DNA Barcoding of Flat Oyster Species Reveals the Presence of Ostrea

Total Page:16

File Type:pdf, Size:1020Kb

DNA Barcoding of Flat Oyster Species Reveals the Presence of Ostrea Hamaguchi et al. Marine Biodiversity Records (2017) 10:4 DOI 10.1186/s41200-016-0105-7 RESEARCH Open Access DNA barcoding of flat oyster species reveals the presence of Ostrea stentina Payraudeau, 1826 (Bivalvia: Ostreidae) in Japan Masami Hamaguchi1*, Miyuki Manabe2, Naoto Kajihara1, Hiromori Shimabukuro1, Yuji Yamada3 and Eijiro Nishi4 Abstract Background: DNA barcoding is an effective method of accurately identifying morphologically similar oyster species. However, for some of Japan’s Ostrea species there are no molecular data in the international DNA databases. Methods: We sequenced the mitochondrial large subunit ribosomal DNA (LSrDNA) and cytochrome c oxidase subunit I (COI) gene of five known and two unidentified Ostrea species. Phylogenetic comparison with known Ostrea species permitted accurate species identification by DNA barcoding. Results: The molecular data, which were deposited in an international DNA database, allowed for a clear distinction among native Ostrea species in Japan. Moreover, the nucleotide sequence data confirmed that O. stentina (Atsuhime-gaki) inhabits Kemi and Ibusuki, Japan. Conclusions: This is the first record of O. stentina in Japan. These results provided for accurate species identification by DNA barcoding of the taxonomically problematic species O. futamiensis, O. fluctigera, O. setoensis and O. stentina in Japan. Keywords: Ostrea stentina, O. futamiensis, O. fluctigera, O. setoensis, DNA barcoding Background and many marine organisms have become endangered. Over the last half century, Japan’s coastal ecosystems Although many native and relict species of the last gla- have been severely damaged by human activity. The Seto cial epoch from the ancient East China Sea are found in Inland Sea, which is surrounded by the Japanese main the Seto Inland Sea (Botton et al. 1996; Futahashi 2011; islands of Honshu, Shikoku and Kyushu, is located in Hamaguchi et al. 2013), other invasive alien and indigen- the western part of Japan and is an area of human- ous species have been discovered where human activity induced ecological deterioration. The coastal areas were has led to the development of industrial areas along the reclaimed for urban and industrial use during a period coast (Iwasaki et al. 2004). Therefore, since 2008 we of rapid economic growth in the 1970s, leading to the have been conducting a long-term study to monitor ben- loss of 63.7% of the natural coast (tidal flats, seagrass thic species diversity at various tidal flats to promote the beds and estuary systems). Habitat loss, pollution, over- conservation of native marine fauna in the Seto Inland fishing, invasive species and now global climate change Sea and its adjacent marine areas supported by the are rapidly damaging the Seto Inland Sea. These factors Ministry of the Environment Monitoring Sites 1000 have gradually decreased the biodiversity of the area, Project and the Japan Long Term Ecological Research Network. We observed two morphologically different putative * Correspondence: [email protected] Ostrea species (Ostrea sp. A and Ostrea sp. B) during 1National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, the field surveys. The external features of Ostrea sp. A Japan were very similar to those of O. futamiensis Seki 1929 Full list of author information is available at the end of the article © The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Hamaguchi et al. Marine Biodiversity Records (2017) 10:4 Page 2 of 10 while some morphological features were not identical. summarized claims made by other marine benthic re- We considered that Ostrea sp. A might be a juvenile searchers who maintain that O. futamiensis should not be form of another Ostrea species present in Japan. The ex- designated as near-threatened because O. futamiensis is ternal features of Ostrea sp. B were very similar to those possibly a junior synonym of O. denselamellosa. of Crassostrea gigas Thunberg, 1793 and we misidenti- Ostrea fluctigera Jousseume in Lamy, 1925 is a hard- fied the oyster as C. gigas at first. Some morphological to-find