Stratigraphic Architecture and Coal Character of Late Permian Fort Cooper Coal Measures, Bowen Basin, Queensland
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chemical and Physical Structural Studies on Two Inertinite-Rich Lump
CHEMICAL AND PHYSICAL STRUCTURAL STUDIES ON TWO INERTINITE-RICH LUMP COALS. Nandi Malumbazo A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philoso- phy in the School of Chemical and Metallurgical Engineering at the University of the Witwatersrand. Johannesburg, 2011 DECLARATION I, Nandi Malumbazo, declare that the thesis entitled: “CHEMICAL AND PHYSICAL STRUCTURAL STUDIES ON TWO INER- TINITE-RICH LUMP COALS” is my own work and that all sources I have used or quoted have been indicated and ac- knowledged by means of references. Signature: ……………………………………………………………….. Date:………………………………………………………………………… Page i ABSTRACT ABSTRACT Two Highveld inertinite-rich lump coals were utilized as feed coal samples in order to study their physical, chemical structural and petrographic variations during heat treat- ment in a packed-bed reactor unit combustor. The two feed lump coals were selected as it is claimed that Coal B converts at a slower rate in a commercial coal conversion process when compared to Coal A. The reason for this requires detailed investigation. Chemical structural variations were determined by proximate and coal char CO2 reactiv- ity analysis. Physical structural variations were determined by FTIR, BET adsorption methods, XRD and 13C Solid state NMR analysis. Carbon particle type analysis was con- ducted to determine the petrographic constituents of the reactor generated samples, their maceral associations (microlithotype), and char morphology. This analysis was undertaken with the intention of tracking the carbon conversion and char formation and consumption behaviour of the two coal samples within the reactor. Proximate analysis revealed that Coal A released 10 % more of its volatile matter through the reactor compared to Coal B. -
Western Downs
Image courtesy of Shell's QGC business “We have a strong and diverse economy that is enhanced by the resource sector through employment, Traditional Resources - infrastructure and Western Downs improved services." The Western Downs is known as the “Queensland has the youngest coal- Paul McVeigh, Mayor Energy Capital of Queensland and is fired power fleet in Australia including Western Downs now emerging as the Energy Capital of the Kogan Creek Power Station, and an Regional Council. Australia. abundance of gas which will ensure the State has a reliable source of base load This reputation is due to strong energy for decades to come.” investment over the past 15 years by the Energy Production Industry - Ian Macfarlane, CEO, Mining is the second most productive (EPI) into large scale resource sector Queensland Resources Council industry in the Western Downs after developments in coal seam gas (CSG) As at June 2018, the Gross Regional construction, generating an output of 2 and coal. Product (GRP) of the Western Downs 2.23 billion in 2017/18. Gas and coal-fired power stations region has grown by 26.3% over a In 2017/18, the total value of local sales 2 feature prominently in the region with twelve-month period to reach $4 billion. was $759.2 million. Of these sales, oil a total of six active thermal power The resource industry paid $58 million and gas extraction was the highest, at 2 stations. in wages to 412 full time jobs (2017-18). 3 $615.7 million. Kogan Creek Power Station is one of The industry spent $136 million on In 2017/18 mining had the largest Australia's most efficient and technically goods and services purchased locally total exports by industry, generating advanced coal-fired power stations. -
Bowen Basin Coalfields of Central Queensland (Figure 1)
