The Ichthyological Diversity of Pokémon
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
13914444D46c0aa91d02e31218
2 Breeding of wild and some domestic animals at regional zoological institutions in 2013 3 РЫБЫ P I S C E S ВОББЕЛОНГООБРАЗНЫЕ ORECTOLOBIFORMES Сем. Азиатские кошачьи акулы (Бамбуковые акулы) – Hemiscyllidae Коричневополосая бамбуковая акула – Chiloscyllium punctatum Brownbanded bambooshark IUCN (NT) Sevastopol 20 ХВОСТОКОЛООБРАЗНЫЕ DASYATIFORMES Сем. Речные хвостоколы – Potamotrygonidae Глазчатый хвостокол (Моторо) – Potamotrygon motoro IUCN (DD) Ocellate river stingray Sevastopol - ? КАРПООБРАЗНЫЕ CYPRINIFORMES Сем. Цитариновые – Citharinidae Серебристый дистиход – Distichodusaffinis (noboli) Silver distichodus Novosibirsk 40 Сем. Пираньевые – Serrasalmidae Серебристый метиннис – Metynnis argenteus Silver dollar Yaroslavl 10 Обыкновенный метиннис – Metynnis schreitmuelleri (hypsauchen) Plainsilver dollar Nikolaev 4; Novosibirsk 100; Kharkov 20 Пятнистый метиннис – Metynnis maculatus Spotted metynnis Novosibirsk 50 Пиранья Наттерера – Serrasalmus nattereri Red piranha Novosibirsk 80; Kharkov 30 4 Сем. Харацидовые – Characidae Красноплавничный афиохаракс – Aphyocharax anisitsi (rubripinnis) Bloodfin tetra Киев 5; Perm 10 Парагвайский афиохаракс – Aphyocharax paraquayensis Whitespot tetra Perm 11 Рубиновый афиохаракс Рэтбина – Aphyocharax rathbuni Redflank bloodfin Perm 10 Эквадорская тетра – Astyanax sp. Tetra Perm 17 Слепая рыбка – Astyanax fasciatus mexicanus (Anoptichthys jordani) Mexican tetra Kharkov 10 Рублик-монетка – Ctenobrycon spilurus (+ С. spilurusvar. albino) Silver tetra Kharkov 20 Тернеция (Траурная тетра) – Gymnocorymbus -
Field Guide to the Nonindigenous Marine Fishes of Florida
Field Guide to the Nonindigenous Marine Fishes of Florida Schofield, P. J., J. A. Morris, Jr. and L. Akins Mention of trade names or commercial products does not constitute endorsement or recommendation for their use by the United States goverment. Pamela J. Schofield, Ph.D. U.S. Geological Survey Florida Integrated Science Center 7920 NW 71st Street Gainesville, FL 32653 [email protected] James A. Morris, Jr., Ph.D. National Oceanic and Atmospheric Administration National Ocean Service National Centers for Coastal Ocean Science Center for Coastal Fisheries and Habitat Research 101 Pivers Island Road Beaufort, NC 28516 [email protected] Lad Akins Reef Environmental Education Foundation (REEF) 98300 Overseas Highway Key Largo, FL 33037 [email protected] Suggested Citation: Schofield, P. J., J. A. Morris, Jr. and L. Akins. 2009. Field Guide to Nonindigenous Marine Fishes of Florida. NOAA Technical Memorandum NOS NCCOS 92. Field Guide to Nonindigenous Marine Fishes of Florida Pamela J. Schofield, Ph.D. James A. Morris, Jr., Ph.D. Lad Akins NOAA, National Ocean Service National Centers for Coastal Ocean Science NOAA Technical Memorandum NOS NCCOS 92. September 2009 United States Department of National Oceanic and National Ocean Service Commerce Atmospheric Administration Gary F. Locke Jane Lubchenco John H. Dunnigan Secretary Administrator Assistant Administrator Table of Contents Introduction ................................................................................................ i Methods .....................................................................................................ii -
East Coast of North America Groundfish: Initial Explorations of Biogeography and Species Assemblages
East Coast of North America Strategic Assessment Project Partitioning the Total Mortality DFO r~I'j~ffm~niii~rlieqUe 10020258 of Atlantic Cod Stocks Project East Coast of North America Groundfish: Initial Explorations of Biogeography and Species Assemblages o Department of Fisheries and Oceans, Canada and National Oceanic and Atmospheric Administration, USA SH 213.5 August 1996 .E17 1996 c.2 About the East Coast of North America Strategic Assessment Project The East Coast of North America Strategic Assessment Project (ECNASAP) was initiated in the USA by NOAA's Strategic Environmental Assessments (SEA) Division to develop information and analytical resources for sup porting integrated