and taxonomically problematic species. The spe- features of Ostrea sp. B were similar to those of O. sten- cies is small and settles on hermit crab shells. Inaba and tina Payraudeau, 1826 but this species has not previously Torigoe (2004) re-classified the species and concluded been reported from Japan. Therefore, we performed ac- that O. deformis Lamarck, 1819 and Nanostrea exigua curate species identification of the oyster specimens. Harry 1985 were the synonyms of O. fluctigera. There In general, Ostreidae species are economically import- has only been one paper (Kuramochi 2007) published on ant marine organisms, but their morphological plasticity this topic since the reclassification by Inaba and Torigoe can cause taxonomic confusion. For example, shell (2004). morphology has been used as a primary feature to dis- Ostrea setoensis Habe 1957 is a small oyster and is also tinguish different species of oyster; however, the shell is a hard-to-find species in Japan. Habe (1957) described affected by habitat and environment (Tack et al. 1992; the oyster as O. sedea setoensis, which is a subspecies of Yamaguchi 1994; Lam and Morton 2004, 2006; Liu et al. O. sedea Iredale, 1939 from Australia. However, he later 2011). In recent years, molecular analyses have been transferred the oyster to the genus Neopycnodonte (Habe used to accurately identify Ostreidae species. Methods 1977). Torigoe (1983) claimed that it was an Ostrea spe- such as DNA barcoding (Hebert et al. 2003; Schindel cies based on its anatomy and shell morphology and and Miller 2005) have been used to detect hidden and considered it O. setoensis. cryptic species, determine their distributions, monitor As described above, species identification of O. futa- the biodiversity of marine fauna and reconstruct the miensis, O. fluctigera, O. setoensis, Ostrea sp. A and phylogeny of taxonomically confusing Ostrea species Ostrea sp. B by DNA barcoding has not been possible (Jozefowicz and O’Foighil 1998; Hurwood et al. 2005; until now because no nucleotide sequence data from Lapègue et al. 2006; Polson et al. 2009; Salvi et al. 2014). these oyster species has been deposited in international Moreover, DNA barcoding can be applied to all life DNA databases. stages of the oyster, e.g. planktonic larvae, spat and ju- In this study, we collected O. futamiensis, O. fluctigera venile forms. and Ostrea sp. A from the Seto Inland Sea, and other Five flat oyster species have been reported from Japan. Ostrea oysters including Ostrea sp. B and O. setoensis O. deselamellosa Lischke, 1869 and O. circumpicta from Japanese waters elesewhere. We analyzed the nu- Pilsbry, 1904 are fishery and aquaculture species utilized cleotide sequences of the mitochondrial large subunit in Japan. Molecular data of these two species have been ribosomal RNA (LSrRNA) and the cytochrome c oxidase deposited in the international DNA databases (DDBJ; subunit I (COI) gene to facilitate DNA barcoding of the DNA database of Japan/EMBL; European Molecular members of the genus Ostrea. Biology Laboratory/GenBank DNA database). The other three species recorded are small flat oysters, Methods viz. O. futamiensis, O. fluctigera Jousseume in Lamy, Sample collection and morphological identification of 1925 and O. setoensis Habe 1957 about which there is Ostrea species in Japan little taxonomical or ecological information. The mo- Ostrea sp. A and O. fluctigera specimens were sampled lecular data of these three species have not as yet been from the Kemi tidal flat in the Wakayama Prefecture. deposited in the international DNA databases. Ostrea sp. B were collected from Ibusuki in Kagoshima Ostrea futamiensis Seki 1929 was first discovered in Bay. Ostrea sp. B was settled onto polyvinyl chloride Futamigaura, Hyogo Prefecture, in the eastern part of plates used to culture Crassostrea nippona Seki, 1934 the Seto Inland Sea (Seki 1929). The oyster has a small oysters at the Kagoshima Prefectural Fisheries Technology (20–35 mm in length), moderately thick and irregularly and Development Center. O. futamiensis specimens were circular- or oval-shaped shell. The World Register of sampled from five tidal flats (Nakatsu, Oiso, Hishiwo, Marine Species (WoRMS; http://www.marinespecies.org/) Hinase and Kemi) in