Exploring Space Through Algebra Communications and the Lunar Outpost
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Project Selene: AIAA Lunar Base Camp
Project Selene: AIAA Lunar Base Camp AIAA Space Mission System 2019-2020 Virginia Tech Aerospace Engineering Faculty Advisor : Dr. Kevin Shinpaugh Team Members : Olivia Arthur, Bobby Aselford, Michel Becker, Patrick Crandall, Heidi Engebreth, Maedini Jayaprakash, Logan Lark, Nico Ortiz, Matthew Pieczynski, Brendan Ventura Member AIAA Number Member AIAA Number And Signature And Signature Faculty Advisor 25807 Dr. Kevin Shinpaugh Brendan Ventura 1109196 Matthew Pieczynski 936900 Team Lead/Operations Logan Lark 902106 Heidi Engebreth 1109232 Structures & Environment Patrick Crandall 1109193 Olivia Arthur 999589 Power & Thermal Maedini Jayaprakash 1085663 Robert Aselford 1109195 CCDH/Operations Michel Becker 1109194 Nico Ortiz 1109533 Attitude, Trajectory, Orbits and Launch Vehicles Contents 1 Symbols and Acronyms 8 2 Executive Summary 9 3 Preface and Introduction 13 3.1 Project Management . 13 3.2 Problem Definition . 14 3.2.1 Background and Motivation . 14 3.2.2 RFP and Description . 14 3.2.3 Project Scope . 15 3.2.4 Disciplines . 15 3.2.5 Societal Sectors . 15 3.2.6 Assumptions . 16 3.2.7 Relevant Capital and Resources . 16 4 Value System Design 17 4.1 Introduction . 17 4.2 Analytical Hierarchical Process . 17 4.2.1 Longevity . 18 4.2.2 Expandability . 19 4.2.3 Scientific Return . 19 4.2.4 Risk . 20 4.2.5 Cost . 21 5 Initial Concept of Operations 21 5.1 Orbital Analysis . 22 5.2 Launch Vehicles . 22 6 Habitat Location 25 6.1 Introduction . 25 6.2 Region Selection . 25 6.3 Locations of Interest . 26 6.4 Eliminated Locations . 26 6.5 Remaining Locations . 27 6.6 Chosen Location . -
Project Horizon Report
Volume I · SUMMARY AND SUPPORTING CONSIDERATIONS UNITED STATES · ARMY CRD/I ( S) Proposal t c• Establish a Lunar Outpost (C) Chief of Ordnance ·cRD 20 Mar 1 95 9 1. (U) Reference letter to Chief of Ordnance from Chief of Research and Devel opment, subject as above. 2. (C) Subsequent t o approval by t he Chief of Staff of reference, repre sentatives of the Army Ballistic ~tissiles Agency indicat e d that supplementar y guidance would· be r equired concerning the scope of the preliminary investigation s pecified in the reference. In particular these r epresentatives requested guidance concerning the source of funds required to conduct the investigation. 3. (S) I envision expeditious development o! the proposal to establish a lunar outpost to be of critical innportance t o the p. S . Army of the future. This eva luation i s appar ently shar ed by the Chief of Staff in view of his expeditious a pproval and enthusiastic endorsement of initiation of the study. Therefore, the detail to be covered by the investigation and the subs equent plan should be as com plete a s is feas ible in the tin1e limits a llowed and within the funds currently a vailable within t he office of t he Chief of Ordnance. I n this time of limited budget , additional monies are unavailable. Current. programs have been scrutinized r igidly and identifiable "fat'' trimmed awa y. Thus high study costs are prohibitive at this time , 4. (C) I leave it to your discretion t o determine the source and the amount of money to be devoted to this purpose. -
Go for Lunar Landing Conference Report
CONFERENCE REPORT Sponsored by: REPORT OF THE GO FOR LUNAR LANDING: FROM TERMINAL DESCENT TO TOUCHDOWN CONFERENCE March 4-5, 2008 Fiesta Inn, Tempe, AZ Sponsors: Arizona State University Lunar and Planetary Institute University of Arizona Report Editors: William Gregory Wayne Ottinger Mark Robinson Harrison Schmitt Samuel J. Lawrence, Executive Editor Organizing Committee: William Gregory, Co-Chair, Honeywell International Wayne Ottinger, Co-Chair, NASA and Bell Aerosystems, retired Roberto Fufaro, University of Arizona Kip Hodges, Arizona State University Samuel J. Lawrence, Arizona State University Wendell Mendell, NASA Lyndon B. Johnson Space Center Clive Neal, University of Notre Dame Charles Oman, Massachusetts Institute of Technology James Rice, Arizona State University Mark Robinson, Arizona State University Cindy Ryan, Arizona State University Harrison H. Schmitt, NASA, retired Rick Shangraw, Arizona