management of large portions of the region's coastal ocean. The ECNASAP Pilot Project consists of inshore and offshore case studies, and is a cooperative effort among several U.S. and Canadian agencies. Digital map and data products are being developed in the Offshore Case Study for groundfish, seabirds, temperature, salinity, and sediments. This report summarizes the initial results for the groundfish component. About Partitioning the Total Mortality of Atlantic Cod Stocks Project In 1995, Canada's Department of Fisheries and Oceans (DFO) initiated a series of research projects to address high priority issues for the Atlantic and Pacific coasts. The Cod Mortality Project is a component of this effort; its objective is to assess the main causes for the decline of cod resources since the mid-1980s. A subproject is to examine long-term changes in groundfish assemblages on a biogeographic scale, and to determine whether or not these changes coincided with changes in ocean climate. -
Los Peces Caribes De Venezuela.Pdf
Bol. Acad. C. Fís., Mat. y Nat. Vol. LXII No. 1 Marzo, 2002: 35-88. Antonio Machado-Allison: Los Peces Caribes de Venezuela LOS PECES CARIBES DE VENEZUELA: UNA APROXIMACIÓN A SU ESTUDIO TAXONÓMICO Antonio Machado Allison* El Trabajo presenta una sinopsis detallada de las diez y seis especies de caribes (pirañas) de Venezuela, incluidas en los géneros: Pygopristis (1 especie), Pristobrycon (4 especies), Pygocentrus (1 especie) y Serrasalmus (10 especies). Se discuten los aspectos histórico-taxonómico de cada especie, desde las Crónicas de Indias, los primeros naturalistas, hasta las contribuciones científicas más recientes. Se discute la validez de los nombres utilizados tradicionalmente y sus sinonimias. Se sugieren aspectos evolutivos y de relaciones filogenéticas intra y entre los diferentes géneros. Se ilustra cada especie con dibujos y fotografías y se incorporan claves para la identificación de los géneros y las especies. This paper present a detailed sinopsis of the piranha sixteen species of Venezuela, included in the genera: Pygopristis (1 species), Pristobrycon (4 species), Pygocentrus (1 species) y Serrasalmus (10 species). Discussions on historical-taxonomic aspects of each species are included from the Indian Crónicas de Indias, the first naturalists, to recent scientific contributions. Names traditionally used and sinonomies of each species are discussed. Suggestions on hypothesis of relationships and evolution inside groups and among genera are given. Each species is illustrated with drawings and photographs. Keys for the identification of species are included. Palabras Clave: Peces, Caribes, Venezuela, Clasificación Keywords: Fish, Piranha, Venezuela, Clasification I. INTRODUCCION mundial, gracias a la proliferación de historias, leyendas y fantasías muchas veces sin sentido. -
Fisheries Benefits of Marine Managed Areas in Hawaii
Fisheries benefits of Marine Managed Areas in Hawaii Alan Friedlander Herman Cesar 30 April 2004 Alan M. Friedlander NOAA, National Ocean Service, National Centers for Coastal Ocean Science - Biogeography Program & Oceanic Institute Makapu‘u Point/41-202 Kalanianaole Hwy, Waimanalo, Hawai‘i 96795. E-mail: [email protected] Herman Cesar Cesar Environmental Economics Consulting Kastanjelaan 9 6828 GH Arnhem The Netherlands E-mail: [email protected] Web: www.ceec.nl 2 Fisheries Benefits of MMAs Contents 1. Introduction 3 2. Marine Protected Area Theory and Empirical Evidence 5 3. Description of Study Sites 12 4. Empirical Information On Fish Assemblage Characteristics 17 5. Empirical Information on MPAs in Hawaii – Overall Comparison of Protected Areas 22 6. Recommendations for Modifications to Existing MPAS and for the Design and Siting of Future Protected Areas 25 7. References 31 Appendix I. Top ten species observed on transects for the Six Study Sites 37 Colophon This study is part of a larger report with the title “Assessment of Economic Benefits and Costs of Marine Managed Areas in Hawaii" by Herman Cesar, Pieter van Beukering and Alan Friedlander. This publication is a result of research carried out by Cesar Environmental Economics Consulting (CEEC) and funded by the National Oceanic and Atmospheric Administration, Coastal Ocean Program, under awards NA 160A2412 to the University of Hawaii for the Hawaii Coral Reef Initiative Research Program. Co- funding was obtained from the Division of Aquatic Resources (DAR) and the Department of Business, Economic Development & Tourism (DBEDT). This specific study was compiled by Alan M. Friedlander, under a subcontract with CEEC. -
