators in the lunar surface in order volatiles, within permanently shaded craters at of the interplanetary environment 1 AU from the to make geochemical and geophysical the lunar poles (Feldman et al. 1998). Sun (e.g. Spudis 1996, Crawford 2004, Jolliff measurements that are impossible from In order to make significant further progress et al.
    [Show full text]
  • University of Cincinnati
    UNIVERSITY OF CINCINNATI Date:__7/30/07_________________ I, __ MUNISH GUPTA_____________________________________, hereby submit this work as part of the requirements for the degree of: DOCTORATE OF PHILOSOPHY (Ph.D) in: MATERIALS SCIENCE AND ENGINEERING It is entitled: LOW-PRESSURE AND ATMOSPHERIC PRESSURE PLASMA POLYMERIZED SILICA-LIKE FILMS AS PRIMERS FOR ADHESIVE BONDING OF ALUMINUM This work and its defense approved by: Chair: __Dr. F. JAMES BOERIO ___ ______ __Dr. GREGORY BEAUCAGE __ ___ __ __Dr. RODNEY ROSEMAN _____ ___ __Dr. JUDE IROH _ _____________ _______________________________ LOW-PRESSURE AND ATMOSPHERIC PRESSURE PLASMA POLYMERIZED SILICA-LIKE FILMS AS PRIMERS FOR ADHESIVE BONDING OF ALUMINUM A dissertation submitted to the Division of Research and Advanced Studies of the University of Cincinnati in partial fulfillment of the requirements for the degree of DOCTORATE OF PHILOSOPHY (Ph.D) in the Department of Chemical and Material Engineering of the College of Engineering 2007 by Munish Gupta M.S., University of Cincinnati, 2005 B.E., Punjab Technical University, India, 2000 Committee Chair: Dr. F. James Boerio i ABSTRACT Plasma processes, including plasma etching and plasma polymerization, were investigated for the pretreatment of aluminum prior to structural adhesive bonding. Since native oxides of aluminum are unstable in the presence of moisture at elevated temperature, surface engineering processes must usually be applied to aluminum prior to adhesive bonding to produce oxides that are stable. Plasma processes are attractive for surface engineering since they take place in the gas phase and do not produce effluents that are difficult to dispose off. Reactive species that are generated in plasmas have relatively short lifetimes and form inert products.
    [Show full text]
  • Bibliographyof Space Books Andarticlesfrom Non
    https://ntrs.nasa.gov/search.jsp?R=19800016707N 2020-03-11T18:02:45+00:00Zi_sB--rM-._lO&-{/£ 3 1176 00167 6031 HHR-51 NASA-TM-81068 ]9800016707 BibliographyOf Space Books And ArticlesFrom Non-AerospaceJournals 1957-1977 _'C>_.Ft_iEFERENC_ I0_,'-i p,,.,,gvi ,:,.2, , t ,£}J L,_:,._._ •..... , , .2 ,IFER History Office ...;_.o.v,. ._,.,- NASA Headquarters Washington, DC 20546 1979 i HHR-51 BIBLIOGRAPHYOF SPACEBOOKS AND ARTICLES FROM NON-AEROSPACE JOURNALS 1957-1977 John J. Looney History Office NASA Headquarters Washlngton 9 DC 20546 . 1979 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Stock Number 033-000-0078t-1 Kc6o<2_o00 CONTENTS Introduction.................................................... v I. Space Activity A. General ..................................................... i B. Peaceful Uses ............................................... 9 C. Military Uses ............................................... Ii 2. Spaceflight: Earliest Times to Creation of NASA ................ 19 3. Organlzation_ Admlnlstration 9 and Management of NASA ............ 30 4. Aeronautics..................................................... 36 5. BoostersandRockets............................................ 38 6. Technology of Spaceflight....................................... 45 7. Manned Spaceflight.............................................. 77 8. Space Science A. Disciplines Other than Space Medicine ....................... 96 B. Space Medicine ..............................................119 C.
