Closing Comments

Total Page:16

File Type:pdf, Size:1020Kb

Closing Comments Closing Comments The Shuttle had its faults and its critics, but once on-orbit it was nearly always able to complete its tasks. Its capabilities enabled the fleet of just three Orbiters not merely to visit a space station, albeit a Russian one, but to expand it, resupply it, and deliver and retrieve resident crewmembers. After countless designs and studies stretching back almost five decades and with the Shuttle having been flying for fifteen years, the fleet was given the chance to do what it had been designed to accomplish, namely to assemble and maintain a much larger space sta- tion as an international venture. The legacies of the Shuttle are many and varied across the 135 missions of the thirty-­ year program but paramount in any assessment must be the creation of the International Space Station. Nevertheless the physical assembly of the station is not the full story. As related in these pages, that legacy took an international team many years to achieve and included devising how to prepare the hardware and deliver hundreds of tons of logistics and cargo into space, where most of it was linked together. For just a few days on each mission, crews blended their skills in robotics, spacewalking, and cargo handling into a smooth and almost seamless operation. A great deal was learned, not only by the Russians and Americans, but by the other partners from Shuttle-Mir and various other joint ventures. This cooperative teamwork delivered significant results for each expedition flown to the ISS, even after the Shuttle was retired. Experience from past cooperation, together with new lessons learned from the fiasco of Space Station Freedom and the success of Shuttle-Mir, helped to establish firm foundations for the future. Equally, the experiences of the ISS, both on Earth and in space, are paving the way for further peaceful joint ventures that will take us back to the Moon and eventually on to new endeavors deeper in space. The Shuttle missions to Mir and the ISS had a remarkable record of success, without a single docking failure across either program. The nine Shuttle missions that docked at Mir logged 38 days 14 hr 52 min attached to the station. The thirty-seven ISS assembly mis- sions added another 276 days 11 hr 23 min to this total. Atlantis, Discovery and Endeavour clocked up an impressive total of 315 days 2 hr 15 min (some 45 weeks) docked at the two © Springer International Publishing Switzerland 2017 301 D.J. Shayler, Assembling and Supplying the ISS, Springer Praxis Books, DOI 10.1007/978-3-319-40443-1 302 Closing Comments The First and the Last. The crew of STS-1 who proved the Shuttle concept, and the crew of STS-135 who rounded out the Shuttle’s involvement with the ISS and ended its thirty-year­ program: [l-r] Doug Hurley (STS-135 PLT), Bob Crippen (STS-1 PLT), John Young (STS-1 CDR), Chris Ferguson (STS-135 CDR), Sandra Magnus (STS-135 MS1), and Rex Walheim (STS-135 MS2). stations, completing a vast program of joint operations with eight resident Mir resident crews and seventeen ISS resident crews from 1995 through to 2011. Behind the scenes, there were successes in management and budget, in mission plan- ning and control, in crew selection and training, in hardware development and processing, and in launch and recovery operations. From the missions themselves, valuable experience was gained in rendezvous and docking large vehicles together, extensive robotic opera- tions, planning and executing multiple EVA operations and understanding how to transfer tons of hardware inside and outside a large structure. Now the ISS is complete, the work continues to develop and expand the science pro- gram as an international laboratory that just happens to be situated in Earth orbit. Scores research papers and conference presentations have been issued since the ISS commenced scientific work, essentially in 2001. Details concerning the hundreds of investigations can be found on the websites of the space agencies and their academic and industrial partners. A number of publications focus on the daily activities on the ISS and the research being conducted there, but it is interesting to speculate how the configuration of a space station would have been different if the Shuttle had not been available to assemble it. Ideally, had the Saturn V still been in service, that would have been used to lift far larger elements for a station. Indeed, that seems to be the preferred option even today. The station that we have was designed to be launched using the Shuttle. The irony is that although a larger vehicle is currently being developed in support of future NASA goals in space, there are no plans to expand the ISS further, nor are there