Create Te a Lunar Outpost Post

Total Page:16

File Type:pdf, Size:1020Kb

Create Te a Lunar Outpost Post WHY GO To THE MOON? MEET A MISSION ENGINEER — Ms. Cathy Peddie, NASA Goddard Space Flight Center What do you do? How did you get to be doing what you are doing? What is the greatest engineering challenge about putting an outpost on the Moon? —— Why do YOU think we should journey to the Moon and beyond? Why should we return to the Moon? If someone wants to be an engineer, what should they do? BE PART OF THE JOURNEY! http://learners.gsfc.nasa.gov/mediaviewer/LRO/ CHALLENGES TO LUNAR EXPLOR ERS TRY THIS — What’s Needed Ice at the Poles! Students explore why the lunar poles may contain concentrations of ice. Getting Started What to Do What do the students observe about the shadows cast by the toothpicks? Are there any areas on the lunar surface that are shielded permanently from the Sun? When they illuminate their clay Moon as they did earlier, what do they observe about the light in the cratered regions? Wrapping Up What do the student’s observations suggest about temperatures in these permanently shaded craters? Comets are made, in part, of water ice; if comets delivered ice to the Moon, where might temperatures be permanently cold to preserve the ice? LUNAR RESOURCES CREREATETE A LUNARUNAR OUTPOSTPOST Artist Pat Rawlings illustrates space exploration, from futuristic space travel to human investigation of Mars to lunar outposts. His images integrate imagination with scientifically and technically accurate information. Invite your students to use materials at hand to create, draw, or animate a lunar outpost of the future. Have them consider the questions that follow as they construct their Moon habitats. WhatWhat buildingsbuildings aarere nneededeeded fforor tthehe aastronauts?stronauts? HHowow ddoesoes tthehe hhabitatabitat ggetet ppower?ower? WWhathat ssciencecience ooccursccurs aatt tthehe ooutputpost?ost? Water Ice, Maybe. Hydrogen, Yes! HHowow ddoo tthehe aastronautsstronauts aarriverrive aatt tthehe ooutpost?utpost? HHowow ddoo ttheyhey mmoveove aacrosscross tthehe llunarunar ssurface?urface? HHowow aarere tthehe aastronautsstronauts pprotectedrotected ffromrom rradiationadiation aandnd ttemperatureemperature eextremes?xtremes? WWherehere iiss eequipmentquipment mmaintainedaintained aandnd sstored?tored? HHowow iiss aairir ggeneratedenerated fforor tthehe aastronautsstronauts ttoo bbreathe?reathe? WWherehere ddoo ttheyhey ggetet ttheirheir ffood?ood? WWherehere ddoo tthehe aastronautsstronauts ggetet mmedicaledical ttreatment?reatment? HHowow ddoo ttheyhey ccommunicateommunicate wwithith eeachach ootherther aandnd EEarth?arth? WWhathat ddoo tthehe aastronautsstronauts ddoo fforor eexercise,xercise, rrelaxation,elaxation, aandnd ffun?un? WWhathat kkindind ooff jjobsobs wwillill ppeopleeople nneedeed ttoo ddoo aatt tthehe ooutpost?utpost? Regolith Revisited Invite your students to submit their work to the Lunar and Planetary Institute at http://www.lpi.usra.edu/education/moon_poster.shtml Got Sun? FURTHER EXPLORATION MORE CLASSROOM RESOURCES Explore! To the Moon and Beyond with the Lunar Reconnaissance Orbiter — http://www.lpi.usra.edu/education/explore/LRO/ ONLINE DISCOVERY Lunar Camp Teacher Resources — http://lunar-camp.com/resources/index.html Other Energy Sources http://www.nasa.gov/mission_pages/exploration/main/index.html Return to the Moon — http://www.challenger.org/teachers/lessons/returnmoon.cfm http://www.nasa.gov/directorates/esmd/home/index.html What’s for Dinner? ADDITIONAL READING http://moon.msfc.nasa.gov/ Home on the Moon: Living on a Space Frontier Reduce, Reuse, Recycle http://www.planet-llc.com/pages/store/simulant.htm Return to the Moon http://www.patrawlings.com/default.cfm Outposts are built Picture It partially under- ABOUT THIS POSTER ground to protect Robots mine lunar astronauts from soil to extract oxygen, front sixth- to ninth-grade students space radiation. titanium, aluminum, back educators and other elements http://www.lpi.usra.edu/education/moon_poster.shtml Lunar soils in used for buildings permanently dark and life support. regions near the pole contain hydrogen and may Solar panels on contain water ice. robots, transports, and outposts provide power. .