the Seto Inland Sea. O. setoensis lists O. futamiensis as a valid species. However, this species specimens were sampled from the Tamanoura tidal flat in is not commercially important in Japan, and thus eco- the Wakayama Prefecture. O. circumpicta and O. densela- logical and chorological research on this oyster is incom- mellosa were collected from the Yamagata and Kumamoto plete (Okutani 2000; Iijima 2007). Wada et al. (1996) Prefectures, Japan, respectively. All the oyster collection recommended that O. futamiensis be designated a sites are shown in Fig. 1 and Table 1. O. lurida Carpenter, near-threatened species. However, Henmi et al. (2014) 1864 was collected from Willapa Bay, Washington State, Hamaguchi et al. Marine Biodiversity Records (2017) 10:4 Page 3 of 10 DNA preparation All O. futamiensis, O. fluctigera and O. setoensis specimens were transported live to our laboratory in Hiroshima Prefecture, Japan. The adductor muscle of each individual organism was excised and preserved in 80% ethanol. The adductor muscle samples from O. cir- cumpicta, O. denselamellosa, Ostrea sp. A, Ostrea sp. B and O. lurida obtained from each sampling site were preserved in 80% ethanol until DNA extraction.
Recommended publications
  • The History and Decline of Ostrea Lurida in Willapa Bay, Washington Author(S): Brady Blake and Philine S
    The History and Decline of Ostrea Lurida in Willapa Bay, Washington Author(s): Brady Blake and Philine S. E. Zu Ermgassen Source: Journal of Shellfish Research, 34(2):273-280. Published By: National Shellfisheries Association DOI: http://dx.doi.org/10.2983/035.034.0208 URL: http://www.bioone.org/doi/full/10.2983/035.034.0208 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Journal of Shellfish Research, Vol. 34, No. 2, 273–280, 2015. THE HISTORY AND DECLINE OF OSTREA LURIDA IN WILLAPA BAY, WASHINGTON BRADY BLAKE1 AND PHILINE S. E. ZU ERMGASSEN2* 1Washington State Department of Fish and Wildlife, 375 Hudson Street, Port Townsend, WA 98368; 2Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom ABSTRACT With an annual production of 1500 metric tons of shucked oysters, Willapa Bay, WA currently produces more oysters than any other estuary in the United States.
    [Show full text]
  • Paleontology and Sedimentology of Middle Eocene Rocks in Lago Argentino Area, Santa Cruz Province, Argentina
    AMEGHINIANA (Rev. Asoc. Paleontol. Argent.) - 46 (1): 27-47. Buenos Aires, 30-04-2009 ISSN 0002-7014 Paleontology and sedimentology of Middle Eocene rocks in Lago Argentino area, Santa Cruz Province, Argentina Silvio CASADÍO1,2, Miguel GRIFFIN1,2, Sergio MARENSSI3,2, Laura NET4, Ana PARRAS1,2, Martín RODRÍGUEZ RAISING5,2 and Sergio SANTILLANA3 Abstract. Sedimentological and paleontological study of the Man Aike Formation at the Estancia 25 de Mayo, SW of Santa Cruz Province, Argentina, represents the evolution of an incised valley from fluvial to marine environment during the late middle Eocene. At the base of the unit there is an unconformity that corresponds to fluvial channels which cut down into the underlying Maastrichtian sandstones of the Calafate Formation. The fauna of invertebrates (mostly molluscs) illustrated herein was collected from shell beds interpreted as tidal ravinement surfaces. The fauna includes terebratulid brachiopods, bivalves of the families Malletiidae, Mytilidae, Pinnidae, Ostreidae, Pectinidae, Carditidae, Crassatellidae, Lahillidae, Mactridae, Veneridae, and Hiatellidae, and gastropods of the families Trochidae and Calyptraeidae, and a member of Archaeogastropoda of uncertain affinities. The similarities of this fauna with that recorded in the Upper Member of the Río Turbio Formation, together with 87Sr/86Sr ages, sug- gest a late Middle Eocene age for the Man Aike Formation. Resumen. PALEONTOLOGÍA Y SEDIMENTOLOGÍA DE LAS ROCAS DEL EOCENO MEDIO EXPUESTAS EN EL ÁREA DE LAGO ARGENTINO, PROVINCIA DE SANTA CRUZ, ARGENTINA. Los estudios sedimentológicos y paleontológicos real- izados en rocas asignadas a la Formación Man Aike, expuestas en la estancia 25 de Mayo, al sur de Calafate, provincia de Santa Cruz, Argentina, sugieren que esta unidad representa la evolución de un valle inciso desde ambientes fluviales a marinos durante el Eoceno medio tardío.
