Mineral Species’
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Single-Crystal Epr Study of Radiation-Induced Defects
A SINGLE-CRYSTAL EPR STUDY OF RADIATION-INDUCED DEFECTS IN SELECTED SILICATES A Thesis Submitted to the College of Graduate Studies and Research In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy In the Department of Geological Sciences University of Saskatchewan Saskatoon By Mao Mao Copyright Mao Mao, October, 2012. All rights reserved. Permission to Use In presenting this thesis in partial fulfilment of the requirements for a Doctor of Philosophy degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Head of the Department of Geological Sciences 114 Science Place University of Saskatchewan Saskatoon, Saskatchewan S7N5E2, Canada i Abstract This thesis presents a series of single-crystal electron paramagnetic resonance (EPR) studies on radiation-induced defects in selected silicate minerals, including apophyllites, prehnite, and hemimorphite, not only providing new insights to mechanisms of radiation-induced damage in minerals but also having direct relevance to remediation of heavy metalloid contamination and nuclear waste disposal. -
A Review of the Structural Architecture of Tellurium Oxycompounds
Mineralogical Magazine, May 2016, Vol. 80(3), pp. 415–545 REVIEW OPEN ACCESS A review of the structural architecture of tellurium oxycompounds 1 2,* 3 A. G. CHRISTY ,S.J.MILLS AND A. R. KAMPF 1 Research School of Earth Sciences and Department of Applied Mathematics, Research School of Physics and Engineering, Australian National University, Canberra, ACT 2601, Australia 2 Geosciences, Museum Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia 3 Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA [Received 24 November 2015; Accepted 23 February 2016; Associate Editor: Mark Welch] ABSTRACT Relative to its extremely low abundance in the Earth’s crust, tellurium is the most mineralogically diverse chemical element, with over 160 mineral species known that contain essential Te, many of them with unique crystal structures. We review the crystal structures of 703 tellurium oxysalts for which good refinements exist, including 55 that are known to occur as minerals. The dataset is restricted to compounds where oxygen is the only ligand that is strongly bound to Te, but most of the Periodic Table is represented in the compounds that are reviewed. The dataset contains 375 structures that contain only Te4+ cations and 302 with only Te6+, with 26 of the compounds containing Te in both valence states. Te6+ was almost exclusively in rather regular octahedral coordination by oxygen ligands, with only two instances each of 4- and 5-coordination. Conversely, the lone-pair cation Te4+ displayed irregular coordination, with a broad range of coordination numbers and bond distances. -
By Michael Fleischer and Constance M. Schafer Open-File Report 81
U.S. DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY THE FORD-FLEISCHER FILE OF MINERALOGICAL REFERENCES, 1978-1980 INCLUSIVE by Michael Fleischer and Constance M. Schafer Open-File Report 81-1174 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards 1981 The Ford-Fleischer File of Mineralogical References 1978-1980 Inclusive by Michael Fleischer and Constance M. Schafer In 1916, Prof. W.E. Ford of Yale University, having just published the third Appendix to Dana's System of Mineralogy, 6th Edition, began to plan for the 7th Edition. He decided to create a file, with a separate folder for each mineral (or for each mineral group) into which he would place a citation to any paper that seemed to contain data that should be considered in the revision of the 6th Edition. He maintained the file in duplicate, with one copy going to Harvard University, when it was agreed in the