State University Camelia Skiba, Arizona State University Nicolé A. Staab, Arizona State University i Table of Contents EXECUTIVE SUMMARY..................................................................................................1 INTRODUCTION...............................................................................................................2 Notes...............................................................................................................................3 THE APOLLO EXPERIENCE............................................................................................4 Panelists...........................................................................................................................4 -
JAXA's Space Exploration Activities
JAXA’s Space Exploration Activities Jun Gomi, Deputy Director General, JAXA Hayabusa 2 ✓ Asteroid Explorer of the C-type asteroid ✓ Launched in December, 2014 ✓ Reached target asteroid “Ryugu” in 2018 ✓ First successful touchdown to Ryugu on February 22, 2019 ✓ Return to Earth in 2020 (162173) Ryugu 2 Hayabusa 2 (c) JAXA, University of Tokyo, Kochi University, Rikkyo University, (c) JAXA, University of Tokyo, Kochi University, Rikkyo University, Nagoya University, Chiba Institute of Technology, Meiji University, Nagoya University, Chiba Institute of Technology, Meiji University, University of Aizu and AIST. University of Aizu, AIST Asteroid Ryugu photographed from a Asteroid Ryugu from an altitude of 6km. distance of about 20 km. The image Image was captured with the Optical was taken on June 30, 2018. Navigation Camera on July 20, 2018. Hayabusa 2 4 JAXA’s Plan for Space Exploration International • Utilization of ISS/Kibo • Cis-Lunar Platform (Gateway) Cooperation • Lunar exploration and beyond Industry & • JAXA Space Exploration Innovation Academia Hub Partnerships • Science Community discussions JAXA’s Overall Scenario for International Space Exploration Mars, others ★ Initial Exploration ★ Full Fledge Exploration MMX: JFY2024 • Science and search for life • Utilization feasibility exam. Kaguya Moon ©JAXA ©JAXA ©JAXA ©JAXA ©JAXA Full-fledged Exploration & SLIM Traversing exploration(2023- ) Sample Return(2026- ) Utilization (JFY2021) • Science exploration • S/R from far side • Cooperative science/resource • Water prospecting • Technology demo for human mission exploration by robotic and human HTV-X der.(2026- ) • Small probe deploy, data relay etc. Gateway Phase 1 Gateway (2022-) Phase 2 • Support for Lunar science Earth • Science using deep space Promote Commercialization International Space Station 6 SLIM (Smart Lander for Investigating Moon) ✓ Demonstrate pin-point landing on the moon. -
Extending NASA™S Exploration Systems Architecture Towards Long
SpaceOps 2006 Conference AIAA 2006-5746 Extending NASA’s Exploration Systems Architecture towards Long - term Crewed Moon and Mars Operations Wilfried K. Hofstetter *, Paul D. Wooster †, Edward F. Crawley ‡ Massac husetts Institute of Technology 77 Massachusetts Avenue , Cambridge, MA, 02139 This pape r presents a baseline strategy for extending lunar crew transportation system operations as outlined in NASA’s Exploration Systems Architecture Study (ESAS) report towards longer -stay lunar surface operations and conjunction class Mars missions. The analys is of options for commonality between initial lunar sortie operations and later Moon and Mars exploration missions is essential for reducing life -cycle cost and pr oviding low - investment / high -return options for extending exploration capabilities soon afte r the 7 th human lunar landing . The analysis is also intended to inform the development of the human lunar lander and other exploration system elements by identifying enabling requirements for extension of the lunar crew tr ansportation system. The baseline strategy outlined in this paper was generated using a three -step process : the analysis of exploration objectives and scenarios, identification of functional and operational extension options , and the conceptual design of a set of preferred extension option s. Extension options include (but are not limited to) the use of the human lunar lander as outpost for extended stays, and Mars crew transportation using evolved Crew Exploration Vehicle ( CEV ) and human lander crew compartments. Although t he results presen ted in this paper are based on the ES AS elements , the conclusions drawn in this paper are generally applicable provided the same l unar transportation mode (lunar orbit rendezvous) is used . -
