The Fact That D-Ribose Is One of the Important Constituents of Ribonucleic

Total Page:16

File Type:pdf, Size:1020Kb

The Fact That D-Ribose Is One of the Important Constituents of Ribonucleic The Journal of Biochemistry , Vol. 36. BIOCHEMICAL STUDIES ON d-RIBOSE, WITH SPECIAL REFERENCE TO THE MECHANISM OF ABSORPTION OF SUGARS FROM INTESTINAL TRACT. BY YOSINORI NAITO. (From the Department of Biochemistry, Niigata Medical School. Director: Prof. N. Ariyama.) (Received for publication, July 12, 1942.) The fact that d-ribose is one of the important constituents of ribonucleic acid as well as of various co-enzymes, gives this pentose a special, biochemical significance. Our knowledge on the meta bolism of this sugar is, however, still very limited, when compared with the brilliant results attained in the chemical study of the sugar. Hamburger (1922) observed that a part of ribose perf used through the frog kidney was retained by the tissue. Raymond and Blanco (1928), and Dickens (1938) found that ribose was not fermented by living yeast. Ribose-5-phosphoric acid was found by Dickens (l. c.) to be fermentable by the Lebedew extract, one molecule of the substrate producing one molecule of ethyl alcohol, carbon dioxide and phosphoric acid respectively along with a substance or substances of unknown nature. The increasing interest on the metabolism of ribose has prompted a further in vestigation, the results of which will be published in this paper. EXPEEIMENTAL. I. Synthesis of d-ribose. d-Ribose employed in the present experiment was synthesized from gluconic acid. In the first stage of the synthesis, calcium gluconate was converted into d-arabinose by the Hockett and Hudson method (1934). The yield was 100gm. of d-arabinose from 350gm. of calcium gluconate dihydrate. d-Arabinose melted 131 132 Y. Naito: at 155-156•Ž. [ƒ¿]20D-103.3•‹. d-Arabinose was then oxidized to arabonate by bromine in the conventional fashion. The yield was 100gm. of calcium d-arabonate from 100gm. of d-arabinose. In the meanwhile, it was found that the addition of 10% more calcium carbonate than the calculated value increased the yield of arabonate. From the next stage on, the operation followed the Steiger method (1936). Arabonate was epimelized to ribonate and the acid was then converted into cadmium salt. It was found advisable to put the salt through a rigorous process of purification so as to perform the following operations more easily and to increase the yield of the products. The yield was 24gm. of pure cadmium ribonate from 100gm. of calcium arabonate. Crystalline lactone of ribonic acid was derived from the cadmium salt. The yield was 12gm. of lactone from 24gm. of cadmium salt. The lactone was finally reduced to d-ribose with sodium amalgam. When the purest sam ple of lactone was used, ribose crystallized out directly upon inoculation; otherwise the sugar was obtained in a syrupy state. The yield was 12gm. of the syrupy ribose or 8gm. of crystalline ribose from 12gm. of lactone. The crude ribose was purified through p-bromophenylhydrazone, and repeatedly recrystallized from alcohol, until the fusing point reached the constant value. The yield was 4-5gm. of pure d-ribose from 12gm. of the syrupy crude ribose or from 350gm. of calcium gluconate. II. Some physical properties of d-ribose. FP=86-88•Ž. (uncorr.)-Levene and Jacobs (1909): 86 87•Ž. (corr.); van Ekenstein and Blanksma (1913): 95•Ž.; Phelps et al. (1934): 87•Ž. [ƒ¿]18D-21.4•‹(H2O, 2.57%, 2dm) Levene and Jacobs (l. e.): [ƒ¿]D-19.5•‹ (H2O, 4%); van Eken stein and Blanksama (l. c.); [ƒ¿]D-21.5•‹; Kuhn et al (1935) [ƒ¿]22D-22.5•‹ (H2O, 0.9%). III. Some chemical properties of d-ribose. The reducing powerr of ribose against the Somogyi reagent (1926) was 90.5% of that of glucose. This value was reached Biochemical Studies on d-Ribose. 133 after 35 minutes' heating; the value after 15 minutes was 85 .3%. Levene and Jorpes (1929) stated that the reducing power of ribose against the Hagedorn-Jensen reagent was equivalent to 87.3% of that of glucose. Ribose was more sensitive to alkali than other pentoses. It is revealed in Table I that at 0 .5n sodium hydroxide-alkalinity and at 20•Ž., the reducing power of the 0.5% ribose solution decreased more rapidly than those of d-xylose, and of d and l-arabinose. The velocity of the conversion of pentoses into furfural was followed, according to the Hoffman method TABLE I. Decrease of Reducing Powerr of Pentoses in Alkaline Medium. 5cc. of 1% pentose solution+5cc. of n NaOH. 20•Ž. Determination of reducing power: Somogyi's method. TABLE II. Production of Furfural front Pentoses (Hoffman's method). 