Early Stages of Fishes in the Western North Atlantic Ocean Volume
ISBN 0-9689167-4-x Early Stages of Fishes in the Western North Atlantic Ocean (Davis Strait, Southern Greenland and Flemish Cap to Cape Hatteras) Volume One Acipenseriformes through Syngnathiformes Michael P. Fahay ii Early Stages of Fishes in the Western North Atlantic Ocean iii Dedication This monograph is dedicated to those highly skilled larval fish illustrators whose talents and efforts have greatly facilitated the study of fish ontogeny. The works of many of those fine illustrators grace these pages. iv Early Stages of Fishes in the Western North Atlantic Ocean v Preface The contents of this monograph are a revision and update of an earlier atlas describing the eggs and larvae of western Atlantic marine fishes occurring between the Scotian Shelf and Cape Hatteras, North Carolina (Fahay, 1983). The three-fold increase in the total num- ber of species covered in the current compilation is the result of both a larger study area and a recent increase in published ontogenetic studies of fishes by many authors and students of the morphology of early stages of marine fishes. It is a tribute to the efforts of those authors that the ontogeny of greater than 70% of species known from the western North Atlantic Ocean is now well described. Michael Fahay 241 Sabino Road West Bath, Maine 04530 U.S.A. vi Acknowledgements I greatly appreciate the help provided by a number of very knowledgeable friends and colleagues dur- ing the preparation of this monograph. Jon Hare undertook a painstakingly critical review of the entire monograph, corrected omissions, inconsistencies, and errors of fact, and made suggestions which markedly improved its organization and presentation. -
Most Impaired" Coral Reef Areas in the State of Hawai'i
Final Report: EPA Grant CD97918401-0 P. L. Jokiel, K S. Rodgers and Eric K. Brown Page 1 Assessment, Mapping and Monitoring of Selected "Most Impaired" Coral Reef Areas in the State of Hawai'i. Paul L. Jokiel Ku'ulei Rodgers and Eric K. Brown Hawaii Coral Reef Assessment and Monitoring Program (CRAMP) Hawai‘i Institute of Marine Biology P.O.Box 1346 Kāne'ohe, HI 96744 Phone: 808 236 7440 e-mail: [email protected] Final Report: EPA Grant CD97918401-0 April 1, 2004. Final Report: EPA Grant CD97918401-0 P. L. Jokiel, K S. Rodgers and Eric K. Brown Page 2 Table of Contents 0.0 Overview of project in relation to main Hawaiian Islands ................................................3 0.1 Introduction...................................................................................................................3 0.2 Overview of coral reefs – Main Hawaiian Islands........................................................4 1.0 Ka¯ne‘ohe Bay .................................................................................................................12 1.1 South Ka¯ne‘ohe Bay Segment ...................................................................................62 1.2 Central Ka¯ne‘ohe Bay Segment..................................................................................86 1.3 North Ka¯ne‘ohe Bay Segment ....................................................................................94 2.0 South Moloka‘i ................................................................................................................96 2.1 Kamalō -
The Round Goby (Neogobius Melanostomus):A Review of European and North American Literature