The South African Institute of Mining and Metallurgy International Symposium on Stability of Rock Slopes in Open Pit Mining and Civil Engineering John V Simmons and Peter J Simpson COMPOSITE FAILURE MECHANISMS IN COAL MEASURES ROCK MASSES – MYTHS AND REALITY John V Simmons Sherwood Geotechnical and Research Services Peter J Simpson BMA Coal Pty Ltd Central Queensland Office 1. INTRODUCTION Excavated slopes in open pit coal mines are designed to be as steep as possible consistent with stability and safety requirements. Slope failures occur for many reasons, including oversteepening. This paper is concerned with slope design and excavation experience in the Bowen Basin coalfields of central Queensland (Figure 1), Bowen Basin Coalfields Figure 1 Location of Bowen Basin open pit coal mines in eastern Australia Page 31 The South African Institute of Mining and Metallurgy International Symposium on Stability of Rock Slopes in Open Pit Mining and Civil Engineering John V Simmons and Peter J Simpson but it deals with many issues that are common to open pit coal mining generally. After more than three decades of operational experience and technological advances in the Bowen Basin mines, sudden rock slope failures still occur in circumstances where personnel and equipment are at extreme risk. The circumstances of a selection of these sudden failures are reviewed in this paper, and some concerning trends emerge. Classical structurally-controlled slope failures occur quite rarely in the Bowen Basin, but rock mass structures appear to exert important controls on the sudden failures that are more widely experienced. The term "composite" is used in this paper to describe failures involving combinations of intact rock material fracture and shear movement on defects (Baczynski, 2000). -
Proposal for Development of Dry Coking/Coal
Development of Coking/Coal Gasification Concept to Use Indiana Coal for the Production of Metallurgical Coke, Liquid Transportation Fuels, Fertilizer, and Bulk Electric Power Phase II Final Report September 30, 2007 Submitted by Robert Kramer, Ph.D. Director, Energy Efficiency and Reliability Center Purdue University Calumet Table of Contents Page Executive Summary ………………………………………………..…………… 3 List of Figures …………………………………………………………………… 5 List of Tables ……………………………………………………………………. 6 Introduction ……………………………………………………………………… 7 Process Description ……………………………………………………………. 11 Importance to Indiana Coal Use ……………………………………………… 36 Relevance to Previous Studies ………………………………………………. 40 Policy, Scientific and Technical Barriers …………………………………….. 49 Conclusion ………………………………………………………………………. 50 Appendix ………………………………………………………………………… 52 2 Executive Summary Coke is a solid carbon fuel and carbon source produced from coal that is used to melt and reduce iron ore. Although coke is an absolutely essential part of iron making and foundry processes, currently there is a shortfall of 5.5 million tons of coke per year in the United States. The shortfall has resulted in increased imports and drastic increases in coke prices and market volatility. For example, coke delivered FOB to a Chinese port in January 2004 was priced at $60/ton, but rose to $420/ton in March 2004 and in September 2004 was $220/ton. This makes clear the likelihood that prices will remain high. This effort that is the subject of this report has considered the suitability of and potential processes for using Indiana coal for the production of coke in a mine mouth or local coking/gasification-liquefaction process. Such processes involve multiple value streams that reduce technical and economic risk. Initial results indicate that it is possible to use blended coal with up to 40% Indiana coal in a non recovery coke oven to produce pyrolysis gas that can be selectively extracted and used for various purposes including the production of electricity and liquid transportation fuels and possibly fertilizer and hydrogen. -
Petroleum Plays of the Bowen and Surat Basins
Petroleum Plays of the Bowen and Surat basins Alison Troup* Neal Longdon Justin Gorton Geological Survey of Queensland Geological Survey of Queensland Geological Survey of Queensland Level 3, 1 William Street, Brisbane Level 3, 1 William Street, Brisbane Level 3, 1 William Street, Brisbane QLD, 4000 QLD, 4000 QLD, 4000 [email protected] [email protected] [email protected] *presenting author asterisked SUMMARY The plays of the Bowen and Surat basins consist of conventional structural plays along major regional structures and depositional platforms, most of which have some stratigraphic component. These can be subdivided into three main regions: the eastern and western flanks of the Taroom Trough, and the Denison Trough. Coal seam gas is found in fairway zones within the Permian coals of the Bowen Basin, which can be subdivided into two main fairways: structurally associated plays in the southern Bowen Basin, and a tighter play in the northern Bowen