134 Y. Naita: (1927), by distilling sugars with 20% hydrochloric acid and by determining furfural colorimetrically with aniline acetate. As shown in Table II, the conversion was most rapid in the case of ribose. The almost quantitative production of furfural was achieved after one and a half hours' distillation, while the con version by this time was about 90% in xylose, and about 50% in d- and l-arabinose. Ribose in purine nucleosides and purine nucleotides of the yeast origin was found by Hoffman (I. c.) and Ishikawa (1935) to be also quantitatively determinable by the furfural method, though the rate of the production of furfural was more or less retarded by the presence of purines and phosphoric acid which combined with the sugar. Younburg (1927), and Andrews and Milroy (1933) were unable to carry out the 100% conversion of free and combined ribose into furfural. This may be due to the incomplete formation of furfural from ribose under different condition from that of the Hoffman method. IV. Biological properties of d-ribose. The minimum quantity of ribose, which caused pentosuria after the intravenous injection to the marginal veins of rabbits starved for 24hours, was 250mg. per kilogram of body weight. The oral administration of 2gm. of ribose per kilogram of body weight by the stomach tube did not yet produce definite pentosuria. The tolerance for other pentoses was much lower than that of ribose; less than 50mg. per kilogram of body weight in the case of the in travenous injection of d-xylose and d-arabinose, and less than 0.5 gm. in the case of the oral administration. The excretion of sugars was examined by determining the increase of the non-ferment able reducing power of the total urine which was collected by combining the portion excreted during the experimental period and the portion catheterized from the bladder at the end of the period. The far higher tolerance of ribose suggests the much greater utilization of this sugar than other pentoses in the animal body. The influence of the intravenous injection and the oral ad ministration of ribose on the blood sugar of rabbits which had been starved for 24hours was examined. The protocol of an experiment Biochemical Studies on d-Ribose. 135 TABLE III. Intravenous Injection of d-Riose to Rabbit. Ribose: 250mg. per kg. Rabbit: 2450gm., ?? . Extra-excretion of non-fermentable reducing substance in urine during 7hours: 48mg. in terms of glucose. TABLE IV. Oral Administration of d-Ribose to Rabbit. Ribose: 2,0gm. per kg. Rabbit: 2300gm., ?? . Extra-excretion of non-ferm. red. subst. in urine during 8 hrs.: 5mg. in terms of glucose. 136 Y. Naito: fairly typical for each case is listed in Table III and IV respec tively. The values of the non-fermentable sugar which had been raised by the introduction of ribose, fell to the normal level more rapidly than those of the fermentable sugar which had also in creased. The blood sugar was determined by the Hagedorn Jensen method. Table V and VI indicate that a marked appear ance of d-arabinose and a moderate increase of the fermentable sugar in the blood were induced by the introduction of a small amount of the sugar, and that the curves of arabinose receded to the original value more quickly than those of the fermentable sugar. The increase of the fermentable sugar caused by injection and administration of d-xylose and l-arabinose has been repeatedly observed in rabbits and rats by many investigators-Corley (1926, 1928), Blanco (1928), Fishberg (1930), Miller and Lewis (1932 ii), Larson and Sawyer (1936). Sawyer (1940) stated that the administration of l-xylose to rats did not produce hyper glucemia. The absorption of ribose from the intestinal tracts of rats was studied. The procedure was somewhat modified from that describ TABLE V. Intravenous Injection of d-Arabinose to Rabbit. Arabinose: 50mg. per kg. Rabbit: 2300gm., ?? . Extra-excretion of non-ferm. red. subst. in urine during 4 hrs.: 37mg. in terms of glucose. Biochemical Studies on d-Ribose. 137 TABLE VI. Oral Administration of d-Arabinose to Rabbit. Arabinose: 1gm. per kg. Rabbit: 2750gm., ?? . ed by Cori (1925). Rats, weighing from 100 to 150gm. after having starved for 48hours, received 2cc. of the 25% sugar solu tions with the aid of a stomach tube (urethral catheter No. 5). The loss of the sugar adhering to the catheter was 5% of the total sugar on an average taken from 10 control experiments. The amount of the sugar absorbed was calculated from the difference between the quantity of the sugar given and that remaining in the stomach and the entire small intestine. The large intestine was discarded, since the quantity of the sugar, found there, was negligible, and there remained a good quantity of intestinal contents which gave a reducing power corresponding to 5 to 10mg. in terms of glucose. The reducing substance present in the stomach and the small intestine of fasting rats was 0.80mg. and 3.78mg. respectively in terms of glucose on an average taken from five experiments. The absorption of the sugar was determined 1 and 2hours after the feeding, and the absorption coefficients (C) were calculated by the following formula of Cori: C=A•~100/W•~ T 138 Y.