any thoughts of replacing it with a more sophisticated ISS Mk-II. But the Chinese have announced their intention to construct their own Mir-class station in the 2020s. Closing Comments 303 The Shuttle was ideally suited to launch, assemble, and supply the multi-modular design of the station originally conceived as Freedom and later morphed into the ISS with something of the Russian Mir-2 proposal thrown in. It will also be fascinating to witness developments, in due course, of whatever comes after the ISS and the ultimate decommis- sioning of the station. Had the Shuttle not been retired in 2011, would it have been economically viable to sustain it as a general duty delivery truck and garbage hauler? Perhaps not. We’ve seen the failure of the effort to develop a commercial Shuttle and with no plans to expand or replace the ISS it would have been difficult to retain the fleet simply for logistics when unmanned vehicles were available for that function. The one advantage that the Shuttle had over its current and planned rivals was its to-orbit and to-Earth mass capability but with no new large payloads to deliver it was indeed time to retire the fleet. The sad part of that decision was that the replacement for the Shuttle was nowhere near ready to fly, and so, like during the six year period between ASTP and STS-1, we will have a pause in American human space flight capability.* The Apollo-Saturn production line by which manned space station operations could have followed on without a break after the initial lunar landings was scrapped to create the Shuttle and a new type of space station. Over forty years after the final Apollo flew the ASTP mission, we again see a complete change of direction with utter confusion of long-­ term plans and the timetables to execute them. Nearly fifty years after the first Apollo astronaut stepped on to the Moon, the ISS is today providing a wealth of research which, it is to be hoped, will assist those on Earth and those lucky few who will eventually set off into deep space. Hopefully the ISS, with its current and future fleets of resupply vehicles, will remain operational for at least another decade. This is testament to the legacy of the Shuttle and the design of the International Space Station. The Space Transportation System was the key to assembling the ISS, but was not required for its further operation. In assembling the ISS, and perhaps in servicing the Hubble Space Telescope, the Shuttle achieved its zenith with tasks that it was always meant to perform. It also offered the opportunity to greatly expand the experience and knowledge of people within the space program, not only flying missions but also on the ground, and more importantly internationally, and at a wide vari- ety of levels of involvement. It is from that wealth of information that, in due course, future generations will benefit. During his career as a NASA astronaut, Leroy Chiao was involved in an expedition to the ISS in 2004. As he recalled two years later, “I had flown three Shuttle missions. I had flown a science Shuttle mission (STS-65, Spacelab IML-2) and I’d gotten to fly on a mis- sion (STS-72) during which I had my first spacewalk, testing tools and assembly tech- niques we ended up using on the space station. On my third Shuttle flight (STS-92) I led an EVA team to help assemble the station. And finally I got to be the Commander of the * As this book goes to press in 2017 we have already seen six years pass since the retirement of the Shuttle fleet, and the first manned flight of the new Orion spacecraft is still some years in the future. 304 Closing Comments The End: July 2011, STS-135 Atlantis captures the final views of the completed ISS from a Space Shuttle. Closing Comments 305 station on a long-duration mission. I flew up and down on a Soyuz, and got to do Russian EVAs as well operate the robotic arm.”† Like many of his colleagues, Chiao would have really loved to fly to the Moon but he recognized that the experiences gained on Shuttle missions would contribute to the data- base of experience and knowledge accumulated over the long series of flights into space. That knowledge will allow future explorers to embark on voyages to the Moon and beyond. When those pioneers explore the solar system, they might reflect that the years of Shuttle operations with space stations were an essential step for international cooperation in the exploration of space. The result of all those decades of effort was suitably summarized by the words of Chris Ferguson, STS-135 CDR, as Atlantis left the ISS on July 19, 2011, to conclude the Shuttle’s involvement in the space station program: When a generation accomplishes a great thing it has the right to stand back for a moment, admire, and take pride in its work.