early 1930's that Palache, Berman, and Fronde! there would have the main burden of the revision. A number of assistants were hired for the project, including C.W. Wolfe and M.A. Peacock to gather crystallographic data at Harvard, and Michael Fleischer to collect and evaluate chemical data at Yale. After Prof. Ford's death in March 1939, the second set of his files came to the U.S. Geological Survey and the literature has been covered since then by Michael Fleischer. Copies are now at the U.S. Geological Survey at Reston, Va., Denver, Colo., and Menlo Park, Cal., and at the U.S. -
Sb-Bearing Dugganite from the Kawazu Mine, Shizuoka Prefecture, Japan
Bull. Natl. Mus. Nat. Sci., Ser. C, 35, pp. 1–5, December 22, 2009 Sb-bearing Dugganite from the Kawazu mine, Shizuoka Prefecture, Japan Satoshi Matsubara1, Ritsuro Miyawaki1, Kazumi Yokoyama1, Akira Harada2 and Mitsunari Sakamoto2 1 Department of Geology and Paleontology, National Museum of Nature and Science, 3–23–1 Hyakunin-cho, Shinjuku, Tokyo 169–0073, Japan 2 Friends of Mineral, 4–13–18 Toyotamanaka, Nerima, Tokyo 176–0013, Japan Abstract Sb-bearing dugganite occurs as minute crystals in cavities of quartz vein from the Kawazu mine, Shizuoka Prefecture, Japan. It is trigonal with lattice parameters, aϭ8.490, cϭ5.216 Å, and Vϭ325.6 Å3. An electron microprobe analysis gave the empirical formula as Pb2.96(Zn2.83Cu0.19)͚3.02(Te0.72Sb0.30)͚1.02(As1.51Si0.23P0.15Sb0.11)͚2.00O13.00[O0.54(OH)0.46]͚1.00 on the basis of PbϩZnϩCuϩTeϩSbϩAsϩSiϩPϭ9 and the calculated (OH) with a charge balance. The crystal occurs as pale aquamarine blue hexagonal prisms up to 0.2 mm long. The mineral has ap- proximately 30% joëlbruggerite mole of the solid solution between dugganite and joëlbruggerite. Key words : dugganite, joëlbruggerite, Kawazu mine Introduction Occurrence Dugganite, Pb3Zn3(TeO6)x(AsO4)2-x(OH)6-3x, was There are many hydrothermal gold-silver-cop- first described by Williams (1978) from Tomb- per-manganese vein deposits at the Kawazu min- stone, Arizona, USA, in association with two ing area. The veins are developed in propyrite, other new minerals, khinite and parakhinite. In rhyolitic tuff breccia and tuff of the Pliocene age. 1988 Kim et al. -
The Rarer Metals
THE RARER METALS. By FRANK L. HESS. INTRODUCTION. Great gold placer fields, now mere wastes of overturned gravels; worked-out coal fields; exhausted gold, silver, and other mines, with their sterile dumps, gaunt head frames, and decaying shaft houses and mills, testify that, unlike manufactures and agricultural prod ucts, mineral deposits are diminishing assets, and the fact that a large production of some mineral has been made in one year does not necessarily imply that it can be repeated under the impetus of great need. In estimating the possible production of any mineral for any period, a proper weighing of the attending circumstances, the statistics of production of preceding years, and a knowledge of the deposits themselves are all necessary, and these statements probably apply more forcibly to the metals used in alloy steels than to others, for these metals occur in vastly less quantities than coal, iron, copper, or the other common metals, and the individual deposits are smaller' and much less widely distributed and, unlike those of copper or iron, are in very few places concentrated from lean into richer deposits. Comparatively restricted markets and lack of knowledge concern ing these metals themselves and of the minerals in which they occur have prevented prospecting for them until within the last few years, so that as a rule developments of such deposits are small. The subjects briefly discussed here with reference to their avail ability as war supplies are treated more fully in Mineral Resources and other publications of the.United States Geological Survey, espe cially those for recent years. -
