Solid Waste from the Operation and Decommissioning of Power Plants
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
POTENTIAL PARADISE FOSSIL PLANT RETIREMENT FINAL ENVIRONMENTAL ASSESSMENT Muhlenberg County, Kentucky
Document Type: EA-Administrative Record Index Field: Final EA Project Name: Potential Paradise Plant Retirement Project Number: 2018-34 POTENTIAL PARADISE FOSSIL PLANT RETIREMENT FINAL ENVIRONMENTAL ASSESSMENT Muhlenberg County, Kentucky Prepared by: TENNESSEE VALLEY AUTHORITY Knoxville, Tennessee FEBRUARY 2019 To request further information, contact: Ashley Pilakowski NEPA Compliance Tennessee Valley Authority 400 W. Summit Hill Drive Knoxville, TN 37902 Phone: 865-632-2256 E-mail: [email protected] This page intentionally left blank Contents Table of Contents CHAPTER 1 – PURPOSE AND NEED FOR ACTION ......................................................................... 1 1.1 Introduction .............................................................................................................................. 1 1.2 Purpose and Need ................................................................................................................... 2 1.3 Related Environmental Reviews .............................................................................................. 4 1.4 Scope of the Environmental Assessment ................................................................................ 5 1.5 Public and Agency Involvement ............................................................................................... 5 1.6 Necessary Permits or Licenses and Consultation Requirements ............................................ 6 CHAPTER 2 - ALTERNATIVES .......................................................................................................... -
Title of the Project: Monitoring of Migratory Birds at Selected Water Bodies of Murshidabad District
REPORT ON THE PROJECT 2020 Title of the project: Monitoring of Migratory Birds at selected water bodies of Murshidabad district Submitted by Santi Ranjan Dey Department of Zoology, Rammohan College, 102/1, Raja Rammohan Sarani, Kolkata 09 2020 REPORT ON THE PROJECT Title of the project: Monitoring of Migratory Birds at selected water bodies of Murshidabad District: Introduction: The avian world has always been a fascination to the human world and has been a subject of our studies. Mythological documents hold a number of examples of birds being worshiped as goods with magical powers by the ancient civilizations. Even today winged wonders continue to be the subject of our astonishment primarily because of their ability to fly, their ability to build extraordinarily intricate nests, and of course, the brilliant colour of their plumage – features that no human being can replicate. Taxonomically birds are categorized in “Orders” “Families” and “Genera” and “species”. But overall they are divided into two groups: Passeriformes (or Passerines) and Non Passeriformes (non passerines). At least 60% of all bird species are Passeriformes or song birds, their distinguishing characteristics being their specialized leg structure, vocal structure and brain-wiring which allows them to produce complex songs. The non- passerine comprises 28 out of 29 orders of birds in the world. Throughout the world approximately 11,000 species are found. India is having 1301 species. West Bengal has 57.69% of the total avian fauna (750 species). Though there are many nomenclatures used by different people, we followed “Standardized common and scientific names of birds of Indian subcontinent by Manakadan and Pittie (2001).” Identification of bird is generally based on combination of various characteristics. -
A Simple and Fast Algorithm for Estimating the Capacity Credit of Solar and Storage
Electricity Markets & Policy Energy Analysis & Environmental Impacts Division Lawrence Berkeley National Laboratory A Simple and Fast Algorithm for Estimating the Capacity Credit of Solar and Storage Andrew D. Mills and Pía Rodriguez July 2020 This is a pre-print version of an article published in Energy. DOI: https://doi.org/10.1016/j.energy.2020.118587 This work was supported by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under the Solar Energy Technology Office under Lawrence Berkeley National Laboratory Contract No. DE-AC02-05CH11231. DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California. Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. -
Wind Energy Technology Data Update: 2020 Edition