Recommended publications
  • Enhanced Trehalose Production Improves Growth of Escherichia Coli Under Osmotic Stress† J
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, July 2005, p. 3761–3769 Vol. 71, No. 7 0099-2240/05/$08.00ϩ0 doi:10.1128/AEM.71.7.3761–3769.2005 Copyright © 2005, American Society for Microbiology. All Rights Reserved. Enhanced Trehalose Production Improves Growth of Escherichia coli under Osmotic Stress† J. E. Purvis, L. P. Yomano, and L. O. Ingram* Department of Microbiology and Cell Science, Box 110700, University of Florida, Gainesville, Florida 32611 Downloaded from Received 7 July 2004/Accepted 9 January 2005 The biosynthesis of trehalose has been previously shown to serve as an important osmoprotectant and stress protectant in Escherichia coli. Our results indicate that overproduction of trehalose (integrated lacI-Ptac-otsBA) above the level produced by the native regulatory system can be used to increase the growth of E. coli in M9-2% glucose medium at 37°C to 41°C and to increase growth at 37°C in the presence of a variety of osmotic-stress agents (hexose sugars, inorganic salts, and pyruvate). Smaller improvements were noted with xylose and some fermentation products (ethanol and pyruvate). Based on these results, overproduction of trehalose may be a useful trait to include in biocatalysts engineered for commodity chemicals. http://aem.asm.org/ Bacteria have a remarkable capacity for adaptation to envi- and lignocellulose (6, 7, 10, 28, 30, 31, 32, 45). Biobased pro- ronmental stress (39). A part of this defense system involves duction of these renewable chemicals would be facilitated by the intracellular accumulation of protective compounds that improved growth under thermal stress and by increased toler- shield macromolecules and membranes from damage (9, 24).
    [Show full text]
  • Conversion of Carbohydrates to Furfural Via Selective Cleavage Of
    Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2015 Conversion of carbohydrates to furfural via selective cleavage of carbon-carbon bond: cooperative effect of zeolite and solvent Jinglei Cui,ab Jingjing Tan,ab Tiansheng Deng,a Xiaojing Cui,a Yulei Zhu*ac and Yongwang Liac a State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China. E-mail: [email protected]; Fax: +86-351-7560668. b University of Chinese Academy of Sciences, Beijing, 100049, PR China. c Synfuels China Co. Ltd., Beijing, PR China. 1. Materials Cellulose, inulin, starch, sucrose, maltose, D-glucose, D-fructose, D-xylose, D- arabinose, 5-hydromethylfurfural (HMF), formic acid (FA) and levulinic acid (LA) were purchased from Aladdin. γ-valerolactone (GVL), γ-butyrolactone (GBL), 1,4- dioxane, gluconic acid, H2SO4 (98%), Amberlyst-15, AlCl3 and γ-Al2O3 were purchased from Sinopharm Chemical Reagent Co., Ltd.. All the above agents were utilized without further purification. Hβ, HY, H-Mordenite and HZSM-5 zeolite were purchased from The Catalyst Plant of Nankai University. 2. Experiments 2.1 The computational formula The conversion of sugars and the yield of the products were quantified according to the following equations: 푚표푙 표푓 푠푢푔푎푟(푖푛푙푒푡)-푚표푙 표푓 푠푢푔푎푟(표푢푡푙푒푡) Conversion = 푚표푙 표푓 푠푢푔푎푟(푖푛푙푒푡) ×100% 푚표푙 표푓 표푛푒 푝푟표푑푢푐푡 푝푟표푑푢푐푒푑 Yield =푚표푙 표푓 푡ℎ푒표푟푒푡푖푐푎푙 푝푟표푑푢푐푡 푣푎푙푢푒×100% 2.2 Procedures for the catalyst recycling After the first run was completed, the reaction products were centrifuged for 10 min to separate the Hβ zeolite from the solutions.