Revision 2 Lead–Tellurium Oxysalts from Otto Mountain Near Baker
1 Revision 2 2 3 Lead–tellurium oxysalts from Otto Mountain near Baker, California: XI. Eckhardite, 2+ 6+ 4 (Ca,Pb)Cu Te O5(H2O), a new mineral with HCP stair-step layers. 5 6 Anthony R. Kampf1,*, Stuart J. Mills2, Robert M. Housley3, George R. Rossman3, Joseph Marty4, 7 and Brent Thorne5 8 9 1Mineral Sciences Department, Natural History Museum of Los Angeles County, 10 900 Exposition Blvd., Los Angeles, CA 90007, U.S.A. 11 2Geosciences, Museum Victoria, GPO Box 666, Melbourne 3001, Victoria, Australia 12 3Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, 13 CA 91125, U.S.A. 14 45199 E. Silver Oak Road, Salt Lake City, UT 84108, U.S.A. 15 53898 S. Newport Circle, Bountiful, UT 84010, U.S.A. 16 *e-mail: [email protected] 17 18 ABSTRACT 2+ 6+ 19 Eckhardite, (Ca,Pb)Cu Te O5(H2O), is a new tellurate mineral from Otto Mountain near Baker, 20 California, U.S.A. It occurs in vugs in quartz in association with Br-rich chlorargyrite, gold, 21 housleyite, khinite, markcooperite, and ottoite. It is interpreted as having formed from the partial 22 oxidation of primary sulfides and tellurides during or following brecciation of quartz veins. 23 Eckhardite is monoclinic, space group P21/n, with unit cell dimensions a = 8.1606(8), b = 24 5.3076(6), c = 11.4412(15) Å, β = 101.549(7)°, V = 485.52(10) Å3, and Z = 4. It forms as needles 25 or blades up to about 150 x 15 x 5 µm in size, typically in radial or sub-radial aggregates, but also 26 as isolated needles. -
Lead-Tellurium Oxysalts from Otto Mountain Near Baker, California: I
American Mineralogist, Volume 95, pages 1329–1336, 2010 Lead-tellurium oxysalts from Otto Mountain near Baker, California: I. Ottoite, Pb2TeO5, a new mineral with chains of tellurate octahedra ANTHONY R. KA MPF ,1,* ROBE R T M. HOUSLEY,2 STU AR T J. MILLS ,3 JOSEPH MAR TY,4 5 A ND BR ENT THO R NE 1Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, California 90007, U.S.A. 2Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, U.S.A. 3Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada 43457 E. Silver Oak Road, Salt Lake City, Utah 84108, U.S.A. 53898 S. Newport Circle, Bountiful, Utah 84010, U.S.A. ABST RA CT Ottoite, Pb2TeO5, is a new tellurate from Otto Mountain near Baker, California. Most of the mining on Otto Mountain occurred between 1940 and 1970 and is attributed to Otto Fuetterer, for whom the mountain is now named. The new mineral occurs on fracture surfaces and in small vugs in brecciated quartz veins, which intersect granitic rocks. Ottoite is directly associated with acanthite, bromine-rich chlorargyrite, gold, iodargyrite, khinite, wulfenite, and four other new tellurates: housleyite, mark- cooperite, thorneite, and timroseite. Various other secondary minerals occur in the veins, including two other new secondary tellurium minerals, paratimroseite and telluroperite. Ottoite and most other secondary minerals of the quartz veins are interpreted as having formed from the partial oxidation of primary sulfides and tellurides during or following brecciation of the veins. -
Geology, Mines, & Minerals, Tombstone, Arizona