Issue #1 – 2012 October
TTSIQ #1 page 1 OCTOBER 2012 Introducing a new free quarterly newsletter for space-interested and space-enthused people around the globe This free publication is especially dedicated to students and teachers interested in space NEWS SECTION pp. 3-22 p. 3 Earth Orbit and Mission to Planet Earth - 13 reports p. 8 Cislunar Space and the Moon - 5 reports p. 11 Mars and the Asteroids - 5 reports p. 15 Other Planets and Moons - 2 reports p. 17 Starbound - 4 reports, 1 article ---------------------------------------------------------------------------------------------------- ARTICLES, ESSAYS & MORE pp. 23-45 - 10 articles & essays (full list on last page) ---------------------------------------------------------------------------------------------------- STUDENTS & TEACHERS pp. 46-56 - 9 articles & essays (full list on last page) L: Remote sensing of Aerosol Optical Depth over India R: Curiosity finds rocks shaped by running water on Mars! L: China hopes to put lander on the Moon in 2013 R: First Square Kilometer Array telescopes online in Australia! 1 TTSIQ #1 page 2 OCTOBER 2012 TTSIQ Sponsor Organizations 1. About The National Space Society - http://www.nss.org/ The National Space Society was formed in March, 1987 by the merger of the former L5 Society and National Space institute. NSS has an extensive chapter network in the United States and a number of international chapters in Europe, Asia, and Australia. NSS hosts the annual International Space Development Conference in May each year at varying locations. NSS publishes Ad Astra magazine quarterly. NSS actively tries to influence US Space Policy. About The Moon Society - http://www.moonsociety.org The Moon Society was formed in 2000 and seeks to inspire and involve people everywhere in exploration of the Moon with the establishment of civilian settlements, using local resources through private enterprise both to support themselves and to help alleviate Earth's stubborn energy and environmental problems. -
Concept of a Human-Attended Lunar Outpost
Paper ID #16714 Concept of a Human-Attended Lunar Outpost Mr. Thomas W. Arrington, Texas A&M University Thomas Arrington worked as the student Project Manager for the Human Attended Lunar Outpost senior design project for the the Department of Aerospace Engineering at Texas A&M University in College Station. He has interned with Boeing Research and Technology three times, and was an active member of the Texas A&M University Sounding Rocketry Team. Mr. Nicolas Federico Hurst, Texas A&M 2015 Capstone Design Spacecraft Nico Hurst is a student of Texas A&M University. He recently graduated from the Aerospace Engineering department with my bachelor’s of science and will be continuing his education with a master’s of science in finance. Mr. David B. Kanipe, Texas A&M University After receiving a BS in Aerospace Engineering in May 1970, followed by a MS in Aerospace Engineering in August 1971 from Texas A&M University, Mr. Kanipe accepted a position with NASA at the Manned Spacecraft Center in Houston and began his professional career in November 1972. A month after his arrival at NASA, the last Apollo mission, Apollo 17, was launched. Obviously, that was exciting, but in terms of his career, the commencement of the Space Shuttle Program in November 1972 was to have far more impact. As a result, David was able to begin his career working on what he says was the most interesting and exciting project he could possibly imagine: the Space Shuttle. Over his career, David held successively influential management positions including Deputy Branch Chief of the Aerodynamics Branch in the Aeroscience and Flight Mechanics Division, Chief of the GN&C Analysis and Design Branch, Deputy Chief of the Aeroscience and Flight Mechanics Division, and for the final 10 years of his career, Chief of the Aeroscience and Flight Mechanics Division in the Engineering Directorate at the Johnson Space Center. -
Private Sector Lunar Exploration Hearing
