Associations of Ore Minerals in the Deposits of the Seinäjoki District and the Discussion on the Ore Formation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Download PDF About Minerals Sorted by Mineral Name
MINERALS SORTED BY NAME Here is an alphabetical list of minerals discussed on this site. More information on and photographs of these minerals in Kentucky is available in the book “Rocks and Minerals of Kentucky” (Anderson, 1994). APATITE Crystal system: hexagonal. Fracture: conchoidal. Color: red, brown, white. Hardness: 5.0. Luster: opaque or semitransparent. Specific gravity: 3.1. Apatite, also called cellophane, occurs in peridotites in eastern and western Kentucky. A microcrystalline variety of collophane found in northern Woodford County is dark reddish brown, porous, and occurs in phosphatic beds, lenses, and nodules in the Tanglewood Member of the Lexington Limestone. Some fossils in the Tanglewood Member are coated with phosphate. Beds are generally very thin, but occasionally several feet thick. The Woodford County phosphate beds were mined during the early 1900s near Wallace, Ky. BARITE Crystal system: orthorhombic. Cleavage: often in groups of platy or tabular crystals. Color: usually white, but may be light shades of blue, brown, yellow, or red. Hardness: 3.0 to 3.5. Streak: white. Luster: vitreous to pearly. Specific gravity: 4.5. Tenacity: brittle. Uses: in heavy muds in oil-well drilling, to increase brilliance in the glass-making industry, as filler for paper, cosmetics, textiles, linoleum, rubber goods, paints. Barite generally occurs in a white massive variety (often appearing earthy when weathered), although some clear to bluish, bladed barite crystals have been observed in several vein deposits in central Kentucky, and commonly occurs as a solid solution series with celestite where barium and strontium can substitute for each other. Various nodular zones have been observed in Silurian–Devonian rocks in east-central Kentucky. -
Metacinnabar Hgs C 2001-2005 Mineral Data Publishing, Version 1
Metacinnabar HgS c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Cubic. Point Group: 43m. Commonly massive; rarely as small (to 1 mm) tetrahedral crystals having rough faces. Twinning: Common on {111}, forming lamellae in polished section. Physical Properties: Fracture: Subconchoidal. Tenacity: Brittle. Hardness = 3 VHN = n.d. D(meas.) = 7.65 D(calc.) = 7.63 Optical Properties: Opaque. Color: Grayish black; in polished section, grayish white. Streak: Black. Luster: Metallic. Pleochroism: Weak, rarely. Anisotropism: Very weak, rarely. R: (400) 28.4, (420) 27.6, (440) 26.8, (460) 26.3, (480) 25.9, (500) 25.6, (520) 25.4, (540) 25.2, (560) 25.1, (580) 25.0, (600) 24.9, (620) 24.9, (640) 24.8, (660) 24.7, (680) 24.7, (700) 24.7 Cell Data: Space Group: F 43m. a = 5.8717(5) Z = 4 X-ray Powder Pattern: Synthetic. 3.378 (100), 2.068 (55), 1.7644 (45), 2.926 (35), 1.3424 (12), 1.6891 (10), 1.3085 (10) Chemistry: (1) (2) (3) (4) Hg 79.73 67.45 81.33 86.22 Zn 4.23 3.10 Cd 11.72 Fe trace 0.2 Se 1.08 6.49 S 14.58 15.63 10.30 13.78 Total 99.62 98.10 98.12 100.00 (1) Guadalc´azar,Mexico; corresponds to (Hg0.85Zn0.14)Σ=0.99(S0.97Se0.03)Σ=1.00. (2) Uland area, Russia; corresponds to (Hg0.69Cd0.21Zn0.10Fe0.01)Σ=1.01S1.00. (3) San Onofre, Mexico; corresponds to Hg1.00(S0.80Se0.20)Σ=1.00. -
A Single-Crystal Epr Study of Radiation-Induced Defects
A SINGLE-CRYSTAL EPR STUDY OF RADIATION-INDUCED DEFECTS IN SELECTED SILICATES A Thesis Submitted to the College of Graduate Studies and Research In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy In the Department of Geological Sciences University of Saskatchewan Saskatoon By Mao Mao Copyright Mao Mao, October, 2012. All rights reserved. Permission to Use In presenting this thesis in partial fulfilment of the requirements for a Doctor of Philosophy degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Head of the Department of Geological Sciences 114 Science Place University of Saskatchewan Saskatoon, Saskatchewan S7N5E2, Canada i Abstract This thesis presents a series of single-crystal electron paramagnetic resonance (EPR) studies on radiation-induced defects in selected silicate minerals, including apophyllites, prehnite, and hemimorphite, not only providing new insights to mechanisms of radiation-induced damage in minerals but also having direct relevance to remediation of heavy metalloid contamination and nuclear waste disposal. -
A Deposit Model for Mississippi Valley-Type Lead-Zinc Ores