ILLINOI S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN PRODUCTION NOTE University of Illinois at Urbana-Champaign Library Large-scale Digitization Project, 2007. CI u/l Natural History Survey cF Library (/4(I) ILLINOIS NATURAL HISTORY OT TSrX O IJX6V E• The Round Goby (Neogobius melanostomus):A Review of European and North American Literature with notes from the Round Goby Conference, Chicago, 1996 Center for Aquatic Ecology J. Ei!en Marsden, Patrice Charlebois', Kirby Wolfe Illinois Natural History Survey and 'Illinois-Indiana Sea Grant Lake Michigan Biological Station 400 17th St., Zion IL 60099 David Jude University of Michigan, Great Lakes Research Division 3107 Institute of Science & Technology Ann Arbor MI 48109 and Svetlana Rudnicka Institute of Fisheries Varna, Bulgaria Illinois Natural History Survey Lake Michigan Biological Station 400 17th Sti Zion, Illinois 6 Aquatic Ecology Technical Report 96/10 The Round Goby (Neogobius melanostomus): A Review of European and North American Literature with Notes from the Round Goby Conference, Chicago, 1996 J. Ellen Marsden, Patrice Charlebois1, Kirby Wolfe Illinois Natural History Survey and 'Illinois-Indiana Sea Grant Lake Michigan Biological Station 400 17th St., Zion IL 60099 David Jude University of Michigan, Great Lakes Research Division 3107 Institute of Science & Technology Ann Arbor MI 48109 and Svetlana Rudnicka Institute of Fisheries Varna, Bulgaria The Round Goby Conference, held on Feb. 21-22, 1996, was sponsored by the Illinois-Indiana Sea Grant Program, and organized by the -
Phylo: the Trading Card Game
Home Card Resplendant Quetzal Atlantic Footballfish Natural History Museum, London Pharomachrus mocinno Himantolophus groenlandicus Starter Animalia,Chordata,Aves Animalia,Chordata,Actinopterygii 5 POINTS 10 POINTS • This is a HOME card. The game starts with each player having a HOME card played on the table next to each other. • Pharomachrus mocinno has a FLIGHT of 2. • H. groenlandicus has a MOVE of 2. • H. groenlandicus can act as a PARASITE on other H. • HOME cards represent all TERRAIN and CLIMATE The ancient Aztecs and Maya viewed the quetzal as the groenlandicus cards in play. values. "god of the air" and as a symbol of goodness and light. At maturity, the much smaller male becomes a parasite of the female Cool, Image by Alfred Waterhouse Image by Tricia Arnold Image by Adam Smith en.wikipedia.org/wiki/Alfred_Waterhouse babbletrish.blogspot.com/ Warm rupted.deviantart.com/ Cold, Cool NHM Cock-eyed Squid Lion White Rhinoceros Histioteuthis sp. Panthero leo Ceratotherium simum Animalia,Mollusca,Cephalopoda Animalia,Chordata,Mammalia Animalia,Chordata,Mammalia 11 POINTS 11 POINTS 7 POINTS • Histioteuthis has a MOVE of 2. • Leo panthera has a MOVE of 2. • Ceratotherium simum has a MOVE of 2. A unique characteristic of both females and males is that Histioteuthis lives at depths of around 1500 ft (500-1000 the tail ends in a hairy tuft, which often conceals a hard meters). "spine" or "spur". The function of the tuft and spine are unknown. Image by Gina Allnatt Image by Ele Willoughby Image by Phineas X. Jones ginasketch.carbonmade.com Cool minouette.etsy.com Warm, Hot octophant.us Warm, Hot L. -
Final Report
2011 Project Abstract For the Period Ending June 30, 2014 PROJECT TITLE: Mississippi River Water Quality Assessment PROJECT MANAGER: Michael Sadowsky AFFILIATION: University of Minnesota MAILING ADDRESS: 140 Gortner Lab, 1479 Gortner Ave CITY/STATE/ZIP: Saint Paul, MN 55108 PHONE: (612) 626-0977 E-MAIL: [email protected] WEBSITE: http://www.cbs.umn.edu/main/news/inthefield/m3p.shtml FUNDING SOURCE: Environment and Natural Resources Trust Fund LEGAL CITATION: M.L. 2011, First Special Session, Chp. 2, Art.3, Sec. 2, Subd. 05c APPROPRIATION AMOUNT: $ 557,000 Overall Project Outcome and Results A metagenomics-based sequencing approach was utilized to characterize the bacterial community at sites along the Mississippi River in Minnesota to understand how these communities were influenced by or indicative of water quality. Results of this study revealed that the bacterial community throughout the river primarily consisted of a small number of highly abundant species that comprise a “core microbial community” that was stable both in terms of community membership and inferred functional traits. Variation in community membership and species abundances were primarily