Recommended publications
  • Endeavour Set to Leave International Space Station Today 24 March 2008
    Endeavour Set to Leave International Space Station Today 24 March 2008 who replaced European Space Agency astronaut Léopold Eyharts on the station. Eyharts is returning to Earth aboard Endeavour. The astronauts also performed five spacewalks while on the station. Endeavour is scheduled to land at Kennedy Space Center, Fla., Wednesday. Source: NASA STS-123 Mission Specialist Léopold Eyharts, pictured in the foreground, and Pilot Gregory H. Johnson work at the robotics station in the International Space Station's U.S. laboratory, Destiny. Credit: NASA The crew of space shuttle Endeavour is slated to leave the International Space Station today. The STS-123 and Expedition 16 crews will bid one another farewell, and the hatches between the two spacecraft will close at 5:13 p.m. EDT. Endeavour is scheduled to undock from the International Space Station at 7:56 p.m., ending its 12-day stay at the orbital outpost. STS-123 arrived at the station March 12, delivering the Japanese Logistics Module - Pressurized Section, the first pressurized component of the Japan Aerospace Exploration Agency’s Kibo laboratory, to the station. The crew of Endeavour also delivered the final element of the station’s Mobile Servicing System, the Canadian-built Dextre, also known as the Special Purpose Dextrous Manipulator. In addition, the STS-123 astronauts delivered Expedition 16 Flight Engineer Garrett Reisman, 1 / 2 APA citation: Endeavour Set to Leave International Space Station Today (2008, March 24) retrieved 24 September 2021 from https://phys.org/news/2008-03-endeavour-international-space-station-today.html This document is subject to copyright.
    [Show full text]
  • A Feasibility Study for Using Commercial Off the Shelf (COTS)
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2011 A Feasibility Study for Using Commercial Off The Shelf (COTS) Hardware for Meeting NASA’s Need for a Commercial Orbital Transportation Services (COTS) to the International Space Station - [COTS]2 Chad Lee Davis University of Tennessee - Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Aerodynamics and Fluid Mechanics Commons, Other Aerospace Engineering Commons, and the Space Vehicles Commons Recommended Citation Davis, Chad Lee, "A Feasibility Study for Using Commercial Off The Shelf (COTS) Hardware for Meeting NASA’s Need for a Commercial Orbital Transportation Services (COTS) to the International Space Station - [COTS]2. " Master's Thesis, University of Tennessee, 2011. https://trace.tennessee.edu/utk_gradthes/965 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Chad Lee Davis entitled "A Feasibility Study for Using Commercial Off The Shelf (COTS) Hardware for Meeting NASA’s Need for a Commercial Orbital Transportation Services (COTS) to the International Space Station - [COTS]2." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Aerospace Engineering.
    [Show full text]
  • Development of the Crew Dragon ECLSS
    ICES-2020-333 Development of the Crew Dragon ECLSS Jason Silverman1, Andrew Irby2, and Theodore Agerton3 Space Exploration Technologies, Hawthorne, California, 90250 SpaceX designed the Crew Dragon spacecraft to be the safest ever flown and to restore the ability of the United States to launch astronauts. One of the key systems required for human flight is the Environmental Control and Life Support System (ECLSS), which was designed to work in concert with the spacesuit and spacecraft. The tight coupling of many subsystems combined with an emphasis on simplicity and fault tolerance created unique challenges and opportunities for the design team. During the development of the crew ECLSS, the Dragon 1 cargo spacecraft flew with a simple ECLSS for animals, providing an opportunity for technology development and the early characterization of system-level behavior. As the ECLSS design matured a series of tests were conducted, including with humans in a prototype capsule in November 2016, the Demo-1 test flight to the ISS in March 2019, and human-in-the-loop ground testing in the Demo-2 capsule in January 2020 before the same vehicle performs a crewed test flight. This paper describes the design and operations of the ECLSS, the development process, and the lessons learned. Nomenclature AC = air conditioning AQM = air quality monitor AVV = active vent valve CCiCap = Commercial Crew Integrated Capability CCtCap = Commercial Crew Transportation Capability CFD = computational fluid dynamics conops = concept of operations COPV = composite overwrapped
    [Show full text]
  • May 14, 2010 Vol
    May 14, 2010 Vol. 50, No. 10 Spaceport News John F. Kennedy Space Center - America’s gateway to the universe www.nasa.gov/centers/kennedy/news/snews/spnews_toc.html INSIDE . STS-132 payload has international flair Explorer School By Linda Herridge Symposium Spaceport News oeing’s STS-132 payload flow man- Bager, Eve Stavros, and NASA Mission Man- ager Robert Ashley, will be stationed on console in Fir- ing Room 2 of Kennedy’s Launch Control Center, Page 2 watching with anticipation as space shuttle Atlantis STS-130 crew soars into the sky from returns Launch Pad 39A. Stavros and Boeing’s Checkout Assembly and NASA/Gianni Woods Payload Processing Ser- Technicians prepare to lift the Russian-built Mini Research Module-1, or MRM-1, out of its transportation container in Kennedy’s vices, or CAPPS, team were Space Station Processing Facility for its move to the payload canister and transportation to Launch Pad 39A. instrumental in helping to prepare the Russian-built Processing Facility, about environmental testing at Stavros drew on previ- Mini Research Module-1, or five weeks before the sched- the launch pad. Boeing also ous international experi- MRM-1, and an Integrated uled launch, for transfer coordinated delivery and ence from her work on life Cargo Carrier for delivery to the launch pad and final setup of ground support sciences payloads for the orbiter integration activi- equipment at the launch pad European Space Agency in Page 3 to the International Space Station. ties,” Ashley said. “The for testing operations and the Netherlands. NASA alums According to Stavros, processing team met or beat served as the main inter- “Working with RSC lay foundation planning and coordination every schedule milestone face with the shuttle team Energia was an exercise in to process the two major despite the relatively small to ensure payload schedule payloads began more than a size of the NASA and Boe- compatibility.