Wind Energy Technology Data Update: 2020 Edition Ryan Wiser1, Mark Bolinger1, Ben Hoen, Dev Millstein, Joe Rand, Galen Barbose, Naïm Darghouth, Will Gorman, Seongeun Jeong, Andrew Mills, Ben Paulos Lawrence Berkeley National Laboratory 1 Corresponding authors August 2020 This work was funded by the U.S. Department of Energy’s Wind Energy Technologies Office, under Contract No. DE-AC02-05CH11231. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California. Photo source: National Renewable Energy Laboratory ENERGY T ECHNOLOGIES AREA ENERGY ANALYSISAND ENVIRONMENTAL I MPACTS DIVISION ELECTRICITY M ARKETS & POLICY Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California. -
Baseline Assessment Study on Wastewater Management Belize
Caribbean Regional Fund for Wastewater Management Baseline Assessment Study on Wastewater Management Belize December 2013 Revised January 2015 Baseline Assessment Study for the GEF CReW Project: Belize December 2013 Prepared by Dr. Homero Silva Revised January 2015 CONTENTS List of Acronyms....................................................................................................................................................iii 1. Introduction ........................................................................................................................................................ 1 2. The National Context ....................................................................................................................................... 3 Description of the Country .................................................................................................................. 4 Geographic Characteristics ................................................................................................................. 6 Economy by Sectors ............................................................................................................................ 9 The Environment .............................................................................................................................. 13 Land Use, Land Use Changes and Forestry (LULUCF) ....................................................................... 20 Disasters .......................................................................................................................................... -
Renewable Energy Generator Output – Sample Calculations
Net Metering Program Highlights Net metering will be available to new customers until the size of the program reaches 1% of the electric provider’s previous year system peak in MW. The 1% will be measured against the total of the generator nameplate capacities for all participating customer’s generators and is split into the following tiers: (1) 0.5% for ≤ 20 kW True Net Metering This tier will include almost all residential customers. • Billing is based on net usage. • Customer receives the full retail rate for all excess kWh. • Utility shall use the customer’s existing meter if it is capable of reverse registration (spinning backwards) or install an upgraded meter at no additional cost to the net metering customer. • Utilities with fewer than 1,000,000 customers shall charge net metering customers at cost for an upgraded meter if the customer’s existing meter is not capable of reverse registration (spinning backwards). • A generator meter shall be provided at cost, if requested by the customer. (The generator meter is for the customer’s benefit. Utilities are not obligated to read a customer’s generator meter.) • No interconnection costs (beyond the combined $100 interconnection/net metering application fees), study fees, testing or inspection charges. • Net metering credits carry forward indefinitely. (2) 0.25% for >20 kW up to 150 kW Modified Net Metering • Customers pay full retail rate for electricity deliveries from the utility and receive the generation portion of the retail rate or a wholesale rate for deliveries to the grid. • No charge for the engineering review. • Customers pay all interconnection costs, distribution study fees and any network upgrade costs. -
Inspection Report Checklist
SIKESTON POWER STATI ON Date October 6, 2015 Bottom Ash Pond Inspector Jeffrey Fouse, P.E. Annual Inspection Check Sheet Pool Level Estimated el. 315.9 Temperature 60ºs Weather Partly cloudy, dry Date of Previous Annual Inspection: Not Applicable (First Annual Inspection under §257.83(b).) Date of Previous Periodic Inspection: Not Applicable. Description of Emergency (EC) or Immediate Maintenance (IM) conditions observed since the last annual inspection: None Describe any action taken to restore or improve safety and integrity of impounding structure: None Describe any modifications to the geometry of the impounding structure since the previous annual inspection: None Describe any modifications to the operation of the impounding