    [Show full text]
  • Geological Survey
    DEPABTMENT OF THE INTEKIOR BULLETIN OF THE UNITED STATES GEOLOGICAL SURVEY N~o. 151 WASHINGTON GOVERNMENT PRINTING OFFICE 1898 UNITED STATES GEOLOGICAL SURVEY CHARLES D. WALCOTT, DIEECTOR THE LOWER CRETACEOUS GRYPMAS OF THK TEX.AS REGION ROBERT THOMAS HILL THOMAS WAYLA'ND VAUGHAN WASHINGTON GOVERNMENT FEINTING OFFICE 18.98 THE LOWER CRETACEOUS GRYPHJ1AS OF THE TEXAS REGION. BY I EOBEET THOMAS HILL and THOMAS WAYLAND VAUGHAN. CONTENTS. Page. Letter of transmittal....._..........._....._ ............................ 11 Introduction ...---._._....__................._....._.__............._...._ 13 The fossil oysters of the Texas region.._._.._.___._-..-._._......-..--.... 23 Classification of the Ostreidae. .. ...-...---..-.......-.....-.-............ 24 Historical statement of the discovery in the Texas region of the forms referred to Gryphsea pitcher! Morton ................................ 33 Gryphaea corrugata Say._______._._..__..__...__.,_._.________...____.._ 33 Gryphsea pitcheri Morton............................................... 34 Roemer's Gryphsea pitcheri............................................ 35 Marcou's Gryphsea pitcheri............................................ 35 Blake's Gryphaea pitcheri............................................. 36 Schiel's Gryphsea pitcheri...........................,.:................ 36 Hall's Gryphsea pitcheri (= G. dilatata var. tucumcarii Marcou) ...... 36 Heilprin's Gryphaea pitcheri.....'..................................... 37 Gryphaea pitcheri var. hilli Cragin...................................
    [Show full text]
  • Biogeographical Homogeneity in the Eastern Mediterranean Sea. II
    Vol. 19: 75–84, 2013 AQUATIC BIOLOGY Published online September 4 doi: 10.3354/ab00521 Aquat Biol Biogeographical homogeneity in the eastern Mediterranean Sea. II. Temporal variation in Lebanese bivalve biota Fabio Crocetta1,*, Ghazi Bitar2, Helmut Zibrowius3, Marco Oliverio4 1Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy 2Department of Natural Sciences, Faculty of Sciences, Lebanese University, Hadath, Lebanon 3Le Corbusier 644, 280 Boulevard Michelet, 13008 Marseille, France 4Dipartimento di Biologia e Biotecnologie ‘Charles Darwin’, University of Rome ‘La Sapienza’, Viale dell’Università 32, 00185 Roma, Italy ABSTRACT: Lebanon (eastern Mediterranean Sea) is an area of particular biogeographic signifi- cance for studying the structure of eastern Mediterranean marine biodiversity and its recent changes. Based on literature records and original samples, we review here the knowledge of the Lebanese marine bivalve biota, tracing its changes during the last 170 yr. The updated checklist of bivalves of Lebanon yielded a total of 114 species (96 native and 18 alien taxa), accounting for ca. 26.5% of the known Mediterranean Bivalvia and thus representing a particularly poor fauna. Analysis of the 21 taxa historically described on Lebanese material only yielded 2 available names. Records of 24 species are new for the Lebanese fauna, and Lioberus ligneus is also a new record for the Mediterranean Sea. Comparisons between molluscan records by past (before 1950) and modern (after 1950) authors revealed temporal variations and qualitative modifications of the Lebanese bivalve fauna, mostly affected by the introduction of Erythraean species. The rate of recording of new alien species (evaluated in decades) revealed later first local arrivals (after 1900) than those observed for other eastern Mediterranean shores, while the peak in records in conjunc- tion with our samplings (1991 to 2010) emphasizes the need for increased field work to monitor their arrival and establishment.