    [Show full text]
  • The Fischer Proof of the Structure of (+)-Glucose Started in 1888, 12
    The Fischer proof of the structure of (+)-glucose Started in 1888, 12 years after the proposal that carbon was tetrahedral, and thus had stereoisomers. Tools: - melting points - optical rotation (determine whether a molecule is optically active) - chemical reactions Fischer knew: - (+)-glucose is an aldohexose. - Therefore, there are 4 stereocenters and 24 = 16 stereoisomers (8 D-sugars and 8 L-sugars) - At this time could not determine the actual configuration (D or L) of sugars - Fischer arbitrarily assigned D-glyceraldehyde the following structure. CHO H OH CH2OH - In 1951 Fischer was shown to have guessed correctly. CO2H CHO H OH HO H HO H CH2OH CO2H L-Tartaric acid L-glyceraldehyde Which of the 8 D-aldohexoses is (+)-glucose??? 1) Oxidation of (+)-glucose with nitric acid gives an aldaric acid, glucaric acid, that is optically active. Therefore (+)-glucose cannot have structures 1 or 7, which would give optically inactive aldaric acids. HNO3 (+)-glucose Glucaric acid Optically active CHO CO2H H OH H OH 1 H OH HNO3 H OH Mirror plane H OH H OH H OH H OH Since these aldaric CH2OH CO2H acids have mirror planes they are meso structures. CHO CO2H They are not optically H OH H OH active HO H HNO3 HO H 7 Mirror plane HO H HO H H OH H OH CH2OH CO2H 2) Ruff degradation of (+)-glucose gives (-)-arabinose. Oxidation of (-)-arabinose with nitric acid gives arabanaric acid, which is optically active. Therefore, (-)-arabinose cannot have structures 9 or 11, which would give optically inactive aldaric acids. If arabinose cannot be 9 or 11, (+)-glucose cannot be 2 (1 was already eliminated), 5 or 6, which would give 9 or 11 in a Ruff degradation.
    [Show full text]
  • 406-3 Wood Sugars.Pdf
    Wood Chemistry Wood Chemistry Wood Carbohydrates l Major Components Wood Chemistry » Hexoses – D-Glucose, D-Galactose, D-Mannose PSE 406/Chem E 470 » Pentoses – D-Xylose, L-Arabinose Lecture 3 » Uronic Acids Wood Sugars – D-glucuronic Acid, D Galacturonic Acid l Minor Components » 2 Deoxy Sugars – L-Rhamnose, L-Fucose PSE 406 - Lecture 3 1 PSE 406 - Lecture 3 2 Wood Chemistry Wood Sugars: L Arabinose Wood Chemistry Wood Sugars: D Xylose l Pentose (5 carbons) CHO l Pentose CHO l Of the big 5 wood sugars, l Xylose is the major constituent of H OH arabinose is the only one xylans (a class of hemicelluloses). H OH found in the L form. » 3-8% of softwoods HO H HO H l Arabinose is a minor wood » 15-25% of hardwoods sugar (0.5-1.5% of wood). HO H H OH CH OH 2 CH2OH PSE 406 - Lecture 3 3 PSE 406 - Lecture 3 4 1 1 Wood Chemistry Wood Sugars: D Mannose Wood Chemistry Wood Sugars: D Glucose CHO l Hexose (6 carbons) CHO l Hexose (6 carbons) l Glucose is the by far the most H OH l Mannose