    [Show full text]
  • Get Ready to Launch! with NASA's Commercial Crew
    Get ready to LAUNCH! with NASA’s Commercial Crew What is What are they Where are they Commercial Crew? launching? going? Boeing SpaceX CST-100 Starliner Crew Dragon National Aeronautics and Space Administration www.nasa.gov SP-2019-04-575-KSC Boeing Crew Flight Test SpaceX Demo 2 Nicole Aunapu Mann A NEW SPACE AGE Bob Behnken NASA Astronaut NASA’s Commercial Crew Program spacecraft and rockets will carry up to four astronauts NASA Astronaut Marine Corps Air Force Colonel and about 220 pounds of cargo to and from the International Space Station. Commercial Lieutenant Colonel crew will resume human spaceflight launches from the United States and provide the nation Flew aboard space shuttle Endeavour twice as a Mission Selected as an Astronaut in 2013, with two unique spacecraft, two human-rated rockets and the necessary ground support this is Nicole’s first spaceflight. Specialist, first on STS-123 and systems. NASA and our commercial partners, Boeing and SpaceX, are working together to then on STS-130. open access to low-Earth orbit. Chris Ferguson Boeing Astronaut BUILDING A NEW AMERICAN CAPABILITY Doug Hurley Navy Captain (retired) NASA’s Commercial Crew Program has been redefining space system development for NASA Astronaut Marine Corps Colonel Piloted space shuttle Atlantis low-Earth orbit by forming strong public-private partnerships with the aerospace industry to for STS-115, and commanded encourage innovation while maintaining NASA’s high safety standards and leveraging NASA’s (retired) shuttle Endeavour on STS-126 Piloted space shuttle Endeavor and Atlantis on STS-135, the 50 plus years of spaceflight experience.
    [Show full text]
  • Expedition 16 Adding International Science
    EXPEDITION 16 ADDING INTERNATIONAL SCIENCE The most complex phase of assembly since the NASA Astronaut Peggy Whitson, the fi rst woman Two days after launch, International Space Station was fi rst occupied seven commander of the ISS, and Russian Cosmonaut the Soyuz docked The International Space Station is seen by the crew of STS-118 years ago began when the Expedition 16 crew arrived Yuri Malenchenko were launched aboard the Soyuz to the Space Station as Space Shuttle Endeavour moves away. at the orbiting outpost. During this ambitious six-month TMA-11 spacecraft from the Baikonur Cosmodrome joining Expedition 15 endeavor, an unprecedented three Space Shuttle in Kazakhstan on October 10. The two veterans of Commander Fyodor crews will visit the Station delivering critical new earlier missions aboard the ISS were accompanied by Yurchikhin, Oleg Kotov, components – the American-built “Harmony” node, the Dr. Sheikh Muzaphar Shukor, an orthopedic surgeon both of Russia, and European Space Agency’s “Columbus” laboratory and and the fi rst Malaysian to fl y in space. NASA Flight Engineer Japanese “Kibo” element. Clayton Anderson. Shukor spent nine days CREW PROFILE on the ISS, returning to Earth in the Soyuz Peggy Whitson (Ph. D.) TMA-10 on October Expedition 16 Commander 21 with Yurchikhin and Born: February 9, 1960, Mount Ayr, Iowa Kotov who had been Education: Graduated with a bachelors degree in biology/chemistry from Iowa aboard the station since Wesleyan College, 1981 & a doctorate in biochemistry from Rice University, 1985 April 9. Experience: Selected as an astronaut in 1996, Whitson served as a Science Offi cer during Expedition 5.