Recommended publications
  • Project Horizon Report
    Volume I · SUMMARY AND SUPPORTING CONSIDERATIONS UNITED STATES · ARMY CRD/I ( S) Proposal t c• Establish a Lunar Outpost (C) Chief of Ordnance ·cRD 20 Mar 1 95 9 1. (U) Reference letter to Chief of Ordnance from Chief of Research and Devel opment, subject as above. 2. (C) Subsequent t o approval by t he Chief of Staff of reference, repre­ sentatives of the Army Ballistic ~tissiles Agency indicat e d that supplementar y guidance would· be r equired concerning the scope of the preliminary investigation s pecified in the reference. In particular these r epresentatives requested guidance concerning the source of funds required to conduct the investigation. 3. (S) I envision expeditious development o! the proposal to establish a lunar outpost to be of critical innportance t o the p. S . Army of the future. This eva luation i s appar ently shar ed by the Chief of Staff in view of his expeditious a pproval and enthusiastic endorsement of initiation of the study. Therefore, the detail to be covered by the investigation and the subs equent plan should be as com­ plete a s is feas ible in the tin1e limits a llowed and within the funds currently a vailable within t he office of t he Chief of Ordnance. I n this time of limited budget , additional monies are unavailable. Current. programs have been scrutinized r igidly and identifiable "fat'' trimmed awa y. Thus high study costs are prohibitive at this time , 4. (C) I leave it to your discretion t o determine the source and the amount of money to be devoted to this purpose.
    [Show full text]
  • Go for Lunar Landing Conference Report
    CONFERENCE REPORT Sponsored by: REPORT OF THE GO FOR LUNAR LANDING: FROM TERMINAL DESCENT TO TOUCHDOWN CONFERENCE March 4-5, 2008 Fiesta Inn, Tempe, AZ Sponsors: Arizona State University Lunar and Planetary Institute University of Arizona Report Editors: William Gregory Wayne Ottinger Mark Robinson Harrison Schmitt Samuel J. Lawrence, Executive Editor Organizing Committee: William Gregory, Co-Chair, Honeywell International Wayne Ottinger, Co-Chair, NASA and Bell Aerosystems, retired Roberto Fufaro, University of Arizona Kip Hodges, Arizona State University Samuel J. Lawrence, Arizona State University Wendell Mendell, NASA Lyndon B. Johnson Space Center Clive Neal, University of Notre Dame Charles Oman, Massachusetts Institute of Technology James Rice, Arizona State University Mark Robinson, Arizona State University Cindy Ryan, Arizona State University Harrison H. Schmitt, NASA, retired Rick Shangraw, Arizona State University Camelia Skiba, Arizona State University Nicolé A. Staab, Arizona State University i Table of Contents EXECUTIVE SUMMARY..................................................................................................1 INTRODUCTION...............................................................................................................2 Notes...............................................................................................................................3 THE APOLLO EXPERIENCE............................................................................................4 Panelists...........................................................................................................................4
    [Show full text]
  • JAXA's Space Exploration Activities
    JAXA’s Space Exploration Activities Jun Gomi, Deputy Director General, JAXA Hayabusa 2 ✓ Asteroid Explorer of the C-type asteroid ✓ Launched in December, 2014 ✓ Reached target asteroid “Ryugu” in 2018 ✓ First successful touchdown to Ryugu on February 22, 2019 ✓ Return to Earth in 2020 (162173) Ryugu 2 Hayabusa 2 (c) JAXA, University of Tokyo, Kochi University, Rikkyo University, (c) JAXA, University of Tokyo, Kochi University, Rikkyo University, Nagoya University, Chiba Institute of Technology, Meiji University, Nagoya University, Chiba Institute of Technology, Meiji University, University of Aizu and AIST. University of Aizu, AIST Asteroid Ryugu photographed from a Asteroid Ryugu from an altitude of 6km. distance of about 20 km. The image Image was captured with the Optical was taken on June 30, 2018. Navigation Camera on July 20, 2018. Hayabusa 2 4 JAXA’s Plan for Space Exploration International • Utilization of ISS/Kibo • Cis-Lunar Platform (Gateway) Cooperation • Lunar exploration and beyond Industry & • JAXA Space Exploration Innovation Academia Hub Partnerships • Science Community discussions JAXA’s Overall Scenario for International Space Exploration Mars, others ★ Initial Exploration ★ Full Fledge Exploration MMX: JFY2024 • Science and search for life • Utilization feasibility exam. Kaguya Moon ©JAXA ©JAXA ©JAXA ©JAXA ©JAXA Full-fledged Exploration & SLIM Traversing exploration(2023- ) Sample Return(2026- ) Utilization (JFY2021) • Science exploration • S/R from far side • Cooperative science/resource • Water prospecting • Technology demo for human mission exploration by robotic and human HTV-X der.