Morphology of the Olfactory Apparatus in Leptocephalus

Total Page:16

File Type:pdf, Size:1020Kb

Morphology of the Olfactory Apparatus in Leptocephalus MORPHOLOGY OF THE OLFACTORY APPARATUS IN LEPTOCEPHALUS LARVAE by MOLLY ANN WIGHTMAN B.S., Florida Institute of Technology A thesis submitted to the Department of Biological Sciences of Florida Institute of Technology in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in BIOLOGICAL SCIENCE Melbourne, Florida July 2018 MORPHOLOGY OF THE OLFACTORY APPARATUS IN LEPTOCEPHALUS LARVAE A THESIS By MOLLY ANN WIGHTMAN Approved as to style and content by: Jonathan Shenker, Ph.D., Chairperson Ralph Turingan, Ph.D., Member Associate Professor Professor Department of Biological Sciences Department of Biological Sciences Kelli Hunsucker, Ph.D., Member Richard Aronson, Ph.D. Research Assistant Professor Professor and Head Department of Ocean Engineering Department of Biological Science and Sciences July 2018 ABSTRACT MORPHOLOGY OF THE OLFACTORY APPARATUS IN LEPTOCEPHALUS LARVAE By Molly Ann Wightman, B.S., Florida Institute of Technology Chairperson of Advisory Committee: Jonathan Shenker, Ph.D. Leptocephalus larvae are a unique larval form that unites the Elopomorph fishes. This larval form has morphological and cellular characteristics that differ from most other teleost fishes. The visual system of leptocephali rod-dominated retinas, leading to poor photopic vision and low visual acuity that would hinder feeding on planktonic prey. Recent studies indicate they feed marine snow, which is composed of mucilaginous materials, bacteria and plankton. Their low visual acuity raises the question of how these organisms find this gelatinous food source in the wild. I hypothesize that these larval fishes use chemoreception in order to find marine snow, and that their olfactory apparatus thus differs morphologically from other teleost fishes. A variety of settlement-stage pelagic larvae were collected from Sebastian Inlet State Park in Florida and Andros Island, Bahamas. Leptocephalus larvae were represented by tarpon (Megalops atlanticus), ladyfish (Elops saurus), bonefish iii (Albula vulpes), and speckled worm eels (Myrophis punctatus). Three species with non-leptocephalus larvae were examined: Atlantic menhaden (Brevoortia tyrannus), Atlantic croaker (Micropogonias undulatus), and pinfish (Lagodon rhomboides). Their external olfactory and visual systems were analyzed using Scanning Electron Microscopy. Morphometric data were collected and compared to make comparisons between larval types regarding the dimensions and structures of these sensory organs. Developmental differences were also observed by comparing SEM images of larval and juvenile fishes. Three out of the four species of leptocephalus larvae had large, exposed olfactory pits, while speckled worm eels and all non-leptocephalus larvae had their olfactory apparatus embedded under the skin of the head, with distinct anterior and posterior nostrils. Although there was no consistent difference among the groups in dimensions of the olfactory apparatus, eye size, or ratio between the sensory organs, the open olfactory pits of tarpon, ladyfish and bonefish larvae would directly expose sensory cells to chemical signals from marine snow. The enclosed olfactory apparatus of the non-leptocephalus species develops during embryogenesis, suggesting that exposed olfactory surfaces are not as important as vision in detecting motile plankton prey. Speckled worm eel larvae entering the estuary had already developed closed olfactory pits and nostrils, presumably in preparation for their rapid assumption of a life style where they bury in sediments during the day. Bonefish and ladyfish showed a similar development of closed olfactory pits and nostrils after metamorphosis within the estuarine habitat. iv Studies of receptor densities, olfactory organ ontogeny, and testing the olfactory sensitivity of live larvae could help to further understand the life history of the Elopomorph fishes, and help with continued conservation and aquaculture efforts. v TABLE OF CONTENTS Page ABSTRACT . iii TABLE OF CONTENTS . vi LIST OF FIGURES . viii LIST OF TABLES . xi ACKNOWLEDGEMENTS . xii DEDICATION . xiii INTRODUCTION . 