    [Show full text]
  • High Altitude Nuclear Detonations (HAND) Against Low Earth Orbit Satellites ("HALEOS")
    High Altitude Nuclear Detonations (HAND) Against Low Earth Orbit Satellites ("HALEOS") DTRA Advanced Systems and Concepts Office April 2001 1 3/23/01 SPONSOR: Defense Threat Reduction Agency - Dr. Jay Davis, Director Advanced Systems and Concepts Office - Dr. Randall S. Murch, Director BACKGROUND: The Defense Threat Reduction Agency (DTRA) was founded in 1998 to integrate and focus the capabilities of the Department of Defense (DoD) that address the weapons of mass destruction (WMD) threat. To assist the Agency in its primary mission, the Advanced Systems and Concepts Office (ASCO) develops and maintains and evolving analytical vision of necessary and sufficient capabilities to protect United States and Allied forces and citizens from WMD attack. ASCO is also charged by DoD and by the U.S. Government generally to identify gaps in these capabilities and initiate programs to fill them. It also provides support to the Threat Reduction Advisory Committee (TRAC), and its Panels, with timely, high quality research. SUPERVISING PROJECT OFFICER: Dr. John Parmentola, Chief, Advanced Operations and Systems Division, ASCO, DTRA, (703)-767-5705. The publication of this document does not indicate endorsement by the Department of Defense, nor should the contents be construed as reflecting the official position of the sponsoring agency. 1 Study Participants • DTRA/AS • RAND – John Parmentola – Peter Wilson – Thomas Killion – Roger Molander – William Durch – David Mussington – Terry Heuring – Richard Mesic – James Bonomo • DTRA/TD – Lewis Cohn • Logicon RDA – Les Palkuti – Glenn Kweder – Thomas Kennedy – Rob Mahoney – Kenneth Schwartz – Al Costantine – Balram Prasad • Mission Research Corp. – William White 2 3/23/01 2 Focus of This Briefing • Vulnerability of commercial and government-owned, unclassified satellite constellations in low earth orbit (LEO) to the effects of a high-altitude nuclear explosion.
    [Show full text]
  • STS-108/ISS-UF1 Quick-Look Data Spaceflight Now
    STS-108/ISS-UF1 Quick-Look Data Spaceflight Now Rank/Seats STS-108 ISS-UF1 Family/TIS DOB STS-108 Hardware and Flight Data Commander Navy Capt. Dominic L. Gorie M/2 05/02/57 STS Mission STS-108/ISS-UF1 Up 44; STS-91,99 25.8 * Orbiter Endeavour (17th flight) Pilot/IV Navy Lt. Cmdr. Mark Kelly M/2 02/21/64 Payload Crew transfer; ISS resupply Up 37; Rookie 4.75 Launch 05:19:28 PM 12.05.01 MS1/EV1 Linda Godwin, Ph.D. M/2 07/02/52 Pad/MLP 39B/MLP1 Up/Down-5 49; STS-37,59,76 31.15 Prime TAL Zaragoza MS2/EV2/FE Daniel Tani M/0 02/01/61 Landing 01:03:00 PM 12.17.01 Up 40; Rookie 4.75 Landing Site Kennedy Space Center Duration 11/19:44 ISS-4 Air Force Col. Carl Walz M/2 09/06/55 Down-5 46; STS-51,65,79 39.25 Endeavour 167/13:26:34 ISS-4 CIS AF Col. Yuri Onufrienko M/3 02/06/61 STS Program 943/13:26:34 Down-6 40; Mir-21 197.75 ISS-4 Navy Capt. Daniel Bursch M/4 07/25/57 MECO Ha/Hp 169 X 40 nm Down-7 44; STS-51,68,77 35.85 OMS Ha/Hp 175 X 105 nm ISS Ha/Hp 235 X 229 (varies) ISS-3 Frank Culbertson M/5 05/15/49 Period 91.6 minutes Down-6 52; STS-38, 51,ISS-3 136.89 Inclination 51.6 degrees ISS-3 Mikhail Tyurin M/1 03/02/60 Velocity 17,212 mph Down-7 40; ISS-3 122.59 EOM Miles 4,467,219 miles ISS-3 CIS Lt.