(2026- ) • Small probe deploy, data relay etc. Gateway Phase 1 Gateway (2022-) Phase 2 • Support for Lunar science Earth • Science using deep space Promote Commercialization International Space Station 6 SLIM (Smart Lander for Investigating Moon) ✓ Demonstrate pin-point landing on the moon.
    [Show full text]
  • Extending NASA™S Exploration Systems Architecture Towards Long
    SpaceOps 2006 Conference AIAA 2006-5746 Extending NASA’s Exploration Systems Architecture towards Long - term Crewed Moon and Mars Operations Wilfried K. Hofstetter *, Paul D. Wooster †, Edward F. Crawley ‡ Massac husetts Institute of Technology 77 Massachusetts Avenue , Cambridge, MA, 02139 This pape r presents a baseline strategy for extending lunar crew transportation system operations as outlined in NASA’s Exploration Systems Architecture Study (ESAS) report towards longer -stay lunar surface operations and conjunction class Mars missions. The analys is of options for commonality between initial lunar sortie operations and later Moon and Mars exploration missions is essential for reducing life -cycle cost and pr oviding low - investment / high -return options for extending exploration capabilities soon afte r the 7 th human lunar landing . The analysis is also intended to inform the development of the human lunar lander and other exploration system elements by identifying enabling requirements for extension of the lunar crew tr ansportation system. The baseline strategy outlined in this paper was generated using a three -step process : the analysis of exploration objectives and scenarios, identification of functional and operational extension options , and the conceptual design of a set of preferred extension option s. Extension options include (but are not limited to) the use of the human lunar lander as outpost for extended stays, and Mars crew transportation using evolved Crew Exploration Vehicle ( CEV ) and human lander crew compartments. Although t he results presen ted in this paper are based on the ES AS elements , the conclusions drawn in this paper are generally applicable provided the same l unar transportation mode (lunar orbit rendezvous) is used .
    [Show full text]
  • Issue #1 – 2012 October
    TTSIQ #1 page 1 OCTOBER 2012 Introducing a new free quarterly newsletter for space-interested and space-enthused people around the globe This free publication is especially dedicated to students and teachers interested in space NEWS SECTION pp. 3-22 p. 3 Earth Orbit and Mission to Planet Earth - 13 reports p. 8 Cislunar Space and the Moon - 5 reports p. 11 Mars and the Asteroids - 5 reports p. 15 Other Planets and Moons - 2 reports p. 17 Starbound - 4 reports, 1 article ---------------------------------------------------------------------------------------------------- ARTICLES, ESSAYS & MORE pp. 23-45 - 10 articles & essays (full list on last page) ---------------------------------------------------------------------------------------------------- STUDENTS & TEACHERS pp. 46-56 - 9 articles & essays (full list on last page) L: Remote sensing of Aerosol Optical Depth over India R: Curiosity finds rocks shaped by running water on Mars! L: China hopes to put lander on the Moon in 2013 R: First Square Kilometer Array telescopes online in Australia! 1 TTSIQ #1 page 2 OCTOBER 2012 TTSIQ Sponsor Organizations 1. About The National Space Society - http://www.nss.org/ The National Space Society was formed in March, 1987 by the merger of the former L5 Society and National Space institute. NSS has an extensive chapter network in the United States and a number of international chapters in Europe, Asia, and Australia. NSS hosts the annual International Space Development Conference in May each year at varying locations. NSS publishes Ad Astra magazine quarterly. NSS actively tries to influence US Space Policy. About The Moon Society - http://www.moonsociety.org The Moon Society was formed in 2000 and seeks to inspire and involve people everywhere in exploration of the Moon with the establishment of civilian settlements, using local resources through private enterprise both to support themselves and to help alleviate Earth's stubborn energy and environmental problems.