PRIVATE SECTOR LUNAR EXPLORATION HEARING BEFORE THE SUBCOMMITTEE ON SPACE COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HOUSE OF REPRESENTATIVES ONE HUNDRED FIFTEENTH CONGRESS FIRST SESSION SEPTEMBER 7, 2017 Serial No. 115–27 Printed for the use of the Committee on Science, Space, and Technology ( Available via the World Wide Web: http://science.house.gov U.S. GOVERNMENT PUBLISHING OFFICE 27–174PDF WASHINGTON : 2017 For sale by the Superintendent of Documents, U.S. Government Publishing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HON. LAMAR S. SMITH, Texas, Chair FRANK D. LUCAS, Oklahoma EDDIE BERNICE JOHNSON, Texas DANA ROHRABACHER, California ZOE LOFGREN, California MO BROOKS, Alabama DANIEL LIPINSKI, Illinois RANDY HULTGREN, Illinois SUZANNE BONAMICI, Oregon BILL POSEY, Florida ALAN GRAYSON, Florida THOMAS MASSIE, Kentucky AMI BERA, California JIM BRIDENSTINE, Oklahoma ELIZABETH H. ESTY, Connecticut RANDY K. WEBER, Texas MARC A. VEASEY, Texas STEPHEN KNIGHT, California DONALD S. BEYER, JR., Virginia BRIAN BABIN, Texas JACKY ROSEN, Nevada BARBARA COMSTOCK, Virginia JERRY MCNERNEY, California BARRY LOUDERMILK, Georgia ED PERLMUTTER, Colorado RALPH LEE ABRAHAM, Louisiana PAUL TONKO, New York DRAIN LAHOOD, Illinois BILL FOSTER, Illinois DANIEL WEBSTER, Florida MARK TAKANO, California JIM BANKS, Indiana COLLEEN HANABUSA, Hawaii ANDY BIGGS, Arizona CHARLIE CRIST, Florida ROGER W. MARSHALL, Kansas NEAL P. DUNN, Florida CLAY HIGGINS, Louisiana RALPH NORMAN, South Carolina SUBCOMMITTEE ON SPACE HON. BRIAN BABIN, Texas, Chair DANA ROHRABACHER, California AMI BERA, California, Ranking Member FRANK D. LUCAS, Oklahoma ZOE LOFGREN, California MO BROOKS, Alabama DONALD S. -
Lpi Summer Intern Program in Planetary Science
LPI SUMMER INTERN PROGRAM IN PLANETARY SCIENCE Papers Presented at the August 11, 2011 — Houston, Texas Papers Presented at the Twenty-Seventh Annual Summer Intern Conference August 11, 2011 Houston, Texas 2011 Summer Intern Program for Undergraduates Lunar and Planetary Institute Sponsored by Lunar and Planetary Institute NASA Johnson Space Center Compiled in 2011 by Meeting and Publication Services Lunar and Planetary Institute USRA Houston 3600 Bay Area Boulevard, Houston TX 77058-1113 The Lunar and Planetary Institute is operated by the Universities Space Research Association under a cooperative agreement with the Science Mission Directorate of the National Aeronautics and Space Administration. Any opinions, findings, and conclusions or recommendations expressed in this volume are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration. Material in this volume may be copied without restraint for library, abstract service, education, or personal research purposes; however, republication of any paper or portion thereof requires the written permission of the authors as well as the appropriate acknowledgment of this publication. 2011 Intern Conference iii HIGHLIGHTS Special Activities June 6, 2011 Tour of the Stardust Lab and Lunar Curatorial Facility JSC July 22, 2011 Tour of the Meteorite Lab JSC August 4, 2011 NASA VIP Tour JSC/ NASA Johnson Space Center and Sonny Carter SCTF Training Facility Site Visit Intern Brown Bag Seminars Date Speaker Topic Location June 8, 2011 Paul -
Lunar Pole Illumination and Communications Maps Computed from Goldstone Solar System Radar Elevation Data
IPN Progress Report 42-176 • February 15, 2009 Lunar Pole Illumination and Communications Maps Computed from Goldstone Solar System Radar Elevation Data Scott Bryant* The Goldstone Solar System Radar (GSSR) group at JPL produced a digital elevation model (DEM) of the lunar south pole using data obtained in 2006. This new DEM has 40-m hori- zontal resolution and about 5-m relative vertical accuracy. This article explains how this DEM was used to evaluate average solar illumination and Earth visibility near the lunar south pole. The elevation data were converted into local terrain horizon masks for the area within 100 km of the lunar south pole. These topocentric horizon masks were converted into selenographic latitude and longitude coordinates, then compared to regions bound- ing the maximum Sun and Earth motions relative to the Moon. Estimates of Earth visibility were computed by