A Deposit Model for Mississippi Valley-Type Lead-Zinc Ores Chapter A of Mineral Deposit Models for Resource Assessment 2 cm Sample of spheroidal sphalerite with dendritic sphalerite, galena, and iron sulfides (pyrite plus marcasite) from the Pomorzany mine. Note the “up direction” is indicated by “snow-on-the-roof” texture of galena and Scientificsphalerite Investigations alnong colloform Report layers of2010–5070–A light-colored spahlerite. Hydrothermal sulfide clasts in the left center of the sample are encrusted by sphalerire and iron sulfides. Size of sample is 20x13 cm. Photo by David Leach. U.S. Department of the Interior U.S. Geological Survey COVER: Sample of spheroidal sphalerite with dendritic sphalerite, galena, and iron sulfides (pyrite plus mar- casite) from Pomorzany mine. Note the “up direction” is indicated by “snow-on-the-roof” texture of galena and sphalerite along colloform layers of light-colored sphalerite. Hydrothermal sulfide clasts in the left center of the sample are encrusted by sphalerite and iron sulfides. Size of sample is 20x13 centimeters. (Photograph by David L. Leach, U.S. Geological Survey.) A Deposit Model for Mississippi Valley- Type Lead-Zinc Ores By David L. Leach, Ryan D. Taylor, David L. Fey, Sharon F. Diehl, and Richard W. Saltus Chapter A of Mineral Deposit Models for Resource Assessment Scientific Investigations Report 2010–5070–A U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. -
Pyrite's Evil Twin Marcasite and Pyrite Are Two Common Minerals. Both Fes2 Chemically, Making Them Polymorphs. Polym
Marcasite - Pyrite's Evil Twin Marcasite and pyrite are two common minerals. Both FeS2 chemically, making them polymorphs. Polymorphs are minerals with the same chemical composition but different crystal structures. Diamond and graphite are polymorphs, both minerals being pure carbon. In diamond and graphite the different arrangement of carbon atoms gives these two minerals of very different physical properties. Pyrite and marcasite, on the other hand, have almost identical physical properties, making them tough to tell from each other. Let's go through their properties. Both are metallic and pale yellow to brassy yellow. Both can tarnish and be iridescent. Both are 6-6.5 on the Mohs' hardness scale. Neither have a particularly prominent cleavage, although marcasite does have one that occasionally shows up. Both have densities of about 5 grams per cubic centimeter (pyrite is a bit denser, but not enough to be detectible without delicate measurements). They can even be found together in the same rock. Fortunately these minerals often show good outer crystal shapes that are quite different. Pyrite crystals are generally equant, and dominated by cubes, octahedrons and 12-sided pyritohedrons. Marcasite crystals are usually rectangular (tabular) with wedge-shaped ends and tend to form in star shaped, radiating or cockscomb groups. Marcasite is also much more restricted in occurrence than pyrite, forming only in low temperature, near surface, very acidic environments. It is found in some ore deposits, in sediments formed under somewhat stagnant conditions and as ground water precipitates in rocks such as in limestone and shale. Although pyrite can also be found in many of these same environments, the crystal shapes are diagnostic. -
Ity of Minerais with the Pyrite, Marcasite
STRUCTURALSTABI!.ITY OF MINERAISWITH THE PYRITE, MARCASITE,ARSENOPYRITE AND L6ILINGITESTRUCTURES ERNEST H. NICKEL M,ineral Sc'iencesD'i,v,is,ion, M,ines Branch, Departrnentof Energy, M.i,nesand, Resowrces, 6id Booth Street,Ottawa, Canad,a AssrRAcr The structural stabilities of the disulphides, diarsenides and sulpharsenides of iron, cobalt and nickel are explained on thi basis of ligand field theory. ihe structural stabilities can be correlated with the number of non-bonding d elecirons of the metal atom in the structure, and can.be explained by the tenden"yif th" .ornpourrd" to form structures in which maximum electron spin-pairing takes place. The pyrite,structure, which is favoured-by -!tub with six or more non-bonding d electrons, and which includes pyrite, cattierite, vaesite, cobaltite gur"aormt"i i, characterized by metal-sulphur oclahedra joined at corneis, with no apparintlnteraction""a between the d electrons of neighbouring metal atoms. The otiei structures are all characterized by shared octahedral edgesalong one direction, so that the metal atoms are brought into.relatively close proximlty. In-the marcasite structure, which includes marcasite and rammelsbergite, both with six non-bonding d electrons, the metal atoms repel each other because of completely filled tzs levek. In dre arsenopyrite structure, whichjncludes arsenopyrite and siffiorite, both oi which havefrve iJ eleciions that do noi participate.in metal-sulphur londing, pairs of metals are drawn together to permit spin- pairing of the odd electrons. In ldllingite, in which the iron atom islssumed io have iour non-bonding-d electrons, the d orbitals in.the a crystallographic direction are emptied, permitting close iron-iron approachesin this direciion, r"-wull as complete of the electrons in the two remaining ,2sorbitals. -