1 LEPTOCEPHALUS LARVAE . 4 CHEMORECEPTION . 9 OLFACTION IN FISH . 11 RATIONALE AND HYPOTHESIS . 14 MATERIALS AND METHODS . 15 SAMPLE COLLECTION AND IDENTIFICATION . 15 EXTERNAL ASSESSMENT . 17 VISUAL ASSESSMENT . 17 SCANNING ELECTRON MICROSCOPY . 18 DATA COLLECTION AND ANALYSIS . 20 RESULTS . 22 MORPHOLOGY OF THE EYE AND OLFACTORY ORGANS. 28 STANDARDIZATION WITH STANDARD LENGTH . 32 vi PRE/POST METAMORPHIC ELOPOMORPHS . 35 DISCUSSION . 38 LITERATURE CITED . 50 vii LIST OF FIGURES Page Figure 1 Chart of larval fish development (Northern anchovy, Engraulis mordax) from end of yolk-sac stage to juvenile stage (Moser and Watson, 2006) . 2 Figure 2 Picture of various distinctive features in leptocephalus larvae (Anibaldi et. al, 2016) . 6 Figure 3 Images of opsin immunohistochemistry of the retinas of ladyfish (A,C,E) and bonefish (B,D,F). 1 = dorsal; 2 = central; 3 = ventral retina regions. Antirod (magenta) and anticone (green, arrowheads) fluorescent stains show the distribution of rods and cones in the retinas of each species (Taylor et al. 2015) . 7 Figure 4 Schematic diagram of olfaction molecular mechanism (Buck and Axel, 1991) . 10 Figure 5 Schematic diagram of general morphology of fish olfactory area (Kasumyan, 2004) . 12 Figure 6 Imagery and drawings of various differences in morphology of fish olfactory area (a) Photo of preserved male anglerfish (Lophiiformes); (b) Electron micrograph from a goldfish (Carrasius auratus); (c) Electron micrograph from European eel (Anguilla anguilla); (ii) all drawings of rosette and lamellae for each corresponding species above (Cox, 2008) . 13 Figure 7 Images of morphometrics taken from an Atlantic menhaden (Brevoortia tyrannus) using Scandium program. (1) Total olfactory area; (2) Eye major and minor axis, posterier nostril major and minor axis, and anterior nostril major and minor axis (left to right); (3) Total eye area, posterior nostril area, anterior nostril area (left to right) . 21 Figure 8 Scanning Electron Micrograph image of an Atlantic croaker (Micropogonias undulatus) larva. Magnification = 50x. E = eye; A = Anterior nostril; P = Posterior nostril . 24 viii Figure 9 Scanning Electron Micrograph image of an Atlantic menhaden (Brevoorita tyrannus) larva. Magnification = 50x. E = eye; A = Anterior nostril; P = Posterior nostril . 24 Figure 10 Scanning Electron Micrograph image of a Pinfish (Lagodon rhomboides) larva. Magnification = 50x. E = eye; A = Anterior nostril; P = Posterior nostril . 25 Figure 11 Scanning Electron Micrograph image of a Speckled worm eel (Myrophis punctatus) larva. Magnification = 50x. E = eye; A = Anterior nostril; P = Posterior nostril . 25 Figure 12 Scanning Electron Micrograph image of a Ladyfish (Elops saurus) larva. Magnification = 50x. E = eye; Olf = olfactory pit . 26 Figure 13 Scanning Electron Micrograph image of a Bonefish (Albula vulpes) larva. Magnification = 50x. E = eye; Olf = olfactory pit . 26 Figure 14 Scanning Electron Micrograph image of a Tarpon (Megalops atlanticus) larva. Magnification = 50x. E = eye; Olf = olfactory pit . 27 Figure 15 Mean eye area per species (+/- S.D.). Blue = Leptocephalus larvae; Orange = Non- leptocephalus larvae . 28 Figure 16 Mean olfactory area per species (+/- S.D.). Blue = Leptocephalus larvae; Orange = Non- leptocephalus larvae . 29 Figure 17 Mean (+/- S.D.) ratio of average olfactory area/average eye area in each species; Blue = leptocephalus larvae; Orange = Non- leptocephalus larvae . 