    [Show full text]
  • Genetic Characterisation of Oyster Populations Along the North-Eastern
    African Journal of Marine Science Archimer December 2008, Volume 30, Number 3, Pages 489- http://archimer.ifremer.fr 495 http://dx.doi.org/10.2989/AJMS.2008.30.3.4.638 © 2008 NISC, Taylor & Francis ailable on the publisher Web site Genetic characterisation of oyster populations along the north-eastern coast of Tunisia S. Dridi1, 2, *, M. S. Romdhane2, S. Heurtebise3, M. El Cafsi1, P. Boudry3 and S. Lapègue4 1 Faculté des Sciences de Tunis, Département de Biologie, Unité de Physiologie et d’Ecophysiologie des Organismes Aquatiques, Campus Universitaire El Manar II, 2092 Tunis, Tunisia 2 blisher-authenticated version is av Institut National Agronomique de Tunis, Département des Sciences de la Production Animale et de la Pêche, Unité d’écosystèmes et ressources aquatiques, 43 Av. Charles Nicole, 1082 Tunis, Tunisia 3 Ifremer, UMR M100 Physiologie et Ecophysiologie des Mollusques Marins, 29280 Plouzané, France 4 Laboratoire Ifremer de Génétique et Pathologie, 17390 La Tremblade, France *: Corresponding author : S Dridi, email address : [email protected] Abstract: The taxonomy of oysters has been traditionally based on characteristics of the shell. More recently, the analysis of protein and DNA polymorphism has provided a means to overcome difficulties in distinguishing the different species of oysters based solely on shell morphology. In order to identify oysters of the Tunisian north-east coast, we sequenced a 16S rRNA mitochondrial fragment from 68 oysters sampled from the Bizert Lagoon and the Gulf of Hammamet in northern Tunisia. Comparison of oyster 16S rRNA sequences available in GenBank showed the presence of both Ostreola stentina and Crassostrea gigas in our samples, which could not be detected on the basis of shell morphology only.
    [Show full text]
  • Olympia Oyster (Ostrea Lurida)
    COSEWIC Assessment and Status Report on the Olympia Oyster Ostrea lurida in Canada SPECIAL CONCERN 2011 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2011. COSEWIC assessment and status report on the Olympia Oyster Ostrea lurida in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xi + 56 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Previous report(s): COSEWIC. 2000. COSEWIC assessment and status report on the Olympia Oyster Ostrea conchaphila in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vii + 30 pp. (www.sararegistry.gc.ca/status/status_e.cfm) Gillespie, G.E. 2000. COSEWIC status report on the Olympia Oyster Ostrea conchaphila in Canada in COSEWIC assessment and update status report on the Olympia Oyster Ostrea conchaphila in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-30 pp. Production note: COSEWIC acknowledges Graham E. Gillespie for writing the provisional status report on the Olympia Oyster, Ostrea lurida, prepared under contract with Environment Canada and Fisheries and Oceans Canada. The contractor’s involvement with the writing of the status report ended with the acceptance of the provisional report. Any modifications to the status report during the subsequent preparation of the 6-month interim and 2-month interim status reports were overseen by Robert Forsyth and Dr. Gerald Mackie, COSEWIC Molluscs Specialist Subcommittee Co-Chair. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur l’huître plate du Pacifique (Ostrea lurida) au Canada.