is the major HO H constituent of Mannans (a abundant wood monosaccharide (cellulose). A small amount can HO H class of hemicelluloses). HO H also be found in the » 7-13% of softwoods hemicelluloses (glucomannans) H OH » 1-4% of hardwoods H OH H OH H OH CH2OH CH2OH PSE 406 - Lecture 3 5 PSE 406 - Lecture 3 6 Wood Chemistry Wood Sugars: D Galactose Wood Chemistry Wood Sugars CHO CHO l Hexose (6 carbons) CHO H OH H OH l Galactose is a minor wood D Xylose L Arabinose HO H HO H monosaccharide found in H OH HO H H OH certain hemicelluloses CH2OH HO H CHO CH2OH CHO CHO » 1-6% of softwoods HO H H OH H OH » 1-1.5% of hardwoods HO H HO H HO H HO H HO H H OH H OH H OH H OH H OH H OH CH2OH CH2OH CH2OH CH2OH D Mannose D Glucose D Galactose PSE 406 - Lecture 3 7 PSE 406 - Lecture 3 8 2 2 Wood Chemistry Sugar Numbering System Wood Chemistry Uronic Acids CHO 1 CHO l Aldoses are numbered l Uronic acids are with the structure drawn HO H 2 polyhydroxy carboxylic H OH vertically starting from the aldehydes.
    [Show full text]
  • Multi-Enzymatic Cascades in the Synthesis of Modified Nucleosides
    biomolecules Article Multi-Enzymatic Cascades in the Synthesis of Modified Nucleosides: Comparison of the Thermophilic and Mesophilic Pathways Ilja V. Fateev , Maria A. Kostromina, Yuliya A. Abramchik, Barbara Z. Eletskaya , Olga O. Mikheeva, Dmitry D. Lukoshin, Evgeniy A. Zayats , Maria Ya. Berzina, Elena V. Dorofeeva, Alexander S. Paramonov , Alexey L. Kayushin, Irina D. Konstantinova * and Roman S. Esipov Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997 GSP, B-437 Moscow, Russia; [email protected] (I.V.F.); [email protected] (M.A.K.); [email protected] (Y.A.A.); [email protected] (B.Z.E.); [email protected] (O.O.M.); [email protected] (D.D.L.); [email protected] (E.A.Z.); [email protected] (M.Y.B.); [email protected] (E.V.D.); [email protected] (A.S.P.); [email protected] (A.L.K.); [email protected] (R.S.E.) * Correspondence: [email protected]; Tel.: +7-905-791-1719 ! Abstract: A comparative study of the possibilities of using ribokinase phosphopentomutase ! nucleoside phosphorylase cascades in the synthesis of modified nucleosides was carried out. Citation: Fateev, I.V.; Kostromina, Recombinant phosphopentomutase from Thermus thermophilus HB27 was obtained for the first time: M.A.; Abramchik, Y.A.; Eletskaya, a strain producing a soluble form of the enzyme was created, and a method for its isolation and B.Z.; Mikheeva, O.O.; Lukoshin, D.D.; chromatographic purification was developed. It was shown that cascade syntheses of modified nu- Zayats, E.A.; Berzina, M.Y..; cleosides can be carried out both by the mesophilic and thermophilic routes from D-pentoses: ribose, Dorofeeva, E.V.; Paramonov, A.S.; 2-deoxyribose, arabinose, xylose, and 2-deoxy-2-fluoroarabinose.