Basin. Coal seam gas is also found along a broad fairway in the Walloon Coal Measures of the Surat Basin. Recent exploration for new targets has highlighted potential for tight gas in the deeper sections of the Bowen Basin, though further evaluation is required. More speculative plays within the region include tight gas within potential, but untested targets in the deeper sections of the Denison Trough. Key words: petroleum, petroleum exploration, Queensland, Bowen Basin, Surat Basin INTRODUCTION A petroleum play is an exploration concept that groups fields together based on similar characteristics, generally lithological or structural, that can be applied at regional or local scales. -
BMA Bowen Basin Coal Growth Project Initial Advice Statement June 2008
BMA Bowen Basin Coal Growth Project Initial Advice Statement June 2008 BMA Bowen Basin Coal Growth Project – Initial Advice Statement Contents 1 Introduction 3 1.1 Project Background and Location 3 1.2 The Proponent 4 1.3 Project Need 4 1.4 Purpose and Scope 5 2 Project Description 8 2.1 Daunia Mine 8 2.1.1 Mineral Resource 8 2.1.2 Mining Operations 12 2.1.3 Supporting Site Infrastructure 12 2.1.4 Coal Handling and Processing Activities 13 2.1.5 Mine Waste Management 13 2.1.6 Workforce 13 2.1.7 Operational Land and Tenure 14 2.1.8 Environmental Authorities 14 2.2 Caval Ridge Mine 14 2.2.1 Mineral Resource 15 2.2.2 Mining Operations 18 2.2.3 Supporting Site Infrastructure 18 2.2.4 Coal Handling and Processing Activities 19 2.2.5 Mine Waste Management 20 2.2.6 Workforce 20 2.2.7 Operational Land and Tenure 20 2.2.8 Environmental Authorities 20 2.3 Goonyella Riverside Mine Expansion 22 2.3.1 Mineral Resource 22 2.3.2 Mining Operations 26 2.3.3 Supporting Site Infrastructure 28 2.3.4 Coal Handling and Processing Activities 28 2.3.5 Workforce 28 2.3.6 Operational Land and Tenure 29 2.3.7 Environmental Authorities 29 2.4 Airport Development 29 3 Existing Environment and Potential Impacts 31 3.1 Daunia Mine 31 3.1.1 Surface Water 31 3.1.2 Groundwater 31 C:\Hum_Temp\BMA_KM-#5858325-v2-BMA_Bowen_Basin_Growth_Project_Final_IAs.DOC PAGE i Rev 2 BMA Bowen Basin Coal Growth Project – Initial Advice Statement 3.1.3 Land Resources 32 3.1.4 Regional Ecosystems 32 3.1.5 Significant Flora and Fauna 33 3.1.6 Noise and Vibration 34 3.1.7 Air Quality 34 3.1.8 -
Bowen and Galilee Basins Non–Resident Population Projections, 2020 to 2026
Queensland Government Statistician’s Office Bowen and Galilee Basins non–resident population projections, 2020 to 2026 Introduction The resource sector in regional Queensland utilises fly-in/fly-out and Figure 1 Bowen and Galilee Basins drive-in/drive-out (FIFO/DIDO) workers as a source of labour supply. These non-resident workers live in the regions only while on-shift (refer to Notes, page 12). The Australian Bureau of Statistics’ (ABS) official population estimates and the Queensland Government’s population projections for these areas only include residents. To support planning for population change, the Queensland Government Statistician’s Office (QGSO) publishes annual non–resident population estimates and projections for selected resource regions. This report provides a range of non–resident population projections for local government areas (LGAs) in the Bowen and Galilee Basin regions (Figure 1), from 2020 to 2026. The projection series represent the estimated non-resident populations associated with existing resource operations and future projects in the region. Projects are categorised according to their standing in the approvals pipeline, including stages of the environmental impact statement (EIS) process, and progress towards achieving financial close. Series A is based on existing operations, projects under construction and approved projects that have reached financial close. Series B, C and D projections are based on projects that are at earlier stages of the approvals process. The projections in this report were In this publication, the Bowen Basin produced in February 2020 and do not consider impacts of the comprises the LGAs of Banana (S), Central COVID-19 pandemic on the non–resident population. -
Environmental Impact Statement