    [Show full text]
  • Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora)
    Gulf of Mexico Science Volume 34 Article 4 Number 1 Number 1/2 (Combined Issue) 2018 Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora) of Laguna Madre, Tamaulipas, Mexico: Spatial and Temporal Distribution Martha Reguero Universidad Nacional Autónoma de México Andrea Raz-Guzmán Universidad Nacional Autónoma de México DOI: 10.18785/goms.3401.04 Follow this and additional works at: https://aquila.usm.edu/goms Recommended Citation Reguero, M. and A. Raz-Guzmán. 2018. Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora) of Laguna Madre, Tamaulipas, Mexico: Spatial and Temporal Distribution. Gulf of Mexico Science 34 (1). Retrieved from https://aquila.usm.edu/goms/vol34/iss1/4 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf of Mexico Science by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Reguero and Raz-Guzmán: Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora) of Lagu Gulf of Mexico Science, 2018(1), pp. 32–55 Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora) of Laguna Madre, Tamaulipas, Mexico: Spatial and Temporal Distribution MARTHA REGUERO AND ANDREA RAZ-GUZMA´ N Molluscs were collected in Laguna Madre from seagrass beds, macroalgae, and bare substrates with a Renfro beam net and an otter trawl. The species list includes 96 species and 48 families. Six species are dominant (Bittiolum varium, Costoanachis semiplicata, Brachidontes exustus, Crassostrea virginica, Chione cancellata, and Mulinia lateralis) and 25 are commercially important (e.g., Strombus alatus, Busycoarctum coarctatum, Triplofusus giganteus, Anadara transversa, Noetia ponderosa, Brachidontes exustus, Crassostrea virginica, Argopecten irradians, Argopecten gibbus, Chione cancellata, Mercenaria campechiensis, and Rangia flexuosa).
    [Show full text]
  • Phylogeographic Study of the Dwarf Oyster, Ostreola Stentina
    Marine Biology Archimer, archive institutionnelle de l’Ifremer Volume 150, Number 1, October 2006 http://www.ifremer.fr/docelec/ http://dx.doi.org/10.1007/s00227-006-0333-1 ©2006 Springer Science+Business Media The original publication is available at http://www.springerlink.com ailable on the publisher Web site Phylogeographic study of the dwarf oyster, Ostreola stentina, from Morocco, Portugal and Tunisia: evidence of a geographic disjunction with the closely related taxa, Ostrea aupouria and Ostreola equestris Sylvie Lapègue1, Inès Ben Salah2, Frederico M. Batista3, 4, Serge Heurtebise1, Lassad Neifar2 and Pierre Boudry1 (1) Laboratoire de Génétique et Pathologie, IFREMER, 17390 La Tremblade, France blisher-authenticated version is av (2) Faculté des Sciences de Sfax, Laboratoire d’écobiologie Animale, BP 802, 3038 Sfax, Tunisia (3) Instituto Nacional de Investigação Agrária e das Pescas (INIAP/IPIMAR), CRIPSul, Av. 5 de Outubro, 8700-305 Olhao, Portugal (4) Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Largo Prof. Abel Salazar, 2, 4099-003 Porto, Portugal Corresponding author : [email protected] Abstract: Despite the economic importance of oysters due to the high aquaculture production of several species, the current knowledge of oyster phylogeny and systematics is still fragmentary. In Europe, Ostrea edulis, the European flat oyster, and Ostreola stentina, the Provence oyster or dwarf oyster, are both present along the European and African, Atlantic and Mediterranean, coasts. In order to document the relationship not only between O. stentina and O. edulis, but also with the other Ostrea and Ostreola species, we performed a sequence analysis of the 16S mitochondrial fragment (16S rDNA: the large subunit rRNA-coding gene) and the COI fragment (COI: cytochrome oxidase subunit I).