    [Show full text]
  • Determination of Sugar Profiles of Sweetened Foods and Beverages
    Journal of Food and Nutrition Research, 2016, Vol. 4, No. 6, 349-354 Available online at http://pubs.sciepub.com/jfnr/4/6/2 ©Science and Education Publishing DOI:10.12691/jfnr-4-6-2 Determination of Sugar Profiles of Sweetened Foods and Beverages Şana SUNGUR*, Yusuf KILBOZ Department of Chemistry, Science and Letters Faculty, Mustafa Kemal University, Hatay, Turkey *Corresponding author: [email protected] Abstract The determination of sugar profile in commonly consumed sweetened foods and beverages (cake, chocolate, jelly tots, cookie, wafer, pudding, fruit yogurt, limon-flavored soda, cola, lemonade, mineral water, fruit juice, milk drink and ice tea) was carried out using high performance liquid chromatography (HPLC). The amount of fructose was found higher than the amount of glucose in most of the foods and beverages (juice, limon-flavored soda, mineral water, cola, chocolate, cookie, wafer). The highest fructose contents were found in cola (71.10 % of sugars), chocolate (52.40 % of sugars) and limon-flavored soda (48.21 % of sugars) samples. The galactose, mannitol, arabinose and xylitol were not detected in any of the examined food and beverage samples. The predominant sugar in milk drinks, jelly tots, pudding, cookie and cake samples was determined as sucrose. Maltitol was only determined in cake and jellytots samples. Keywords: fructose, sweetened foods, sweetened beverages, sugar profile, HPLC Cite This Article: Şana SUNGUR, and Yusuf KILBOZ, “Determination of Sugar Profiles of Sweetened Foods and Beverages.” Journal of Food and Nutrition Research, vol. 4, no. 6 (2016): 349-354. doi: 10.12691/jfnr-4-6-2. The objective of this study was to determine fructose content and sugar profile in commonly consumed 1.
    [Show full text]
  • Cofermentation of Glucose, Xylose and Arabinose by Genomic DNA
    GenomicCopyright © DNA–Integrated2002 by Humana Press Zymomonas Inc. mobilis 885 All rights of any nature whatsoever reserved. 0273-2289/02/98-100/0885/$13.50 Cofermentation of Glucose, Xylose, and Arabinose by Genomic DNA–Integrated Xylose/Arabinose Fermenting Strain of Zymomonas mobilis AX101 ALI MOHAGHEGHI,* KENT EVANS, YAT-CHEN CHOU, AND MIN ZHANG Biotechnology Division for Fuels and Chemicals, National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401, E-mail: [email protected] Abstract Cofermentation of glucose, xylose, and arabinose is critical for complete bioconversion of lignocellulosic biomass, such as agricultural residues and herbaceous energy crops, to ethanol. We have previously developed a plas- mid-bearing strain of Zymomonas mobilis (206C[pZB301]) capable of cofer- menting glucose, xylose, and arabinose to ethanol. To enhance its genetic stability, several genomic DNA–integrated strains of Z. mobilis have been developed through the insertion of all seven genes necessay for xylose and arabinose fermentation into the Zymomonas genome. From all the integrants developed, four were selected for further evaluation. The integrants were tested for stability by repeated transfer in a nonselective medium (containing only glucose). Based on the stability test, one of the integrants (AX101) was selected for further evaluation. A series of batch and continuous fermenta- tions was designed to evaluate the cofermentation of glucose, xylose, and L-arabinose with the strain AX101. The pH range of study was 4.5, 5.0, and 5.5 at 30°C. The cofermentation process yield was about 84%, which is about the same as that of plasmid-bearing strain 206C(pZB301). Although cofer- mentation of all three sugars was achieved, there was a preferential order of sugar utilization: glucose first, then xylose, and arabinose last.
    [Show full text]
  • Screening of Levan Producing Bacteria from Soil Collected from Jaggery Field Nb
    IJPCBS 2017, 7(3), 202-210 Laddha et al. ISSN: 2249-9504 INTERNATIONAL JOURNAL OF PHARMACEUTICAL, CHEMICAL AND BIOLOGICAL SCIENCES Available online at www.ijpcbs.com Research Article SCREENING OF LEVAN PRODUCING BACTERIA FROM SOIL COLLECTED FROM JAGGERY FIELD NB. Laddha1* and MP. Chitanand2 1Research Centre in Microbiology, Netaji Subhashchandra Bose College, Nanded-431 602, Maharashtra, India. 2Department of Microbiology, Netaji Subhashchandra Bose College, Nanded- 431 602, Maharashtra, India. ABSTRACT Levan is an extracellular polysaccharide composed predominantly of D-fructose residues joined by glycosidic bonds. At present, there are many polysaccharides in the market primarily of plant origin. But microbial levans are more preferred as dietary polysaccharide due to its mult- idimensional application as anti-lipidemic, anti-cholesterimic, anti-cancerous and as prebiotic. In this context, in present study twelve levan producing isolates were screened out from jaggery field. Iosolate SJ8 was the highest levan producer which was studied for cultural, morphological and biochemical characterization. It was identified as Bacillus subtilis (KC243314). The optimized fermentation conditions for levan production were pH 7, temperature 300 C,100rpm and 48hrs fermentation period. At these optimized conditions the maximum levan production was 30.6mg/ml. Sugar composition of the polymer was confirmed by analytical methods and TLC. Result proved the presence of fructose as the main sugar in the polymer. Keywords : Levan, Bacillus subtilis (KC243314), polymer, fructose. INTRODUCTION plasma substitute, drug activity prolonger5, anti- Levan is a biopolymer formed by β-(2,6) linkage obesity and lipid-lowering agent6, having β-(1,2) linkages on its branch points and osmoregulator, cryoprotector, or antitumor contains long chain of fructose units in its agent7.