Descriptive Mineralogy of Pugh Quarry, Northwestern Ohio: Sphalerite1
Copyright © 1978 Ohio Acad. Sci. 0030-0950/78/0005-027211.50/0 DESCRIPTIVE MINERALOGY OF PUGH QUARRY, NORTHWESTERN OHIO: SPHALERITE1 DAVID F. PARR2 and LUKE L. Y. CHANG, Department of Geology, Miami University, Oxford, OH 45056 Abstract. The Devonian rocks at Pugh Quarry have three distinct types of sphalerite (banded massive, spheroidal, and tiny euhedral). Occurrence of the banded massive sphalerite is restricted to the mineral zone, predominantly as blebs in marcasite. The color of banded sphalerite ranged from nearly colorless to various hues of yellow. The replacement of banded sphalerite by marcasite was observed. The spheroidal sphalerite occurred in association with marcasite of euhedral habit. The spherules were small, the largest no greater than 1 mm across. Where present in great pro- fusion, the sphalerite spherules merged together forming botryoidal surfaces. The euhedral sphalerite occurred in the voids of the sponge-like and stromatolitic dolostone below the mineral zone, and in a layer of soft laminated mud associated with the dolostone. The euhedral sphalerite was predominantly red-brown, and no crystals larger than 1 mm in maximum dimension were observed. OHIO J. SCI. 78(5): 272, 1978 Sphalerite was found in cavities in all RELATION TO HOST ROCK parts of Pugh Quarry. Along with mar- Where sphalerite occurred between casite (Parr and Chang 1977), it com- the bands of marcasite and the dolostone prised nearly all of the sulfide mineraliza- host rock, replacement relationships could tion. Sphalerite occurred in three dis- be observed between the two. Dolomite tinct types. The banded sphalreite par- rhombs were commonly observed to be tially replaced by marcasite was the most engulfed in the banded sphalerite. -
The Geochemistry of Gold-Bearing and Gold-Free Pyrite and Marcasite from the Getchell Gold Deposit, Humboldt County, Nevada
UNLV Retrospective Theses & Dissertations 1-1-2001 The geochemistry of gold-bearing and gold-free pyrite and marcasite from the Getchell gold deposit, Humboldt County, Nevada Kelli Diane Weaver University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds Repository Citation Weaver, Kelli Diane, "The geochemistry of gold-bearing and gold-free pyrite and marcasite from the Getchell gold deposit, Humboldt County, Nevada" (2001). UNLV Retrospective Theses & Dissertations. 1344. http://dx.doi.org/10.25669/rwv9-1zgy This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UM! films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. -
Methods Used to Identifying Minerals
METHODS USED TO IDENTIFYING MINERALS More than 4,000 minerals are known to man, and they are identified by their physical and chemical properties. The physical properties of minerals are determined by the atomic structure and crystal chemistry of the minerals. The most common physical properties are crystal form, color, hardness, cleavage, and specific gravity. CRYSTALS One of the best ways to identify a mineral is by examining its crystal form (external shape). A crystal is defined as a homogenous solid possessing a three-dimensional internal order defined by the lattice structure. Crystals developed under favorable conditions often exhibit characteristic geometric forms (which are outward expressions of the internal arrangements of atoms), crystal class, and cleavage. Large, well- developed crystals are not common because of unfavorable growth conditions, but small crystals recognizable with a hand lens or microscope are common. Minerals that show no external crystal form but possess an internal crystalline structure are said to be massive. A few minerals, such as limonite and opal, have no orderly arrangement of atoms and are said to be amorphous. Crystals are divided into six major classes based on their geometric form: isometric, tetragonal, hexagonal, orthorhombic, monoclinic, and triclinic. The hexagonal system also has a rhombohedral subdivision, which applies mainly to carbonates. CLEAVAGE AND FRACTURE After minerals are formed, they have a tendency to split or break along definite planes of weakness. This property is called cleavage. These planes of weakness are closely related to the internal structure of the mineral, and are usually, but not always, parallel to crystal faces or possible crystal faces. -
The Mineralogy of Warsaw Formation Geodes