    [Show full text]
  • Concept of a Human-Attended Lunar Outpost
    Paper ID #16714 Concept of a Human-Attended Lunar Outpost Mr. Thomas W. Arrington, Texas A&M University Thomas Arrington worked as the student Project Manager for the Human Attended Lunar Outpost senior design project for the the Department of Aerospace Engineering at Texas A&M University in College Station. He has interned with Boeing Research and Technology three times, and was an active member of the Texas A&M University Sounding Rocketry Team. Mr. Nicolas Federico Hurst, Texas A&M 2015 Capstone Design Spacecraft Nico Hurst is a student of Texas A&M University. He recently graduated from the Aerospace Engineering department with my bachelor’s of science and will be continuing his education with a master’s of science in finance. Mr. David B. Kanipe, Texas A&M University After receiving a BS in Aerospace Engineering in May 1970, followed by a MS in Aerospace Engineering in August 1971 from Texas A&M University, Mr. Kanipe accepted a position with NASA at the Manned Spacecraft Center in Houston and began his professional career in November 1972. A month after his arrival at NASA, the last Apollo mission, Apollo 17, was launched. Obviously, that was exciting, but in terms of his career, the commencement of the Space Shuttle Program in November 1972 was to have far more impact. As a result, David was able to begin his career working on what he says was the most interesting and exciting project he could possibly imagine: the Space Shuttle. Over his career, David held successively influential management positions including Deputy Branch Chief of the Aerodynamics Branch in the Aeroscience and Flight Mechanics Division, Chief of the GN&C Analysis and Design Branch, Deputy Chief of the Aeroscience and Flight Mechanics Division, and for the final 10 years of his career, Chief of the Aeroscience and Flight Mechanics Division in the Engineering Directorate at the Johnson Space Center.
    [Show full text]
  • Private Sector Lunar Exploration Hearing
    PRIVATE SECTOR LUNAR EXPLORATION HEARING BEFORE THE SUBCOMMITTEE ON SPACE COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HOUSE OF REPRESENTATIVES ONE HUNDRED FIFTEENTH CONGRESS FIRST SESSION SEPTEMBER 7, 2017 Serial No. 115–27 Printed for the use of the Committee on Science, Space, and Technology ( Available via the World Wide Web: http://science.house.gov U.S. GOVERNMENT PUBLISHING OFFICE 27–174PDF WASHINGTON : 2017 For sale by the Superintendent of Documents, U.S. Government Publishing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HON. LAMAR S. SMITH, Texas, Chair FRANK D. LUCAS, Oklahoma EDDIE BERNICE JOHNSON, Texas DANA ROHRABACHER, California ZOE LOFGREN, California MO BROOKS, Alabama DANIEL LIPINSKI, Illinois RANDY HULTGREN, Illinois SUZANNE BONAMICI, Oregon BILL POSEY, Florida ALAN GRAYSON, Florida THOMAS MASSIE, Kentucky AMI BERA, California JIM BRIDENSTINE, Oklahoma ELIZABETH H. ESTY, Connecticut RANDY K. WEBER, Texas MARC A. VEASEY, Texas STEPHEN KNIGHT, California DONALD S. BEYER, JR., Virginia BRIAN BABIN, Texas JACKY ROSEN, Nevada BARBARA COMSTOCK, Virginia JERRY MCNERNEY, California BARRY LOUDERMILK, Georgia ED PERLMUTTER, Colorado RALPH LEE ABRAHAM, Louisiana PAUL TONKO, New York DRAIN LAHOOD, Illinois BILL FOSTER, Illinois DANIEL WEBSTER, Florida MARK TAKANO, California JIM BANKS, Indiana COLLEEN HANABUSA, Hawaii ANDY BIGGS, Arizona CHARLIE CRIST, Florida ROGER W. MARSHALL, Kansas NEAL P. DUNN, Florida CLAY HIGGINS, Louisiana RALPH NORMAN, South Carolina SUBCOMMITTEE ON SPACE HON. BRIAN BABIN, Texas, Chair DANA ROHRABACHER, California AMI BERA, California, Ranking Member FRANK D. LUCAS, Oklahoma ZOE LOFGREN, California MO BROOKS, Alabama DONALD S.