integrating the area of the region bounding the Earth’s motion that was below the horizon mask. Solar illumination and other metrics were computed similarly. Proposed lunar south pole base sites are examined in detail, with the best site showing multiyear averages of solar power availability of 92 percent and direct-to-Earth (DTE) com- munication availability of 51 percent. Results are compared with a theoretical model and with actual Sun and Earth visibility averaged over the years 2009 to 2028. Peaks near the lunar south pole with continuous DTE communications are also presented. Results for the lunar north pole were computed using the GSSR DEM of the lunar north pole produced in 1997. The article also explores using a heliostat to reduce the photovoltaic power system mass and complexity. -
Illumination Conditions of the Lunar Polar Regions Using LOLA Topography ⇑ E
Icarus 211 (2011) 1066–1081 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Illumination conditions of the lunar polar regions using LOLA topography ⇑ E. Mazarico a,b, ,1, G.A. Neumann a, D.E. Smith a,b, M.T. Zuber b, M.H. Torrence a,c a NASA Goddard Space Flight Center, Planetary Geodynamics Laboratory, Greenbelt, MD 20771, United States b Massachusetts Institute of Technology, Department of Earth, Atmospheric and Planetary Sciences, Cambridge, MA 02139, United States c Stinger Ghaffarian Technologies, Inc., Greenbelt, MD 20770, United States article info abstract Article history: We use high-resolution altimetry data obtained by the Lunar Orbiter Laser Altimeter instrument onboard Received 21 May 2010 the Lunar Reconnaissance Orbiter to characterize present illumination conditions in the polar regions of Revised 24 October 2010 the Moon. Compared to previous studies, both the spatial and temporal extent of the simulations are Accepted 29 October 2010 increased significantly, as well as the coverage (fill ratio) of the topographic maps used, thanks to the Available online 12 November 2010 28 Hz firing rate of the five-beam instrument. We determine the horizon elevation in a number of direc- tions based on 240 m-resolution polar digital elevation models reaching down to 75° latitude. The illu- Keyword: mination of both polar regions extending to 80° can be calculated for any geometry from those horizon Moon longitudinal profiles. We validated our modeling with recent Lunar Reconnaissance Orbiter Wide-Angle Camera images. We assessed the extent of permanently shadowed regions (PSRs, defined as areas that never receive direct solar illumination), and obtained total areas generally larger than previous studies (12,866 and 16,055 km2, in the north and south respectively). -
TFG Pedrocorujofernandez.Pdf
i Table of Contents Cover Page ...................................................................................................................................... i List of Tables and Figures .............................................................................................................. vi List of Units and Nomenclature .................................................................................................. viii Units ........................................................................................................................................ viii Nomenclature ........................................................................................................................... ix 1. Introduction ........................................................................................................................... 1 2. Project Background ................................................................................................................ 2 3. Technical Review .................................................................................................................... 5 3.1. Distribution ......................................................................................................................... 5 3.1.1. Moon conditions .......................................................................................................... 5 3.1.2. Terrestrial Power Distribution ................................................................................... 10 3.1.3. DC Transmission