ENVIRONMENTAL IMPACT RED HILL STATEMENT MINING LEASE Section 14 Transport Section 14 Transport 14.1 Description of Environmental Values This section of the Red Hill Mining Lease Environmental Impact Statement (EIS) responds to the requirements related to the management of traffic and transport, as outlined in the Coordinator- General’s Terms of Reference (TOR). The transport assessment investigates the potential impacts on the safety and efficiency of the road, rail, air and sea transport network servicing the Red Hill Mining Lease area. Further information is provided in Appendix N. This transport assessment is contained to the potential future GRM incremental expansion and the RHM underground expansion option. This assessment does not include the proposed extension to the BRM (Broadmeadow extension), as the extension will not intensify existing activities within BRM, the existing BRM workforce will complete the work associated with the extension and no additional infrastructure is proposed. 14.2 Existing Conditions 14.2.1 Road Network To inform the Road Impact Assessment (Appendix N), an inspection of the existing road network was undertaken in February 2011. In addition to the inspection, data pertaining to the existing condition of various roads has been sourced from the Department of Transport and Main Roads (TMR) and Isaac Regional Council (IRC). This includes data relating to existing traffic volumes, the existing pavement condition, existing school bus routes and historic crashes, as well as information pertaining to planned future road works. To supplement the information received from the road authorities, traffic counts were also independently undertaken at a number of intersections in May 2013. -
Crossing Into Vancouver, BC, Is Easy. Don't Forget Your Passport
Crossing into Vancouver, BC, is easy. Don’t forget your passport. Tourism Vancouver / Capilano Suspension Bridge Park. JUNE | VOL. 24, 2014 6 NO. A PUBLICATION OF THE GEOLOGICAL SOCIETY OF AMERICA® JUNE 2014 | VOLUME 24, NUMBER 6 Featured Article GSA TODAY (ISSN 1052-5173 USPS 0456-530) prints news and information for more than 26,000 GSA member readers and subscribing libraries, with 11 monthly issues (April/ May is a combined issue). GSA TODAY is published by The SCIENCE: Geological Society of America® Inc. (GSA) with offices at 3300 Penrose Place, Boulder, Colorado, USA, and a mail- 4 An anthropogenic marker horizon in the future ing address of P.O. Box 9140, Boulder, CO 80301-9140, USA. rock record GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, Patricia L. Corcoran, Charles J. Moore, and regardless of race, citizenship, gender, sexual orientation, Kelly Jazvac religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society. Cover: Plastiglomerate fragments interspersed with plastic debris, © 2014 The Geological Society of America Inc. All rights organic material, and sand on Kamilo Beach, Hawaii. Photo by K. Jazvac. reserved. Copyright not claimed on content prepared See related article, p. 4–8. wholly by U.S. government employees within the scope of their employment. Individual scientists are hereby granted permission, without fees or request to GSA, to use a single figure, table, and/or brief paragraph of text in subsequent work and to make/print unlimited copies of items in GSA TODAY for noncommercial use in classrooms to further education and science. -
Geologic Time, Concepts, and Principles
GEOLOGIC TIME, CONCEPTS, AND PRINCIPLES Sources: www.google.com en.wikipedia.org Thompson Higher Education 2007; Monroe, Wicander, and Hazlett, Physical orgs.usd.edu/esci/age/content/failed_scientific_clocks/ocean_salinity.html https://web.viu.ca/earle/geol305/Radiocarbon%20dating.pdf TCNJ PHY120 2013 GCHERMAN GEOLOGIC TIME, CONCEPTS, AND PRINCIPLES • Early estimates of the age of the Earth • James Hutton and the recognition of geologic time • Relative dating methods • Correlating rock units • Absolute dating methods • Development of the Geologic Time Scale • Geologic time and climate •Relative dating is accomplished by placing events in sequential order with the aid of the principles of historical geology . •Absolute dating provides chronometric dates expressed in years before present from using radioactive decay rates. TCNJ PHY120 2013 GCHERMAN TCNJ PHY120 2013 GCHERMAN Geologic time on Earth • A world-wide relative time scale of Earth's rock record was established by the work of many geologists, primarily during the 19 th century by applying the principles of historical geology and correlation to strata of all ages throughout the world. Covers 4.6 Ba to the present • Eon – billions to hundreds of millions • Era - hundreds to tens of millions • Period – tens of millions • Epoch – tens of millions to hundreds of thousands TCNJ PHY120 2013 GCHERMAN TCNJ PHY120 2013 GCHERMAN EARLY ESTIMATES OF EARTH’S AGE • Scientific attempts to estimate Earth's age were first made during the 18th and 19th centuries. These attempts all resulted in ages far younger than the actual age of Earth. 