30 Figure 18 Mean (+/- S.D.) of standardized eye diameter (% of SL); Blue = Leptocephalus larvae; Orange = Non- leptocephalus larvae . 33 Figure 19 Mean (+/- S.D.) of standardized olfactory pit length (% of SL); Blue = Leptocephalus larvae; Orange = Non- leptocephalus larvae . 34 Figure 20 Scanning Electron Micrograph image of a juvenile bonefish at 20x. SL = 40mm . 36 ix Figure 21 Scanning Electron Micrograph image of a juvenile ladyfish at 20x. 36 SL = 61mm . Figure 22 Scanning Electron Micrograph image of a juvenile pinfish at 20x. SL = 34mm . 37 Figure 23 Image of Muraenesox cinereus consuming squid paste (Mochioka et. al, 1993) . 39 Figure 24 Comparison of head versus body size of a leptocephalus larva versus a larval pinfish . 43 Figure 25 Image of various olfactory rosette types (Kasumyan, 2004) . 46 Figure 26 (A) Scanning Electron Micrograph image of a juvenile Bonefish at 20x; (B) Scanning Electron Micrograph image of the olfactory apparatus at 75x; SL = 40mm . 47 Figure 27 (A) Scanning Electron Micrograph image of a juvenile Ladyfish at 20x; (B) Scanning Electron Micrograph image of the olfactory apparatus at 75x; SL = 61mm . 48 x LIST OF TABLES Page Table 1 Summary of settlement-stage larval fishes examined in this study . 23 Table 2 Matrix showing the results of the KW multiple comparison tests for total eye and olfactory areas. ** = significant at p<0.05. NS = not significant . 31 xi ACKNOWLEDGEMENTS I would like to thank my academic advisor, Dr. Jon Shenker for his guidance and support throughout my master’s program. I would like to thank my remaining committee members, Dr. Turingan, Dr. Hunsucker, and Dr. Webbe for their patience and support. I am so grateful for my friends and labmates, Jake Rennert, Tony Cianciotto, Alex Gering, Jamie Kelly, Mason Thurman, Louis Penrod, and James King, who helped with all the sample collections and sorting. This project would not have been possible without the help and patience of Gayle Duncombe, who taught me all
Recommended publications
  • Phylogeny Classification Additional Readings Clupeomorpha and Ostariophysi
    Teleostei - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/teleostei/680400 (http://www.accessscience.com/) Article by: Boschung, Herbert Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama. Gardiner, Brian Linnean Society of London, Burlington House, Piccadilly, London, United Kingdom. Publication year: 2014 DOI: http://dx.doi.org/10.1036/1097-8542.680400 (http://dx.doi.org/10.1036/1097-8542.680400) Content Morphology Euteleostei Bibliography Phylogeny Classification Additional Readings Clupeomorpha and Ostariophysi The most recent group of actinopterygians (rayfin fishes), first appearing in the Upper Triassic (Fig. 1). About 26,840 species are contained within the Teleostei, accounting for more than half of all living vertebrates and over 96% of all living fishes. Teleosts comprise 517 families, of which 69 are extinct, leaving 448 extant families; of these, about 43% have no fossil record. See also: Actinopterygii (/content/actinopterygii/009100); Osteichthyes (/content/osteichthyes/478500) Fig. 1 Cladogram showing the relationships of the extant teleosts with the other extant actinopterygians. (J. S. Nelson, Fishes of the World, 4th ed., Wiley, New York, 2006) 1 of 9 10/7/2015 1:07 PM Teleostei - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/teleostei/680400 Morphology Much of the evidence for teleost monophyly (evolving from a common ancestral form) and relationships comes from the caudal skeleton and concomitant acquisition of a homocercal tail (upper and lower lobes of the caudal fin are symmetrical). This type of tail primitively results from an ontogenetic fusion of centra (bodies of vertebrae) and the possession of paired bracing bones located bilaterally along the dorsal region of the caudal skeleton, derived ontogenetically from the neural arches (uroneurals) of the ural (tail) centra.