Geology, Mines, & Minerals, Tombstone, Arizona by Jan C. Rasmussen Jan Rasmussen Geology, Mines, Minerals of Tombstone April 14, 2012 Acknowledgements • SRK Consulting, Tucson • Burton Devere – Bonanzas to Borrascas • Peter Megaw – photomicrograph specimens • Sugar White – photography of Megaw specimens • TGMS 2012 show displays • Mindat.org • Jim Briscoe Jan Rasmussen Geology, Mines, Minerals of Tombstone April 14, 2012 Location: Cochise Co., SE Arizona Source: SRK Consulting Jan Rasmussen Geology, Mines, Minerals of Tombstone April 14, 2012 Geologic map, Cochise County Source: AZGS map 35 Jan Rasmussen Geology, Mines, Minerals of Tombstone April 14, 2012 Geologic map, Tombstone Hills Source: Drewes, USGS geologic map Jan Rasmussen Geology, Mines, Minerals of Tombstone April 14, 2012 Gilluly geologic map Jan Rasmussen Geology, Mines, Minerals of Tombstone April 14, 2012 Tombstone Hills, looking north Jan Rasmussen Geology, Mines, Minerals of Tombstone April 14, 2012 Paleozoic Jan and Colina Limestone (Permian) Jan Rasmussen Geology, Mines, Minerals of Tombstone April 14, 2012 Bisbee Group – Lower Cretaceous Jan Rasmussen Geology, Mines, Minerals of Tombstone April 14, 2012 Laramide orogeny Orogenic Age Phase (Ma) Sedimentation Magmatism Structures Resources widespread, 2-mica, garnet- muscovite granitoid stocks, SW-directed, low-angle thrusts mesothermal, Pb-Zn-Ag veins, minor batholithic sills, aplo-pegmatite widespread, shallowly dipping mylonitic Cu-Au veins, Au in quartz veins, Late 55-43 none dikes, peraluminous, calc-alkalic zones, -
Alt I5LNER&S
4r>.'44~' ¶4,' Alt I5LNER&SI 4t *vX,it8a.rsAt s 4"5' r K4Wsx ,4 'fv, '' 54,4 'T~~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~' 4>i4^ 44 4 r 44,4 >s0 s;)r i; X+9;s tSiX,.<t;.W.FE0''¾'"',f,,v-;, s sHteS<T^ 4~~~~~~~~~~~~~~~~~~~~'44'" 4444 ;,t,4 ~~~~~~~~~' "e'(' 4 if~~~~~~~~~~0~44'~"" , ",4' IN:A.S~~ ~ ~ C~ f'"f4444.444"Z'.4;4 4 p~~~~~~~~~~~~~~~~~~~44'1s-*o=4-4444's0zs*;.-<<<t4 4 4 A'.~~~44~~444) O 4t4t '44,~~~~~~~~~~i'$'" a k -~~~~~~44,44.~~~~~~~~~~~~~~~~~~44-444444,445.44~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.V 4X~~~~~~~~~~~~~~4'44 44 444444444.44. AQ~~ ~ ~~~~, ''4'''t :i2>#ZU '~f"44444' i~~'4~~~k AM 44 2'tC>K""9N 44444444~~~~~~~~~~~,4'4 4444~~~~IT fpw~~ ~ ~ ~ ~ ~ ~ 'V~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Ae, ~~~~~~~~~~~~~~~~~~~~~~2 '4 '~~~~~~~~~~4 40~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ' 4' N.~~..Fg ~ 4F.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ " ~ ~ ~ 4 ~~~ 44zl "'444~~474'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~ ~ &~1k 't-4,~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ :"'".'"~~~~~~~~~~~~~~~~~"4 ~~ 444"~~~~~~~~~'44*#"44~~~~~~~~~~4 44~~~~~'f"~~~~~4~~~'yw~~~~4'5'# 44'7'j ~4 y~~~~~~~~~~~~~~~~~~~~~~~~~~~~~""'4 1L IJ;*p*44 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~44~~~~~~~~~~~~~~~~~~~~1 q A ~~~~~ 4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~W~~k* A SYSTEMATIC CLASSIFICATION OF NONSILICATE MINERALS JAMES A. FERRAIOLO Department of Mineral Sciences American Museum of Natural History BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY VOLUME 172: ARTICLE 1 NEW YORK: 1982 BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Volume 172, article l, pages 1-237, -
Minerals of Arizona Report
MINERALS OF ARIZONA by Frederic W. Galbraith and Daniel J. Brennan THE ARIZONA BUREAU OF MINES Price One Dollar Free to Residents of Arizona Bulletin 181 1970 THE UNIVERSITY OF ARIZONA TUCSON TABLE OF CONT'ENTS EIements .___ 1 FOREWORD Sulfides ._______________________ 9 As a service about mineral matters in Arizona, the Arizona Bureau Sulfosalts ._. .___ __ 22 of Mines, University of Arizona, is pleased to reprint the long-standing booklet on MINERALS OF ARIZONA. This basic journal was issued originally in 1941, under the authorship of Dr. Frederic W. Galbraith, as Simple Oxides .. 26 a bulletin of the Arizona Bureau of Mines. It has moved through several editions and, in some later printings, it was authored jointly by Dr. Gal Oxides Containing Uranium, Thorium, Zirconium .. .... 34 braith and Dr. Daniel J. Brennan. It now is being released in its Fourth Edition as Bulletin 181, Arizona Bureau of Mines. Hydroxides .. .. 