    [Show full text]
  • The Utilization of Sugars by Fungi Virgil Greene Lilly
    West Virginia Agricultural and Forestry Experiment Davis College of Agriculture, Natural Resources Station Bulletins And Design 1-1-1953 The utilization of sugars by fungi Virgil Greene Lilly H. L. Barnett Follow this and additional works at: https://researchrepository.wvu.edu/ wv_agricultural_and_forestry_experiment_station_bulletins Digital Commons Citation Lilly, Virgil Greene and Barnett, H. L., "The utilization of sugars by fungi" (1953). West Virginia Agricultural and Forestry Experiment Station Bulletins. 362T. https://researchrepository.wvu.edu/wv_agricultural_and_forestry_experiment_station_bulletins/629 This Bulletin is brought to you for free and open access by the Davis College of Agriculture, Natural Resources And Design at The Research Repository @ WVU. It has been accepted for inclusion in West Virginia Agricultural and Forestry Experiment Station Bulletins by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Digitized by the Internet Archive in 2010 with funding from Lyrasis IVIembers and Sloan Foundation http://www.archive.org/details/utilizationofsug362lill ^ni^igaro mU^ 'wmSS'"""' m^ r^' c t» WES: VIRGINIA UNIVERSITY AGRICULTURAL EXPERIMENT STAl. luiietin I62T 1 June 1953 ; The Utilization of Sugars by Fungi by Virgil Greene Lilly and H. L. Barnett WEST VIRGINIA UNIVERSITY AGRICULTURAL EXPERIMENT STATION ACKNOWLEDGMENT The authors wish to thank research assist- ants Miss Janet Posey and Mrs. Betsy Morris Waters for their faithful and conscientious help during some of these experiments. THE AUTHORS H. L. Barnett is Mycologist at the West Virginia University Agricultural Experiment Station and Professor of Mycology in the College of Agriculture, Forestry, and Home Economics. Virgil Greene Lilly is Physiol- ogist at the West Virginia University Agricul- tural Experiment Station and Professor of Physiology in the College of Agriculture, Forestry, and Home Economics.
    [Show full text]
  • L-Arabinose and Oligosaccharides Production from Sugar Beet Pulp by Xylanase and Acid Hydrolysis
    African Journal of Biotechnology Vol. 10(10), pp. 1907-1912, 7 March, 2011 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB10.1749 ISSN 1684–5315 © 2011 Academic Journals Full Length Research Paper L-Arabinose and oligosaccharides production from sugar beet pulp by xylanase and acid hydrolysis Rina Wu1, Huashan Zhang2, Xiaoying Zeng1, Jitai Zhang1 and Hairong Xiong1* 1Engineering research centre for the protection and utilization of bioresource in southern China, College of life science, South-central University for Nationalities, Wuhan, 430074, China. 2Key laboratory of fermentation engineering, Ministry of education (Hubei University of Technology), Wuhan, 430068, China. Accepted 7 January, 2011 Xylanase and sulfuric acid were used to hydrolyze sugar beet pulp for the production of L-arabinose and oligosaccharides. Xylanase was obtained by the solid state fermentation of Thermomyces lanuginosus DSM10635. Xylanase or dilute sulfuric acid hydrolysis was adopted to hydrolyze sugar beet pulp. The hydrolysates were quantitatively identified by high-performance liquid chromatography (HPLC). The content of arabinose was 48.4% in the total monosaccharide of sulfuric acid hydrolysate, whereas, more oligosaccharides were obtained from sugar beet pulp hydrolysate of xylanase. This study has established a new way for arabinose production, as well a potential method for oligosaccharides production. Key words: Xylanase, hydrolysis, sugar beet pulp, L-arabinose, HPLC. INTRODUCTION Hemicellulose is the second most abundant plant poly- metabolic conversion of sucrose (Xiong et al., 2005). saccharide and an attractive energy feedstock for the Currently, arabinose is mainly produced by hydrolyzing production of bioethanol. Xylan is the major hemicellulose the scarce and expensive Arabic gum which was very component in nature.