    [Show full text]
  • To the Moon and Beyond Back
    Why Go To the Moon? There are almost as many answers to this question as there are craters on the Moon — depending on your interests! The Moon formed from Earth, and holds a record of Earth’s early history — a record that has been erased on Earth by restless geologic processes. The Moon will provide scientists with new views of early Earth, how the Earth-Moon system and the solar system formed and evolved, and the role of asteroid impacts in influencing Earth’s history — and possibly future! The Moon presents numerous exciting engineering challenges. It is an excellent place to test technologies, flight capabilities, life support systems, and exploration techniques to reduce the risks and increase the productivity of future missions. Our journey will provide us with the first experience of living and working on another world, allowing us to test advanced materials and equipment in the temperature and radiation extremes of space. We will learn how to best employ robots to support human tasks, explore remote locations, and gather information in potentially hazardous regions. By successfully establishing a presence on the Moon, we will enhance life on Earth and prepare to explore the rest of our solar system — and beyond! Keeping astronauts healthy in a lower-gravity and higher-radiation environment than Earth is an important challenge for medical researchers. The potential benefits to all humans are tremendous in terms of prevention and treatment of bone and muscle loss and some cancers. Other advances in medicine will follow! Exploration of the Moon also creates new business opportunities for technological innovations and applications and utilization of new resources.
    [Show full text]
  • Lunar Outpost the Challenges of Establishing a Human Settlement on the Moon Erik Seedhouse Lunar Outpost the Challenges of Establishing a Human Settlement on the Moon
    Lunar Outpost The Challenges of Establishing a Human Settlement on the Moon Erik Seedhouse Lunar Outpost The Challenges of Establishing a Human Settlement on the Moon Published in association with Praxis Publishing Chichester, UK Dr Erik Seedhouse, F.B.I.S., As.M.A. Milton Ontario Canada SPRINGER±PRAXIS BOOKS IN SPACE EXPLORATION SUBJECT ADVISORY EDITOR: John Mason, M.Sc., B.Sc., Ph.D. ISBN 978-0-387-09746-6 Springer Berlin Heidelberg New York Springer is part of Springer-Science + Business Media (springer.com) Library of Congress Control Number: 2008934751 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers. # Praxis Publishing Ltd, Chichester, UK, 2009 Printed in Germany The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a speci®c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: Jim Wilkie Project management: Originator Publishing Services, Gt Yarmouth, Norfolk, UK Printed on acid-free paper Contents Preface ............................................. xiii Acknowledgments ...................................... xvii About the author....................................... xix List of ®gures ........................................ xxi List of tables ........................................
    [Show full text]
  • Exploring the Moon and Mars: Choices for the Nation
    Exploring the Moon and Mars: Choices for the Nation July 1991 OTA-ISC-502 NTIS order #PB91-220046 Recommended Citation: U.S. Congress, Office of Technology AssessmenT Exploring the Moon andMars: Choices for the Nation, OTA-ISC-502 (Washington, DC: U.S. Government Printing Office, July 1991). For sale by the Superintendent of Documents U.S. Government Printing 0ffice, Washington, DC 20402-9325 (order form can be found in the back of this report) Foreword The United States has always been at the forefront of exploring the planets. U.S. space- craft have now journeyed near every planet in the solar system but Pluto, the most distant one. Its probes have also landed on the Moon and Mars. Magellan, the most recent of U.S. interplan- etary voyagers, has been returning thought-provoking, high-resolution radar images of the sur- face of Venus. Scientifically, the prospect of returning to the Moon and exploring Mars in greater detail is an exciting one. President George Bush’s proposal to establish a permanent lunar base and to send human crews to explore Mars is ambitious and would engage both scientists and engi- neers in challenging tasks. Yet it also raises a host of issues regarding the appropriate mix of humans and machines, timeliness, and costs of space exploration. This Nation faces a sobering variety of economic, environmental, and technological challenges over the next few decades, all of which will make major demands on the Federal budget and other national assets. Within this context, Congress will have to decide the appropriate pace and direction for the President’s space exploration proposal.