    [Show full text]
  • Steve Cunningham Donate Features Shark Dentitions to CMM Collection  Folmer/Cunningham Donate Collection  Miocene Diatoms on Miocene Shark Teeth  Kent Donation
    The ECPHORA The Newsletter of the Calvert Marine Museum Fossil Club Volume 35 Number 1 March 2020 Mike Folmer and Steve Cunningham Donate Features Shark Dentitions to CMM Collection Folmer/Cunningham Donate Collection Miocene Diatoms on Miocene Shark Teeth Kent Donation Inside Vice-President’s Column Stingray Dental Plate Poor Judgment Pristine Monster Meg Club Events Crustacean Coprolites Toothy Dental Plate Australian Paleo Superlatives Fossil Club Minutes Largest Coprolite Shark Model Hung Mystery Bone Excavations along the The fossil shark teeth comprising these compilation dentitions were Cliffs collected by Mike Folmer and arranged by Steve Cunningham. These Araeodelphis Skull Found teeth of Striatolamia macrota were collected from an Eocene site in Unusual Sternum Virginia. We received a number of comparable arrangements from Mike Tarpon Vertebra and Steve. Many thanks for your generosity to CMM! Pathological Whale Atlas Saturday, April 25th, 2020. Club meeting 1pm followed at 2:30 by a public lecture in the Harms Gallery. Dr. Kay Behrensmeyer will speak on fossils in the making. A detailed view of some of the small lateral teeth. CALVERT MARINE MUSEUM www.calvertmarinemuseum.com 2 The Ecphora March 2020 Miocene Diatoms on Since I have so many fossils in my collection, I offered to clean, gold-coat, and do SEM on a few Miocene Shark Teeth shark teeth, not knowing what to expect. I was very surprised to find what appear to be inorganic imprints left behind by microorganisms in the serrations of a tooth (I did not see them on smooth parts of the tooth or on smooth-edged teeth). After a quick literature search, I believe that what I saw is an assortment of diatoms.
    [Show full text]
  • Dedication Donald Perrin De Sylva
    Dedication The Proceedings of the First International Symposium on Mangroves as Fish Habitat are dedicated to the memory of University of Miami Professors Samuel C. Snedaker and Donald Perrin de Sylva. Samuel C. Snedaker Donald Perrin de Sylva (1938–2005) (1929–2004) Professor Samuel Curry Snedaker Our longtime collaborator and dear passed away on March 21, 2005 in friend, University of Miami Professor Yakima, Washington, after an eminent Donald P. de Sylva, passed away in career on the faculty of the University Brooksville, Florida on January 28, of Florida and the University of Miami. 2004. Over the course of his diverse A world authority on mangrove eco- and productive career, he worked systems, he authored numerous books closely with mangrove expert and and publications on topics as diverse colleague Professor Samuel Snedaker as tropical ecology, global climate on relationships between mangrove change, and wetlands and fish communities. Don pollutants made major scientific contributions in marine to this area of research close to home organisms in south and sedi- Florida ments. One and as far of his most afield as enduring Southeast contributions Asia. He to marine sci- was the ences was the world’s publication leading authority on one of the most in 1974 of ecologically important inhabitants of “The ecology coastal mangrove habitats—the great of mangroves” (coauthored with Ariel barracuda. His 1963 book Systematics Lugo), a paper that set the high stan- and Life History of the Great Barracuda dard by which contemporary mangrove continues to be an essential reference ecology continues to be measured. for those interested in the taxonomy, Sam’s studies laid the scientific bases biology, and ecology of this species.
    [Show full text]
  • Early Stages of Fishes in the Western North Atlantic Ocean Volume
    ISBN 0-9689167-4-x Early Stages of Fishes in the Western North Atlantic Ocean (Davis Strait, Southern Greenland and Flemish Cap to Cape Hatteras) Volume One Acipenseriformes through Syngnathiformes Michael P. Fahay ii Early Stages of Fishes in the Western North Atlantic Ocean iii Dedication This monograph is dedicated to those highly skilled larval fish illustrators whose talents and efforts have greatly facilitated the study of fish ontogeny. The works of many of those fine illustrators grace these pages. iv Early Stages of Fishes in the Western North Atlantic Ocean v Preface The contents of this monograph are a revision and update of an earlier atlas describing the eggs and larvae of western Atlantic marine fishes occurring between the Scotian Shelf and Cape Hatteras, North Carolina (Fahay, 1983). The three-fold increase in the total num- ber of species covered in the current compilation is the result of both a larger study area and a recent increase in published ontogenetic studies of fishes by many authors and students of the morphology of early stages of marine fishes. It is a tribute to the efforts of those authors that the ontogeny of greater than 70% of species known from the western North Atlantic Ocean is now well described. Michael Fahay 241 Sabino Road West Bath, Maine 04530 U.S.A. vi Acknowledgements I greatly appreciate the help provided by a number of very knowledgeable friends and colleagues dur- ing the preparation of this monograph. Jon Hare undertook a painstakingly critical review of the entire monograph, corrected omissions, inconsistencies, and errors of fact, and made suggestions which markedly improved its organization and presentation.