    [Show full text]
  • Metabolite Gene Regulation of the L-Arabinose Operon in Escherichia
    Proc. Natl. Acad. Sci. USA Vol. 77, No. 4, pp. 1768-1772, April 1980 Biochemistry Metabolite gene regulation of the L-arabinose operon in Escherichia coli with indoleacetic acid and other indole derivatives (circumvention of cyclic AMP/positive control by indole derivatives) ELLIS L. KLINE, CAROLYN S. BROWN, VYTAS BANKAITIS, DAVID C. MONTEFIORI, AND KEN CRAIG Department of Microbiology and Department of Biochemistry, Clemson University, Clemson, South Carolina 29631 Communicated by Sidney P. Colowick, November 20,1979 ABSTRACT The ability of indole derivatives to facilitate arabinose structural genes. The kinetics of induction and ca- RNA polymerase transcription of the L-arabinose operon in tabolite repression of the araBAD operon in the presence of IAA Escherichia coli was shown to require the catabolite activator have also been examined. protein (CAP) as well as the araC gene product. Adenosine 3',5'-monophosphate (cAMP) was not obligatory for araBAD transcription when the cells were grown in the presence of 1 mM MATERIALS AND METHODS indole-3-acetic acid or in the presence of indole-3-acetamide, indole-3-propionic acid, indole-3-butyric acid, or 5-hydroxyin- Chemicals. All chemicals used were purchased from Sigma dole-3-acetic acid. However, these indole derivatives were un- except for sulfuric acid, carbazole, and reagent salts, which were able to circumvent the cAMP requirement for the induction of purchased from Fisher. the lactose and the maltose operons. Catabolite repression oc- Bacterial Strains. The origins and genotypes of E. coli strains curred when glucose was added to cells grown in the presence employed in this study are given in Table 1.
    [Show full text]
  • Product Information
    Product Information MANNA® 2000 CAS: 9036-66-2 Formula: A highly branched polysaccharide that is Characteristics: composed of galactose units and arabinose units in the Agglomerated free flowing powder, white to off-white approximate ratio of 6:1 Highly soluble in hot and cold water Botanical source: Larch Tree (Larix laracina or Larix Excellent stability to heat, pH, and salt concentrations occidentalis). Specifications: Structural formula: Carbohydrates: .......................... 80% Min. Physical State -Flavor.............................. Slight Gal I -Odor................................ Slightly Aromatic Araf Gal Gal Color (CWF) I I I -L...................................... 90 Min. Gal Gal Gal Araf GalAraf I I I I I I -a...................................... Record Gal - Gal - Gal - Gal - Gal - Gal - Gal - Gal - Gal - Gal - Gal - Gal -b...................................... 11 Max. I I I I Araf Arap Gal Gal -Whiteness....................... 63 Min. I I Dissolution Araf Gal Sink Wet .......................... Pass I I Gal = galactose sugar Gal Gal Lumps .............................. None (galactopyranosyl) β(1-3) Main Chain Heavy Metals............................ 5 ppm Max. β(1-6) Side Chains Araf = arabinose sugar Lead ............................... 0.10 ppm Max. (arabinofuranosyl) β(1-3) & β (1-6) Arap = arabinose sugar Arsenic ........................... 0.40 ppm Max (arabinopyranosyl) Cadmium. ....................... 0.25 ppm Max Mercury ........................... 0.10 ppm Max. Molecular weight: 15,000 to 60,000 Daltons
    [Show full text]