35 The comprehensive coverage of mineral information contained in the bulletin should serve to give notable and continuing benefits to laymen as well as to professional scientists of Arizona. Multiple Oxides 37 J. D. Forrester, Director Arizona Bureau of Mines Multiple Oxides Containing Columbium, February 2, 1970 Tantaum, Titanium .. .. .. 40 Halides .. .. __ ____ _________ __ __ 41 Carbonates, Nitrates, Borates .. .... .. 45 Sulfates, Chromates, Tellurites .. .. .. __ .._.. __ 57 Phosphates, Arsenates, Vanadates, Antimonates .._ 68 First Edition (Bulletin 149) July 1, 1941 Vanadium Oxysalts ...... .......... 76 Second Edition, Revised (Bulletin 153) April, 1947 Third Edition, Revised 1959; Second Printing 1966 Fourth Edition (Bulletin 181) February, 1970 Tungstates, Molybdates.. _. .. .. .. 79 Silicates ... -
Khinite Cu 3Pbte O6(OH)2
2+ 6+ Khinite Cu 3PbTe O6(OH)2 Crystal Data: Orthorhombic or hexagonal. Point Group: 2/m 2/m 2/m or 32. Crystals are dipyramidal to prismatic, to 0.5 mm. Twinning: Sectorial twinning observed in polarized light. Physical Properties: Cleavage: On {001}, excellent. Tenacity: Brittle. Hardness = 3.5 D(meas.) = 6.5-7.0 D(calc.) = 6.29 Optical Properties: Translucent. Color: Dark green, bottle-green. Streak: Green. Luster: Vitreous. Optical Class: Biaxial (+) [-4O]. α = 2.110(4) β = 2.112(4) γ = 2.165(4) 2V(meas.) = 20° Pleochroism: X = emerald-green; Y = Z = yellowish green. Absorption: Z = Y > X. Optical Class: Uniaxial (–) [-3T]. ω = 2.155 ε = 2.120 Dispersion: Strong. Absorption: O > E. Pleochroism: O = yellowish green; E = emerald-green. Cell Data: Space Group: Fdd2. a = 5.7491(10) b = 10.0176(14) c = 24.022(3) Z = 8 Space Group: P32. a = 5.765(2) c = 18.001(9) Z = 3 X-ray Powder Pattern: Tombstone, Arizona, USA. 2.491 (10), 3.451 (9), 4.866 (8), 2.996 (7), 2.204 (7), 2.818 (6), 1.916 (6) [-4O] 3.336 (10), 2.490 (10), 4.800 (8), 1.558 (8), 2.913 (7), 2.245 (6), 1.997 (5) [-3T] Chemistry: (1) (2) (3) TeO3 24.5 26.4 26.79 CuO 33.2 35.8 36.41 PbO 32.4 35.0 34.05 H2O [2.75] 2.75 Total [100.0] 100.00 (1) Tombstone, Arizona, USA; insoluble quartz and chlorargyrite present but in an amount too small to be weighed. -
Associations of Ore Minerals in the Deposits of the Seinäjoki District and the Discussion on the Ore Formation
ASSOCIATIONS OF ORE MINERALS IN THE DEPOSITS OF THE SEINÄJOKI DISTRICT AND THE DISCUSSION ON THE ORE FORMATION YU. S. BORODAEV; N. S. BORTNIKOV; N. N. MOZGOVA; N. A. OZEROVA; P. OIVANEN and V. YLETYINEN BORODAEV, YU. S.; BORTNIKOV, N. S.; MOZGOVA, N. N.; OZE- ROVA N. A.; P. OIVANEN and V. YLETYINEN, 1983: Associations of ore minerals in the deposits of the Seinäjoki district and the dis- cussion on the ore formation. Bull. Geol. Soc. Finland 55, 1, 3-23. The mineral associations of the antimony deposits in the Seinä- joki region (Finland) are described on the basis of microprobe inves- tigations. There are two ore associations: quartz-antimony and pyr- rhotite-antimony. The latter is characterized by the presence of the new minerals seinäjokite and pääkkönenite first discovered in these deposits. The data obtained suggest that minerals were formed in the deposits under specific conditions: at relatively high temperatures for antimony deposition, and at extremely low sulphur fugacity for the hydrothermal process. Key words: Antimony, seinäjokite, pääkkönenite, sulphur fugacity Seinäjoki. Yu. S. Borodaev, N. S. Bortnikov, N. N. Mozgova and N. A. Ozerova: IGEM, Staromonetnyi 35, Moscow 109017, USSR. P. Oivanen and V. Yletyinen: Geological Survey of Finland, SF-02150 Espoo 15, Finland. Introduction ny ores in detail and to advance some sug- gestions on their genesis (Pääkkönen 1966). The Seinäjoki ore district, situated in west- During the last few years exploration has ern central Finland, is unique for its deposits concentrated primarily on two deposits, Kal- of native antimony. The content of native lio salo and Tervasmäki.