    [Show full text]
  • GRAIL Reveals Secrets of the Lunar Interior
    GRAIL Reveals Secrets of the Lunar Interior — Dr. Patrick J. McGovern, Lunar and Planetary Institute A mini-flotilla of spacecraft sent to the Moon in the past few years by several nations has revealed much about the characteristics of the lunar surface via techniques such as imaging, spectroscopy, and laser ranging. While the achievements of these missions have been impressive, only GRAIL has seen deeply enough to reveal inner secrets that the Moon holds. LRecent Lunar Missions Country Name Launch Date Status ESA Small Missions for Advanced September 27, 2003 Ended with lunar surface impact on Research in Technology-1 (SMART-1) September 3, 2006 USA Acceleration, Reconnection, February 27, 2007 Extension of the THEMIS mission; ended Turbulence and Electrodynamics of in 2012 the Moon’s Interaction with the Sun (ARTEMIS) Japan SELENE (Kaguya) September 14, 2007 Ended with lunar surface impact on June 10, 2009 PChina Chang’e-1 October 24, 2007 Taken out of orbit on March 1, 2009 India Chandrayaan-1 October 22, 2008 Two-year mission; ended after 315 days due to malfunction and loss of contact USA Lunar Reconnaissance Orbiter (LRO) June 18, 2009 Completed one-year primary mission; now in five-year extended mission USA Lunar Crater Observation and June 18, 2009 Ended with lunar surface impact on Sensing Satellite (LCROSS) October 9, 2009 China Chang’e-2 October 1, 2010 Primary mission lasted for six months; extended mission completed flyby of asteroid 4179 Toutatis in December 2012 USA Gravity Recovery and Interior September 10, 2011 Ended with lunar surface impact on I Laboratory (GRAIL) December 17, 2012 To probe deeper, NASA launched the Gravity Recovery and Interior Laboratory (GRAIL) mission: twin spacecraft (named “Ebb” and “Flow” by elementary school students from Montana) flying in formation over the lunar surface, tracking each other to within a sensitivity of 50 nanometers per second, or one- twenty-thousandth of the velocity that a snail moves [1], according to GRAIL Principal Investigator Maria Zuber of the Massachusetts Institute of Technology.
    [Show full text]
  • Massachusetts Inst. of Thch.) 666 P HC A9NATIF A0L AEOA, CSCD 03F Unclas
    lo2 to the " NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Contract NAS9-12334 -APOLLOPASSIVE SEISMICEXPERIMENT PARTICIPATION 'I NASA-CR-151882) LUNAR SEISMOLOGY: THE 1479-17782 INTERNAL STRUCTURE ORHE LOt Ph. Thesis (Massachusetts Inst. of Thch.) 666 p HC A9NATIF A0L AEOA, CSCD 03f Unclas 1 Januarya-19-12 -o 3.0 September .1978 G3/91' 1351 0 M. Nafi Toksbz- Principal Investigator Department of Earth and Planetar SciencesO Massachusetts Institute of Technology Cambridge, Massachusetts 02139 LUNAR SEISMOLOGY: THE INTERNAL STRUCTURE OF THE MOON by -Neal Rodney Goins Submitted to the Department of-Earth -and Planetary Sciences on May 24,.1978, in parti&l .flfillment of the requirements for the degree of Doctor of Philosophy.. ABSTRACT, A primary goal of-the Apollo missions was the exploration and scientific study of the moon. The nature of the lunar interior is of particular interest for comparison with the earth and in studying comparative planetology. The principal experiment designed to study the lunar interior was the passive seismic experiment (PSE) included as part of the science package on missions 12, 14, 15, and 16. Thus seis­ mologists were provided with a uniqueopportunity ta study the seismicity and seismic characteristics of a second planetary 'bdy and ascertain if analysis methods developed on earth could illuminate the structure of the lunar interior. The lunar seismic data differ from terrestrial data in three major respects. First, the seismic sources are much smaller than on earth, so that no significant information has -been yet obtained for the 4v/ry deep lunar interior. Second, a strong, high Q scattering layer exists on the surface of the moon, resulting in very emergent seismic arrivals, long ringing-codas that obscure secondary (later arriving)-phases., and 'the-destruction of coherent dispersed surface wave trains.
    [Show full text]
  • Appendix I Lunar and Martian Nomenclature
    APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei
    [Show full text]