    [Show full text]
  • Habitation Module 26 July 2016 – NASA Advisory Council, Human Exploration and Operations Committee
    National Aeronautics and Space Administration Habitation Module 26 July 2016 – NASA Advisory Council, Human Exploration and Operations Committee Jason Crusan | Advanced Exploration Systems Director | NASA Headquarters 2 Human Exploration of Mars Is Hard Common Capability Needs Identified from Multiple Studies Days Reliable In-Space 800-1,100 44 min Transportation Total me crew is Maximum two- away from Earth – way communicaon for orbit missions all in 2me delay – 300 KW Micro-g and Radia2on Autonomous Opera2ons Total connuous transportaon power 130 t Heavy-LiA Mass 20-30 t Long Surface Stay Multiple Ability to 500 Days Launches per land large mission payloads Surface Operations Dust Toxicity and 100 km 11.2 km/s Long Range Explora2on Earth Entry Speed 20 t Oxygen produced for ascent to orbit - ISRU 3 The Habitation Development Challenge HABITATATION CAPABILITY Days 800-1,100 Habitation Systems – Total me crew is AES/ISS/STMD away from Earth – • Environmental Control & Life Support for orbit missions all in • Autonomous Systems Micro-g and Radia2on Integrated • EVA testing on ISS • Fire Safety • Radiation Protection Habitation Systems - Crew Health – HRP Long Surface Stay • Human Research 500 Days • Human Performance • Exercise PROVING GROUND Validation in cislunar space • Nutrition Habitation Capability– NextSTEP BAA / Int. Partners • Studies and ground prototypes of pressurized volumes 4 Specific Habitation Systems Objectives TODAY FUTURE Habitation The systems, tools, and protec:ons that allow Systems Elements humans to live and work
    [Show full text]
  • Human Spaceflight in Social Media: Promoting Space Exploration Through Twitter
    Human Spaceflight in Social Media: Promoting Space Exploration Through Twitter Pierre J. Bertrand,1 Savannah L. Niles,2 and Dava J. Newman1,3 turn back now would be to deny our history, our capabilities,’’ said James Michener.1 The aerospace industry has successfully 1 Man-Vehicle Laboratory, Department of Aeronautics and Astro- commercialized Earth applications for space technologies, but nautics; 2Media Lab, Department of Media Arts and Sciences; and 3 human space exploration seems to lack support from both fi- Department of Engineering Systems, Massachusetts Institute of nancial and human public interest perspectives. Space agencies Technology, Cambridge, Massachusetts. no longer enjoy the political support and public enthusiasm that historically drove the human spaceflight programs. If one uses ABSTRACT constant year dollars, the $16B National Aeronautics and While space-based technologies for Earth applications are flourish- Space Administration (NASA) budget dedicated for human ing, space exploration activities suffer from a lack of public aware- spaceflight in the Apollo era has fallen to $7.9B in 2014, of ness as well as decreasing budgets. However, space exploration which 41% is dedicated to operations covering the Internati- benefits are numerous and include significant science, technological onal Space Station (ISS), the Space Launch System (SLS) and development, socioeconomic benefits, education, and leadership Orion, and commercial crew programs.2 The European Space contributions. Recent robotic exploration missions have