    [Show full text]
  • American Eel Anguilla Rostrata Contributor: John W
    American Eel Anguilla rostrata Contributor: John W. McCord DESCRIPTION: Taxonomy and Basic Description The American eel, Anguilla rostrata (Lesueur 1817), belongs to the freshwater eel family, Anguillidae. Related species occur throughout the world, but the American eel is the only North American anguillid eel. Eels are snake-shaped and covered with a mucous layer that renders them slimy to the touch despite the presence of minute scales. A continuous, low fin runs from the middle of the back, around the tail, and ends behind the vent. Relatively small pectoral fins originate near the animals midline and immediately posterior to the head and gill-covers. Coloration varies with stage of maturity and habitat, but eels are generally dark olive, yellowish or slate-gray above and light below. Eels from dark, tannic acid streams are darker while those from clear streams and estuaries are lighter (pers. obs.). The American eel is catadromous; it spawns in oceanic waters but uses freshwater, brackish and estuarine systems for most of its developmental life. Sexually mature adults, called silver eels, migrate from freshwater to the sea in fall. Their destination for spawning is the Sargasso Sea, an expansive portion of the central North Atlantic Ocean, east of the Bahamas and south of Bermuda. Adults are thought to die after spawning. The largest females produce nearly 20 million eggs (Barbin and McCleave 1997). Mature females in the southern portion of the eel’s range are generally smaller and carry as few as 400,000 eggs (Wenner and Musick 1974). Eggs hatch into a brief pre-larval stage before transformation into the active leptocephalus stage.
    [Show full text]
  • The Reproduction and Metamorphosis of the Common Eel (Anguilla Vulgaris).1 by O
    KEPBODUOTION AND METAMOEPHOSIS 01? COMMON BEL. 373 The Reproduction and Metamorphosis of the Common Eel (Anguilla vulgaris).1 By O. B. Grassi, Professor in Home. FOUR years of continual researches made 1))' me in collabo- ration with my pupil. Dr. Calandruccio, have heen crowned at last by a success beyond my expectations,—that is to say, have enabled me to dispel in the most important points the great mystery which has hitherto surrounded the reproduction and the development of the Common Eel (Anguilla vulgaris). When I reflect that this mystery has occupied the attention of naturalists since the days of Aristotle, it seems to me that a short extract of my work is perhaps not unworthy to be pre- sented to the Royal Society of London, leaving aside, however, for the present, the morphological part of my results. The most salient fact discovered by me is that a fish, which hitherto was known as Leptocephalus brevirostris, is the larva of the Anguilla vulgaris. Before giving the proofs of this conclusion I must premise that the other Mursenoids undergo a similar metamorphosis. Thus I have been able to prove that the Leptocephalus s ten ops (Bellotti), for the greatest part, and also the Lepto- cephalus morrisii and punctatus belong to the cycle of evolution of Conger vulgaris; that the Leptocephalus haeckeli, yarrelli, bibroni, gegenbauri, kollikeri, and many other imperfectly described by Facciola, and a part of the above-named Leptocephalus stenops of Bellotti, belong to the cycle of evolution of Con gromursena mystax; that the Leptocephalus tsenia, inornatus, and dia- 1 From the 'Proceedings of the Royal Society,' November, 1896.
    [Show full text]
  • Swimming Energetics and Thermal Ecology of Adult Bonefish (Albula Vulpes): a Combined Laboratory and Field Study in Eleuthera, the Bahamas
    Environ Biol Fish (2015) 98:2133–2146 DOI 10.1007/s10641-015-0420-6 Swimming energetics and thermal ecology of adult bonefish (Albula vulpes): a combined laboratory and field study in Eleuthera, The Bahamas Liane B. Nowell & Jacob W. Brownscombe & Lee F. G. Gutowsky & Karen J. Murchie & Cory D. Suski & Andy J. Danylchuk & Aaron Shultz & Steven J. Cooke Received: 26 July 2014 /Accepted: 4 May 2015 /Published online: 17 July 2015 # Springer Science+Business Media Dordrecht 2015 Abstract Knowledge of the swimming energetics and and the optimal temperature for scope for activity thermal ecology of sub-tropical and tropical coastal (7.5 mgO2/min/kg) was 26.7 °C. We also estimated the species is extremely limited, yet this information is thermal profile of bonefish in the wild using surgically critical for understanding animal–environment relation- implanted thermal loggers. Of the 138 implanted fish, ships in the face of climate change. Using the ecologi- eight were recaptured with functional loggers. After cally and economically important sportfish, bonefish 220 days more than 55 % of recaptured tagged fish (Albula vulpes), we determined the critical swimming had expelled their thermal loggers. Thermal profiles ⋅ ⋅ speed (Ucrit), metabolic rates (MO2max and MO2routine), revealed that bonefish did not exceed laboratory- scope for activity, and cost of transport (COTnet)acrossa determined critical temperatures (i.e., 14.5 °C minima range of temperatures using a swim tunnel. For both and 37.9 °C maxima) and spent the majority of their critical swimming speed and scope for activity, optimal time at their critical swimming speed optimal tempera- (Topt) and critical (Tcrit) temperatures were determined.