    [Show full text]
  • Human Health and Performance for Long-Duration Spaceflight
    POSITION PAPER Human Health and Performance for Long-Duration Spacefl ight Ad Hoc Committee of Members of the Space Medicine Association and the Society of NASA Flight Surgeons A D H OC C OMMITTEE OF M EMBERS OF THE S PACE M EDICINE A SSOCIA- 1. Fulfi ll our human nature to explore the unknown beyond the TION AND THE S OCIETY OF NASA F LIGHT S URGEONS . Human health and bounds of our planet, with extended missions to the Moon pro- performance for long-duration spacefl ight. Aviat Space Environ Med viding the operational training ground for future planetary out- 2008; 79:629 – 35. posts such as Mars; Future long-duration spacefl ights are now being planned to the Moon 2. Establish a permanent Moon outpost to conduct experiments and Mars as a part of the “ Vision for Space Exploration ” program initi- and studies to answer questions about how the solar system was ated by NASA in 2004. This report describes the design reference mis- formed and is evolving. The Moon, devoid of any atmosphere, is sions for the International Space Station, Lunar Base, and eventually a an ideal site for such astronomical observations and research Mars Expedition. There is a need to develop more stringent prefl ight and the necessary fi rst step for the development of a planetary medical screening for crewmembers to minimize risk factors for diseases outpost; which cannot be effectively treated in fl ight. Since funding for space life 3. Develop commercial operations such as mineral mining and mi- sciences research and development has been eliminated to fund pro- crogravity materials development; gram development, these missions will be enabled by countermeasures 4.
    [Show full text]
  • Roadmap to Space Settlement
    Roadmap to Space Settlement Third Edition the magazine of the National Space Society 2019 Issue 2018-5 JOIN THE TEAM FOR SPACE Get adAstra, the award winning magazine of the National Space Society. FROM XPRIZE to the International Space Station, from the Moon to Mars and beyond, the NSS is at the forefront of the new space age. New members can join now for a special introductory rate of only $20 and get a one year subscription to Ad Astra, the only magazine of its kind! MEMBERSHIP MAKES A GREAT GIFT! Bring the gift of space to someone new, and give them the special feeling that comes with knowing they are supporting the greatest adventure of our time. ENJOY ALL THE MEMBER BENEFITS NSS AWARD-WINNING QUARTERLY MAGAZINE • DOWNLINK NEWSLETTER EVERY 2 WEEKS ACCESS TO LOCAL CHAPTERS • FREE PROMOTIONAL ITEMS INVITATIONS & DISCOUNTS TO NSS SPONSORED EVENTS • INTRODUCTORY PRICE OF $20 FOR MORE INFO: space.nss.org | [email protected] | 949.727.1211 THE NATIONAL SPACE SOCIETY EXTENDS ITS THANKS TO THE FOLLOWING INDIVIDUALS WHO CONTRIBUTED TO THE CREATION OF THIS DOCUMENT: John Strickland Fred Becker David Brandt-Erichsen Al Globus Ron Kohl Claire McMurray Doug Plata Stan Rosen Pierre Saint-Fleur FOR the magazine of the National Space Society Rod Pyle Aggie Kobrin Shaun Kobrin Michele Rodriguez COVER IMAGE CREDIT: James Vaughn Roadmap to Space Settlement 2019 3 CONTENTS 5 INTRODUCTION 7 PART ONE: General Milestones 8 MILESTONE 1 Dramatically Lower Launch Costs to Orbit 23 MILESTONE 12 10 MILESTONE 2 In-Space Fabrication & Construction Continuous
    [Show full text]