influenced by physicochemical parameters (e.g. pH and temperature) rather than spatial distance, and a reproducible community structure occurred annually toward the late summer. Furthermore, specific bacterial orders were related to chemical concentrations that co-varied with surrounding land use, suggesting that increases in abundance of these orders may be indicative of specific types of contamination throughout the river. Therefore, assessment of the total bacterial community provides more information about water quality and contamination sources than could be previously gleaned from traditional enumeration of indicator bacteria like Escherichia coli. -
Using Stable Isotopes to Investigate Movement of Fish in Rice Paddy Fields
Int Aquat Res DOI 10.1007/s40071-015-0105-y ORIGINAL RESEARCH Using stable isotopes to investigate movement of fish in rice paddy fields Jaeyong Lee . Jae-Ok Kim . Jeffrey S. Owen . Bomchul Kim Received: 7 January 2015 / Accepted: 17 April 2015 Ó The Author(s) 2015. This article is published with open access at Springerlink.com Abstract We evaluated movement of fish, especially Misgurnus spp. (loach), in paddy fields and irrigation ponds by conducting an inventory of d13C and d15N of fish, potential food sources, and soil organic matter in two irrigation pond–paddy field systems in Korea. The pond–paddy systems differ with respect to the presence or the absence of a ridge between the paddy field and the irrigation pond and also whether or not livestock are present in their watersheds. The ridge prevents the free movement of fish between paddy field and irrigation pond habitats in one of the pond–paddy watersheds, but not in the other watershed. We found differences in loach d13C and d15N inhabiting the paddy fields compared to those in loach d13C and d15Nin the irrigation ponds. In irrigation ponds, loach d13C was lower in September (average -27.9 and -27.7 %) compared to July (average -26.2 and -26.3 %) in the watershed with a ridge (station 1) and without a ridge (station 6), respectively. Loach d13C in irrigation ponds in September was similar to loach d13C in the paddy field in July at both sampling sites, indicating loach might have moved into irrigation pond from paddy field. Loach d15N in the watershed with livestock was significantly higher (average 18.2 %) in the irrigation ponds than loach d15N in the watershed with no livestock present (average 11.3 %), probably reflecting higher anthropogenic nitrogen inputs from livestock. -
Template for Guideline
Description of the Environment CAPL Planning Area Document ID: ABU-COP-02890 Revision ID: 1.0 Revision Date: 01 May 2020 Next Revision Due 01 May 2021 Information Sensitivity: Company Confidential Description of the Environment CAPL Planning Area Contents 1 Introduction .................................................................................................................... 6 1.1 Purpose ................................................................................................................ 6 1.2 Regulatory Context ............................................................................................... 6 1.3 Review and Revision ............................................................................................ 7 2 Matters of National Environmental Significance (NES) ................................................... 9 2.1 World Heritage Properties ..................................................................................... 9 2.2 National Heritage Places ...................................................................................... 9 2.3 Commonwealth Heritage Places ......................................................................... 13 2.4 Wetlands of International Importance (listed under the Ramsar Convention) ...... 22 2.5 Listed Threatened and Migratory Species ........................................................... 25 2.5.1 Marine Mammals ..................................................................................... 25 2.5.2 Reptiles ..................................................................................................