Proceedings of the Iowa Academy of Science Volume 66 Annual Issue Article 47 1959 The Mineralogy of Warsaw Formation Geodes Richard B. Tripp U.S. Geological Survey Let us know how access to this document benefits ouy Copyright ©1959 Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/pias Recommended Citation Tripp, Richard B. (1959) "The Mineralogy of Warsaw Formation Geodes," Proceedings of the Iowa Academy of Science, 66(1), 350-356. Available at: https://scholarworks.uni.edu/pias/vol66/iss1/47 This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. Tripp: The Mineralogy of Warsaw Formation Geodes The Mineralogy of Warsaw Formation Geodes By RICHARD B. TRIPP Abstract. Mineral inclusions found in geodes from the Warsaw formation of southeastern Iowa are described. The following are reported as present: quartz, chalcedony, calcite, dolomite, ankerite, barite, aragonite, smithsonite, iron pyrite, marcasite, chalcopyrite, sphalerite, sulfur, goethite, hematite, pyrolusite, kaolinite, malachite, selenite, and limonite. Tenorite and chalcocite have been tentatively identified. The geodes found in the Warsaw formation of southeastern Iowa and adjacent areas present a number of interesting mineralogical in clusions, many not previously described in the literature. For the past ten years an intensive study has been made of the mineral inclu sions found in geodes collected from thirty-two different exposures in the Keokuk, Iowa, area. -
Hydrothermal Mineralization of the Mississippi Valley Type at the Martin-Marietta Quarry, Linn County, Iowa
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Northern Iowa Proceedings of the Iowa Academy of Science Volume 91 Number Article 7 1984 Hydrothermal Mineralization of the Mississippi Valley Type at the Martin-Marietta Quarry, Linn County, Iowa Paul L. Garvin Cornell College Copyright ©1984 Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/pias Recommended Citation Garvin, Paul L. (1984) "Hydrothermal Mineralization of the Mississippi Valley Type at the Martin-Marietta Quarry, Linn County, Iowa," Proceedings of the Iowa Academy of Science, 91(2), 70-75. Available at: https://scholarworks.uni.edu/pias/vol91/iss2/7 This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. Garvin: Hydrothermal Mineralization of the Mississippi Valley Type at the Proc. IowaAcad. Sci. 91(2): 70-75, 1984 Hydrothermal Mineralization of the Mississippi Valley Type at the Martin-Marietta Quarry, Linn County, Iowa PAUL L. GARVIN Department of Geology Cornell College Mount Vernon, Iowa A hydrothermal sulfide mineral deposit is exposed at the Martin-Marietta Quarry (MMQ) near Cedar Rapids, Iowa. Mineralization occurs along solution-enlarged vertical joints in host rocks of the Silurian Scotch Grove and Gower formations. The hydrothermal minerals in general order of deposition are: marcasite, pyrite, sphalerite, calcite. Wall rock alteration is not extensive, and consists of solution enlargement of joints and dissemination of microscopic marcasite in the host rock. -
The Rarer Metals
THE RARER METALS. By FRANK L. HESS. INTRODUCTION. Great gold placer fields, now mere wastes of overturned gravels; worked-out coal fields; exhausted gold, silver, and other mines, with their sterile dumps, gaunt head frames, and decaying shaft houses and mills, testify that, unlike manufactures and agricultural prod ucts, mineral deposits are diminishing assets, and the fact that a large production of some mineral has been made in one year does not necessarily imply that it can be repeated under the impetus of great need. In estimating the possible production of any mineral for any period, a proper weighing of the attending circumstances, the statistics of production of preceding years, and a knowledge of the deposits themselves are all necessary, and these statements probably apply more forcibly to the metals used in alloy steels than to others, for these metals occur in vastly less quantities than coal, iron, copper, or the other common metals, and the individual deposits are smaller' and much less widely distributed and, unlike those of copper or iron, are in very few places concentrated from lean into richer deposits. Comparatively restricted markets and lack of knowledge concern ing these metals themselves and of the minerals in which they occur have prevented prospecting for them until within the last few years, so that as a rule developments of such deposits are small. The subjects briefly discussed here with reference to their avail ability as war supplies are treated more fully in Mineral Resources and other publications of the.United States Geological Survey, espe cially those for recent years.