    [Show full text]
  • Community Structure of a Molluscan Assemblage in an Anthropized Environment, Hammamet Marina, North-Eastern Tunisia
    www.trjfas.org ISSN 1303-2712 Turkish Journal of Fisheries and Aquatic Sciences 15: 751-760 (2015) DOI: 10.4194/1303-2712-v15_3_20 Community Structure of a Molluscan Assemblage in an Anthropized Environment, Hammamet Marina, North-Eastern Tunisia 1,* 2,3 1 Refka Elgharsalli , Lotfi Rabaoui , Nejla Aloui-Bejaoui 1 Institut National Agronomique de Tunisie, 43, Avenue Charles Nicolle, 1082 Tunis, Tunisia. 2 University of Tunis, Research Unit of Integrative Biology and Evolutionary and Functional Ecology of Aquatic Systems, Faculty of Science of Tunis, 2092, El Manar, Tunisia. 3 University of Gabes, Higher Institute of Applied Biology of Medenine, El Jorf Street Km 22.5 – 4119 Medenine, Tunisia * Corresponding Author: Tel.: +21.620 951116 Received 26 December 2014 E-mail: [email protected] Accepted 21 October 2015 Abstract Hammamet Marina is the most important touristic port in the Gulf of Hammamet (Tunisia). The present work is a contribution to the knowledge of the functional diversity and structure of the malacofauna community in this area. Three different stations (A, B and C) within the port were sampled seasonally for a year (2005-2006). The mollusc assemblage studied was represented by 14 species (in totally 2669 ind. were found). Among the four mollusc classes recorded, bivalves were the best represented (73.76% of the total number species), followed by gastropods (22.02%), cephalopods (2.42%) and polyplacophores (1.80%). Atlanto-Mediterranean (42.85%) and Endemic Mediterranean (39.28%) taxa prevailed in the community, followed by Indo-Pacific (7.14%) and cosmopolitan species (3.57%). A clear spatial zonation was distinguished. The station B hosted the highest abundance of gastropods (309±19.92 ind.
    [Show full text]
  • A Preliminary Assessment of Paleontological Resources at Bighorn Canyon National Recreation Area, Montana and Wyoming
    A PRELIMINARY ASSESSMENT OF PALEONTOLOGICAL RESOURCES AT BIGHORN CANYON NATIONAL RECREATION AREA, MONTANA AND WYOMING Vincent L. Santucci1, David Hays2, James Staebler2 And Michael Milstein3 1National Park Service, P.O. Box 592, Kemmerer, WY 83101 2Bighorn Canyon National Recreation Area, P.O. Box 7458, Fort Smith, MT 59035 3P.O. Box 821, Cody, WY 82414 ____________________ ABSTRACT - Paleontological resources occur throughout the Paleozoic and Mesozoic formations exposed in Bighorn Canyon National Recreation Area. Isolated research on specific geologic units within Bighorn Canyon has yielded data on a wide diversity of fossil forms. A comprehensive paleonotological survey has not been previously undertaken at Bighorn Canyon. Preliminary paleontologic resource data is presented in this report as an effort to establish baseline data. ____________________ INTRODUCTION ighorn Canyon National Recreation Area (BICA) consists of approximately 120,000 acres within the Bighorn Mountains of north-central Wyoming and south-central Montana B (Figure 1). The northwestern trending Bighorn Mountains consist of over 9,000 feet of sedimentary rock. The predominantly marine and near shore sedimentary units range from the Cambrian through the Lower Cretaceous. Many of these formations are extremely fossiliferous. The Bighorn Mountains were uplifted during the Laramide Orogeny beginning approximately 70 million years ago. Large volumes of sediments, rich in early Tertiary paleontological resources, were deposited in the adjoining basins. This report provides a preliminary assessment of paleontological resources identified at Bighorn Canyon National Recreation Area. STRATIGRAPHY The stratigraphic record at Bighorn Canyon National Recreation Area extends from the Cambrian through the Cretaceous (Figure 2). The only time period during this interval that is not represented is the Silurian.