structure since the previous annual inspection: None (Scrubber sludge has not been placed in the Pond since 1998. The Water Recirculation Structure (NE corner) is no longer operational.) The emergency outfall is not operational. Impounded fly ash is blocking the outlet of the emergency outfall. List the approximate remaining storage capacity (Cubic Yards) of the impounding structure: Estimated available storage is 342,000 CY below el. 320 (allowing 2 feet of freeboard) List the approximate maximum, minimum and present depth and elevation of the impounded water since the previous annual inspection: Estimated from inspection reports since Oct. 2015: Max. Elev. 319.0 (Depth 17.0’); Min. Elev. 315.9 (Depth 13.9’); Avg. Elev. 318.5 (Depth 16.5’) List the approximate maximum, minimum and present depth and elevation of the impounded CCR since the previous annual inspection: CCR occupies approximately 41 acres at an approx. Max. Elev. 325.0 (Depth 23.0’). -
Closure Plan
CLOSURE PLAN PLANT SCHERER - ASH POND 1 (AP-1) MONROE COUNTY, GEORGIA FOR November 2018 AECOM, 1600 Perimeter Park Drive, Suite 400 Morrisville, NC 27560, (919) 461-1230, (919) 461-1415 PAGE INTENTIALLY LEFT BLANK November 2018 Plant Scherer – Ash Pond 1 (AP-1) Closure Closure Plan TABLE OF CONTENTS ACRONYMS AND ABBEVIATIONS .................................................................................................... 1-3 1 General ...................................................................................................................................... 1-1 1.1 Site Background .................................................................................................................................... 1-1 1.2 Notification .............................................................................................................................................. 1-2 1.3 Boundary Survey and Legal Description ....................................................................................... 1-2 2 Closure Plan ............................................................................................................................. 2-1 2.1 Closure Configuration and Components ...................................................................................... 2-2 2.2 Conceptual Closure Sequence ........................................................................................................ 2-4 2.3 Directional Informational Signs ....................................................................................................... -
(CCR) Pond Capping
GEOSYNTHETICS High-Performance Geosynthetics PLAN VIEW for Ash (CCR) Pond Capping TenCate, the world’s leading provider of geosynthetics and industrial fabrics, offers TENCATE PANEL SEAMS new, quick and safe ways to treat waste FILL materials produced by industrial facilities. High-performance geosynthetics are used to stabilize soft/wet ash ponds, allowing the placement of the top cover system Fill soil is placed over the sludge/ash pond. and compacted fill. TENCATE HIGH-PERFORMANCE GEOTEXTILE PANEL Pond capping with TenCate’s geotextiles has become a viable alternative due to HIGH TENSION IN PORE WATER PRESSURE SLUDGE SLUDGE many advantages: SEAMS DEVELOPS POND LIMIT • Engineered seams allow for efficient installation of large geotextile panels with When fill is placed over the geotextile panel, the sludge/ash will increase in extremely high seam strengths to create shear strength as pore water pressures dissipate through the panels. a stable capping system. • Quickly and safely facilitates the complete closure of storage basins and ponds. • Allows water to pass through to relieve pore pressure. • Contains the fine-grained sludge material below, and separates sludge from clean fill above. Without high-performance geotextiles, High seam strengths are critical to the field performance of the panels to pond capping would be extremely difficult prevent rupture during fill placement over the low-bearing capacity sludge/ash. or impossible to perform. With expert Geotextile advantages engineering knowledge, the right tools and include excellent separation, experience, TenCate has successfully higher tensile strength and large seaming panels for designed numerous pond capping and quicker installation. closure projects all over the world. -
Electric Transmission and Distribution Equipment Use