    [Show full text]
  • North-Easternmost Record of Halosaurus Ovenii (Actinopterygii: Notacanthiformes: Halosauridae) in the Mediterranean Sea, with Notes on Its Biology
    ACTA ICHTHYOLOGICA ET PISCATORIA (2009) 39 (1): 33–37 DOI: 10.3750/AIP2009.39.1.06 NORTH-EASTERNMOST RECORD OF HALOSAURUS OVENII (ACTINOPTERYGII: NOTACANTHIFORMES: HALOSAURIDAE) IN THE MEDITERRANEAN SEA, WITH NOTES ON ITS BIOLOGY Antonio PAIS 1* , Paolo MERELLA 2, Maria Cristina FOLLESA 3, and Hiroyuki MOTOMURA 4 1 Sezione di Acquacoltura e Gestione delle Risorse Acquatiche, Dipartimento di Scienze Zootecniche, Università di Sassari, Sassari, Italy 2 Sezione di Parassitologia e Malattie Parassitarie, Dipartimento di Biologia Animale, Università di Sassari, Sassari, Italy 3 Dipartimento di Biologia Animale ed Ecologia, Università di Cagliari, Viale Poetto 1, 09126 Cagliari, Italy 4 The Kagoshima University Museum, 1 –21 –30 Korimoto, Kagoshima 890 –0065, Japan Pais A., Merella P., Follesa M.C., Motomura H. 2009. North-easternmost record of Halosaurus ovenii (Actinopterygii: Notacanthiformes: Halosauridae) in the Mediterranean Sea, with notes on its biology. Acta Ichthyol. Piscat. 39 (1): 33–37. Abstract. A single adult female specimen of Halosaurus ovenii Johnson, 1864 was captured by trammel nets at a depth of about 200 m off the coast of Arbatax (Sardinia, Italy) in early April 2007. Macroscopic and micro - scopic analysis of the gonad showed a postspawning ovary. This is the fourth documented capture of this fish in the Mediterranean Sea, representing the north-easternmost record for this species in this geographic area. Furthermore, the present specimen was fished at the shallowest depth ever recorded before. Keywords: Halosaurus ovenii , new record, Mediterranean, Sardinia According to Froese and Pauly (2008) , 10 species belong specimen (229 mm TL) off the Balearic Islands, at 2800 m to the genus Halosaurus Johnson, 1864 (Notacanthiformes: depth, the deepest record for this species.
    [Show full text]
  • Fishes of Terengganu East Coast of Malay Peninsula, Malaysia Ii Iii
    i Fishes of Terengganu East coast of Malay Peninsula, Malaysia ii iii Edited by Mizuki Matsunuma, Hiroyuki Motomura, Keiichi Matsuura, Noor Azhar M. Shazili and Mohd Azmi Ambak Photographed by Masatoshi Meguro and Mizuki Matsunuma iv Copy Right © 2011 by the National Museum of Nature and Science, Universiti Malaysia Terengganu and Kagoshima University Museum All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without prior written permission from the publisher. Copyrights of the specimen photographs are held by the Kagoshima Uni- versity Museum. For bibliographic purposes this book should be cited as follows: Matsunuma, M., H. Motomura, K. Matsuura, N. A. M. Shazili and M. A. Ambak (eds.). 2011 (Nov.). Fishes of Terengganu – east coast of Malay Peninsula, Malaysia. National Museum of Nature and Science, Universiti Malaysia Terengganu and Kagoshima University Museum, ix + 251 pages. ISBN 978-4-87803-036-9 Corresponding editor: Hiroyuki Motomura (e-mail: [email protected]) v Preface Tropical seas in Southeast Asian countries are well known for their rich fish diversity found in various environments such as beautiful coral reefs, mud flats, sandy beaches, mangroves, and estuaries around river mouths. The South China Sea is a major water body containing a large and diverse fish fauna. However, many areas of the South China Sea, particularly in Malaysia and Vietnam, have been poorly studied in terms of fish taxonomy and diversity. Local fish scientists and students have frequently faced difficulty when try- ing to identify fishes in their home countries. During the International Training Program of the Japan Society for Promotion of Science (ITP of JSPS), two graduate students of Kagoshima University, Mr.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • Reproductive Development of Female Bonefish (Albula Spp.)