1778 ‘Iron balls’ Buffon 1710 – 1910 ‘salt clocks’ Georges-Louis Leclerc de Buffon • Biblical account (1600’S) 26 – 150 Ma for the oceans to become 74,832 years old and that as salty as they are from streams humans were relative newcomers. -
High Calorific Value Coal Turkish and Global Outlook
High calorific value coal Turkish and global outlook October 2014 2 Executive Summary Despite the fact that coal has notorious perception due to its impacts on the environment, it’s not possible to neglect its share in the global energy supply. Especially, in emerging markets with ever growing energy demand, cost and eligibility advantages bring coal into prominence. When a coal consumption analysis is conducted, it is evident that electricity and heat generation sector maintained its leadership with more than 3.8 billion tonnes in 2012. This situation can be seen in Turkey as well. Installed capacity of imported coal PPs in Turkish Uygar Yörük electricity market has passed 3.9 GW by the end Energy & Resources Industry Leader of the 2013. On account of increasing Turkish Partner electricity demand and economic advantages of imported coal, it wouldn’t be wrong to expect that imported coal PPs will show significant growth. In the first seven months of On the other side, all locations available to 2014, additional installed capacity of 950 MW imported coal power plants are already held connected to the grid. After the natural gas by investors and some of these projects will be investment boom in 2011, Turkish electricity naturally driven out of the competition. market has a new tendency to imported coal power plants. When global coal market is analysed, trends like China’s growing coal demand, shale gas Uncertainties related to natural gas power plants impact on coal prices and carbon policies and unexpected delays in lignite projects lead can be defined as major indicators that have investors to hard coal as a relatively more eligible determining role on coal pricing. -
Pdf/17/3/932/5319294/932.Pdf 932 by Guest on 28 September 2021 Research Paper
Research Paper GEOSPHERE Late Pleistocene rates of rock uplift and faulting at the boundary between the southern Coast Ranges and the western Transverse GEOSPHERE, v. 17 no. 3 Ranges in California from reconstruction and luminescence dating https://doi.org/10.1130/GES02274.1 14 figures; 2 tables of the Orcutt Formation CORRESPONDENCE: [email protected] Ian S. McGregor and Nathan W. Onderdonk Department of Geological Sciences, California State University–Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90804, USA CITATION: McGregor, I.S., and Onderdonk, N.W., 2021, Late Pleistocene rates of rock uplift and faulting at the boundary between the southern Coast Ranges ABSTRACT consistent with models that attribute shortening across the Santa Maria Basin and the western Transverse Ranges in California from to accommodation of clockwise rotation of the western Transverse Ranges and reconstruction and luminescence dating of the Orcutt Formation: Geosphere, v. 17, no. 3, p. 932–956, https:// The western Transverse Ranges and southern Coast Ranges of California suggest that rotation has continued into late Quaternary time. doi .org /10.1130 /GES02274.1. are lithologically similar but have very different styles and rates of Quaternary deformation. The western Transverse Ranges are deformed by west-trending Science Editor: Andrea Hampel folds and reverse faults with fast rates of Quaternary fault slip (1–11 mm/yr) ■ INTRODUCTION Associate Editor: Jeff Lee and uplift (1–7 mm/yr). The southern Coast Ranges, however, are primarily deformed by northwest-trending folds and right-lateral strike-slip faults with The Coast Ranges of California are deformed by northwest-striking faults Received 15 April 2020 Revision received 16 November 2020 much slower slip rates (3 mm/yr or less) and uplift rates (<1 mm/yr).