    [Show full text]
  • SPACE SHUTTLE MISSIONS SUMMARY Page 210 - STS-127/2JA
    Revision T, PCN-4 March 2010 SPACE SHUTTLE MISSIONS SUMMARY Page 210 - STS-127/2JA LANDING SITE/ SSME-TL CREW LAUNCH SITE, RUNWAY, NOM-ABORT SRB ORBIT PAYLOAD MISSION HIGHLIGHTS (6+1 UP/6+1 DN) FLT ORBITER LIFTOFF TIME, CROSSRANGE EMERG RSRM FSW WEIGHTS, (LAUNCH SCRUBS/DELAYS, NO. LANDING LANDING THROTTLE AND INC HA/HP PAYLOADS/ TAL WEATHER, ASCENT I-LOADS, (PCN4 Change Col SITES, TIMES PROFILE ET EXPERIMENTS FIRSTS, SIGNIFICANT ANOMALIES, ETC.) 3) ABORT TIMES FLT DURATION, ENG. S.N. TITLE, NAMES WINDS & EVA'S Revision T, PCN-4 March 2010 SPACE SHUTTLE MISSIONS SUMMARY Page 210 - STS-127/2JA STS- OV-105 CDR: KSC 15 (KSC 104/104/10 BI-138 CARGO: Brief Mission Summary: STS-127 ( 29th (Flight 23) Mark Polansky KSC 39A 71) 9% 51. DIRECT OI- 36253LBS mission to ISS) was a “16 day marathon 127/ 196:22:03:09Z 6 INSERTION 33 ENDEAVO (Flt 3 - STS-98,STS- 212:14:48:07Z RSRM (29) (3) construction mission”. The final pieces of ISS- UR 116) 6:03:10 PM EDT 09:48:07 AM PREDICTED: 106 PAYLOAD the Japanese Kibo Complex including an 2JA P794/R262/V185/M22 (P) CDT 100/104.5/1 POST OMS- CHARGEABLE: Experiment Exposed Facility “Porch” and 8 6:03:10 PM EDT FRIDAY (15) 04.5/ ET-131 2: 24682 LBS the unpressurized Experiment Logistics (A) 123.8x32.3 SEQ OMS PODS 07/31/09 (12 ) 72/104.5 Module were delivered along with spare Wednesday SLWT NM DEPLOYED: FLT # LPO3 -33 PLT equipment intended to keep ISS (15) 35 24266 LBS 127 RPO4 29 Doug Hurley DEORBIT ACTUAL: operational long after Shuttle is retired.
    [Show full text]
  • Canada's Aviation Hall of Fame
    Volume 31, No. 2 THE Spring 2013 Canada’s Aviation Hall of Fame Canada’s Aviation Hall of Fame Panthéon de l’Aviation du Canada Dodds Finland Curtis Fraser Christensen Greenaway Burke Hitchins Boffa Floyd Fullerton Davoud Dowling Bazalgette Clarke Grossmith Capreol Hobbs Baker, A.W. Boggs Garneau Forester Deluce Collishaw Beaudoin Hadfield Agar Dunlap Carr Hollick-Kenyon Baker, R.F. Bradford Garratt Fowler, R. Bell Halton Archibald Hopson Baker, R.J. Brintnell Gilbert Fowler, W. Berry Hamilton Armstrong Balchen Hornell Bristol Dyment Godfrey Cavadias Fox Beurling Hartman Audette Dickins Baldwin Cooke Hotson Brown Graham Edwards Caywood Foy Birchall Hayter Austin Dilworth Bannock Cooper-Slipper Howe Buller Grandy Fallow Franks Chamberlin Bishop Heaslip Bjornson Dobbin Barker Crichton Hutt Burbidge Gray Fauquier Fraser-Harris Blakey Chmela Hiscocks Bain 1 Canada’s Aviation Hall of Fame Panthéon de l’Aviation du Canada CONTACT INFORMATION: OFFICE HOURS: STAFF: Tuesday - Friday: 9 am - 4:30 pm Executive Director - Rosella Bjornson Canada’s Aviation Hall of Fame Closed Mondays Administrator - Dawn Lindgren * NEW - PO Box 6090 Wetaskiwin AB Acting Curator - Robert Porter * NEW - T9A 2E8 CAHF DISPLAYS (HANGAR) HOURS: Phone: 780.361.1351 Tuesday to Sunday: 10 am - 5 pm Fax: 780.361.1239 Closed Mondays BOARD OF DIRECTORS: Website: www.cahf.ca Winter Hours: 1 pm - 4 pm Email: [email protected] Please call to confirm opening times. Tom Appleton, ON, Chairman James Morrison, ON, Secretary, Treasurer Barry Marsden, BC, Vice-Chairman Denis Chagnon, QC
    [Show full text]