    REPRODUCTIVE DEVELOPMENT OF FEMALE BONEFISH (ALBULA SPP.) FROM THE BAHAMAS by Cameron Alexander Luck A Thesis Submitted to the Faculty of The Charles E. Schmidt College of Science In Partial Fulfilment of the Requirements for the Degree of Master of Science Florida Atlantic University Boca Raton, Florida December 2018 Copyright 2018 by Cameron Luck ii ACKNOWLEDGEMENTS I sincerely appreciate the guidance of my advisor Dr. Matthew Ajemian for his continued support throughout this endeavor as well as the input from my committee members: Dr. Sahar Mejri, Dr. Aaron Adams, and Dr. Paul Wills. I am extremely grateful for the collaboration and support of Justin Lewis. Field collections would have been impossible without his local knowledge, willingness to be available, passion for bonefish, and incredible work ethic. I am also grateful for the words of wisdom and comedic relief often provided by fellow graduate students, lab members, and interns of the Fish Ecology and Conservation Lab: Grace Roskar, Breanna Degroot, Steve Lombardo, Rachel Shaw, Mike McCallister, Alex Allen, and many others. This project was financially supported by Bonefish & Tarpon Trust (BTT) and National Fish and Wildlife Foundation (NFWF). We are grateful for the lodging and water access provided by East End Lodge, Andros South, and Hank’s Place. The experimental protocol for this study received approval from Florida Atlantic University’s Institutional Animal Care and Use Committee (Animal Use Protocol #A16-34). iv ABSTRACT Author: Cameron Luck Title: Reproductive Development of Female Bonefish (Albula spp.) from the Bahamas Institution: Florida Atlantic University Thesis Advisor: Dr. Matthew J. Ajemian Degree: Master of Science Year: 2018 Bonefish (Albula spp.) support an economically important sport fishery, yet little is known regarding the reproductive biology of this genus.
    [Show full text]
  • Scientific Note Spatial Choice Is Biased by Chemical Cues From
    Neotropical Ichthyology, 8(4):899-902, 2010 Copyright © 2010 Sociedade Brasileira de Ictiologia Scientific Note Spatial choice is biased by chemical cues from conspecifics in the speckeled worm eel Myrophis punctatus Rodrigo Egydio Barreto1,2, Maria Fernanda Coelho Junqueira3, Tan Tjui-Yeuw3 and Gilson Luiz Volpato1,2 The speckeld worm eel Myrophis punctatus lives in high-densities assemblages, and usually digs through, or lies on the substrate. These behaviours could lead to chemical marks on the substrate and could modulate the spatial distribution in this species. We tested the hypothesis that the spatial choice of the speckled worm eel is modulated by the presence of conspecific odour on the substrate. Here, we showed that the speckled worm eel avoids the substrate area containing the conspecific odour, indicating that this chemical cue modulates the eel’s spatial decision. The eels clearly detected the conspecific’s odour. This perception might indicate the presence of conspecifics into the substrate. Since the eels avoided an area containing conspecific odour, we suggest this may be a response that avoids the consequences of invading a resident-animal’s territory. A enguia mirongo-mirim Myrophis punctatus vive em agrupamentos de alta densidade populacional e comumente se enterra ou permanece sob o substrato. Esses comportamentos podem levar a marcas químicas no subtrato e podem, portanto, modular o uso do espaço nessa espécie. Neste estudo, testamos a hipótese de que a preferência espacial da enguia mirongo-mirim é influenciada pela presença de odor do animal coespecífico no subtrato. Mostramos que as enguias evitam a área que contém tal odor, indicando que as decisões de ocupação espacial podem ser influenciadas por pistas químicas de coespecíficos.
    [Show full text]