Electric Transmission and Distribution Equipment Use Final Rule: Mandatory Reporting of Greenhouse Gases (40 CFR 98, Subpart DD) Under the final Mandatory Reporting Rule for Additional Sources of Fluorinated Greenhouse Gases (GHGs), owners and operators of electric power system facilities with a total nameplate capacity that exceeds 17,820 lbs (7,838 kg) of sulfur hexafluoride (SF6) and/or perfluorocarbons (PFCs) must report emissions of SF6 and/or PFCs from the use of electrical transmission and distribution equipment. Owners or operators must collect emissions data, calculate GHG emissions, and follow the specified procedures for quality assurance, missing data, recordkeeping, and reporting. How Is This Source Category Defined? The electrical transmission and distribution equipment use source category consists of all electric transmission and distribution equipment and servicing inventory insulated with or containing SF6 or PFCs used within an electric power system. This equipment includes but is not limited to gas-insulated substations; circuit breakers; switchgear, including closed-pressure and hermatically sealed-pressure switchgear; gas-insulated lines containing SF6 or PFCs; gas containers such as pressurized cylinders; gas carts; electric power transformers; and other containers of SF6 or PFC. For the purposes of this subpart, facility is defined as the electric power system, comprising all electric transmission and distribution equipment insulated with or containing SF6 or PFCs that is linked through electric power transmission -
Plant Branch Electricity While Minimizing the Company’S Environmental Impact
Environment – A Balanced Approach At Georgia Power, we strive to provide our customers with reliable and affordable Plant Branch electricity while minimizing the company’s environmental impact. To meet the needs of 2.5 million customers, Georgia Power has created a diverse energy portfolio Ash pond closure and dewatering that delivers sustainable power. Georgia Power is permanently closing its 29 ash ponds at At Georgia Power, compliance with federal and state environmental requirements 11 coal-fired power plants across the state and has committed is only the beginning of our environmental commitment. In addition to compliance, we emphasize conservation and recycling, and help our customers make efficient that all ash ponds will stop receiving coal ash within three years. use of energy. We challenge ourselves every day to preserve the environment and strengthen the communities in which we live, work and serve. Additionally, the company is completely removing the ash from 19 ponds located adjacent to lakes or rivers where advanced Cornerstones of Our Commitment engineering methods designed to enhance the protection of Three principles serve as the cornerstones of our environmental commitment: groundwater around the closed pond may not be feasible. The Solutions ash from these ponds will either be relocated to a permitted Our environmental record is a top priority and we are taking steps in the communities we serve to improve the environment, including investing more than $5 billion landfill, consolidated with other closing ash ponds or recycled for in environmental controls at our power plants in Georgia. beneficial use. More than 60 percent of the coal ash Georgia Power Balance We strive to maintain a balance that furthers environmental stewardship while produces today is recycled for various uses such as Portland providing for growing energy needs and the economy. -
Annual Groundwater Monitoring and Corrective Action Report Ash Pond Ab
www.haleyaldrich.com REPORT ON ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT ASH POND A.B. BROWN GENERATING STATION POSEY COUNTY, INDIANA by Haley & Aldrich, Inc. Greenville, South Carolina for Southern Indiana Gas and Electric Company Evansville, Indiana File No. 129420 January 2019 Table of Contents Page List of Tables i List of Figures i 1. 40 CFR § 257.90 Applicability 1 1.1 40 CFR § 257.90(a) 1 1.2 40 CFR § 257.90(e) - SUMMARY 1 1.2.1 Status of the Groundwater Monitoring Program 1 1.2.2 Key Actions Completed 1 1.2.3 Problems Encountered 2 1.2.4 Actions to Resolve Problems 2 1.2.5 Project Key Activities for Upcoming Year 2 1.3 40 CFR § 257.90(e) - INFORMATION 2 1.3.1 40 CFR § 257.90(e)(1) 2 1.3.2 40 CFR § 257.90(e)(2) 3 1.3.3 40 CFR § 257.90(e)(3) 3 1.3.4 40 CFR § 257.90(e)(4) 3 1.3.5 40 CFR § 257.90(e)(5) 3 Tables Figures Appendix A – Alternate Source Demonstration List of Tables Table No. Title I Groundwater Monitoring Well Location and Construction Details II Summary of Groundwater Quality Data List of Figures Figure No. Title 1 Ash Pond Monitoring Well Location Map i 1. 40 CFR § 257.90 Applicability 1.1 40 CFR § 257.90(a) Except as provided for in § 257.100 for inactive CCR surface impoundments, all CCR landfills, CCR surface impoundments, and lateral expansions of CCR units are subject to the groundwater monitoring and corrective action requirements under § 257.90 through § 257.98.