    [Show full text]
  • Ostrea, Crassostrea, and Saccostrea, Studied by Means of Crossed Immuno-Electrophoresis
    MARINE ECOLOGY PROGRESS SERIES Vol. 68: 59-63. 1990 Published December 15 I Mar. Ecol. Proq. Ser. 1 Intergeneric distances between Ostrea, Crassostrea, and Saccostrea, studied by means of crossed immuno-electrophoresis Vibeke Brock Biology Institute. University of Odense. Campusvej 55. DK-5230 Odense M. Denmark ABSTRACT: Polyspecific antisera were obtained from rabbits for each of the following oyster species: Osfrea eduljs (LinnB) and 0. lurida (Carpenter), Crassostrea gigas (Thurnberg) and C virginica (Gmelin), and Saccostrea com~nercialis(Iredale & Roughley) and S. echinata (Quoy & Gaimard). By means of crossed immuno-electrophoresis (CIE), genus-specific and genus-non-specific antigen-anti- body reactions were recorded, in all 28 for Ostrea, 28 for Crassostrea, and 27 for Saccostrea. Genetic distances, defined by 1 - (number of genus-specific antigen-antihody reactions) + (number of genus- specific and genus-non-specificreactions), were 0.25 to 0.29 between Ostrea and Crassostrea. 0.32 to 0.33 between Ostrea and Saccostrea, and 0.22 to 0.26 hetween Crassostrea and Saccostrea. The results accord with the current distinction between Ostrea and the 2 other taxa and support the latters' division into the 2 genera Cmssostrea and Saccostrea. INTRODUCTION and Ostrea. Three years later, Gunter (1951) recog- nized 3 recent genera. Ostrea, Crassostrea (= Ranson's In 1939 Iredale wrote the following, which describes Gryphae), and Pycnodonte, a user-friendly taxonomy a continuing problem: employed by e.g. Thomson (19541, Younge (19601, Galtsoff (1964) and Ahmed (1971). Carreon (1969) also 'Though beloved by gourmets from earliest recognized these 3 genera. He distinguished Ostrea times, oysters have never been a delight to from the other 2 by its relatively large gill ostia, its systematic conchologists.' larviparity, and by absence of the promyal chamber (a Much controversy exists concerning the definition of passage situated on the right side of the visceral mass.
    [Show full text]
  • From British Columbia to Baja California Restoring the Olympia Oyster (Ostrea Lurida)
    From British Columbia to Baja California Restoring The Olympia Oyster (Ostrea lurida) Report of a Forum Sponsored by American Honda Motor Corporation Aquarium of the Pacific Bren School of the University of California, Santa Barbara 16-17 March 2017 Acknowledgements We thank the Bren Oyster Group, all of the other presenters, and those who authored sections of this report. We thank the Bren students for acting as rapporteurs and for their excellent notes. We also thank Linda Brown for handling the logistics from start to finish and for helping assemble the sections of this report. We also thank Linda Brown and Claire Atkinson for editing the report. Jerry R. Schubel, Aquarium of the Pacific Steven Center, American Honda Motor Co., Inc. Hunter Lenihan, UC Santa Barbara This report can be found at: http://www.aquariumofpacific.org/mcri/info/restoring_the_olympia_oyster/forums 2 Table of Contents Introduction .......................................................................................................................... 5 Insights from the forum ......................................................................................................... 9 Action Items ....................................................................................................................... 11 Planning and Incentivizing Native Olympia Oyster Restoration in SoCal ........................... 13 Restoration of Native Oysters in San Francisco Bay .......................................................... 21 Restoration of Native Oysters in
    [Show full text]