New and Little Known Limacodidae (Lepidoptera) from Xizang, China
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Page 1 Jpn. J. Environ. Entomol. Zool. 19 (2) : 59-67 (2008) 19 2 : 59-67
]pn. ]pn. ]. Environ. Entoillo l. Zoo l. 19 (2) : 59 - 67 (2008) 環動昆第19 巻第2号: 59 - 67 (2008) 。riginal Article Comparisons of cocoon density and survival processes of the blue 幽 striped nettle grub moth Parasa lepida (Cramer) between deciduous and evergreen trees Hiroichi Hiroichi Sawada 1) ,Y oshihisa Masumoto 1), Takashi Matsumoto 2) and Takayoshi Nishida 3) 1) 1) School of Environmental Science ,The University of Shiga Prefecture ,日 ikone , Shiga 522-8533 , Japan 2) 2) Graduate School of Human and Environmental Studies ,Kyoto University ,Kyoto 606-850 1. Japan 3) 3) Laboratory of Insect Ecology , Graduate School of Agriculture ,Kyoto University ,Kyoto 606-8502 , Japan (Received (Received March 17 , 2008 ; Accepted May 1, 2008) Abstract We studied population dynamics of the blue-striped nettle grub moth Parasa lepida (Cramer) , in terms of cocoon density density over four years from 2004 to 2007 at the campus of The University of Shiga Prefecture ,Hikone , western Japan Japan on a wide range of host trees including both deciduous trees (36 spp. of 282 individual trees) and evergreen trees trees (15 spp. of 122 individual trees). Detailed survival processes were examined by tracking developmental stages both both on the deciduous Chinese tallow tree Triadica seb 俳ra (1.) Small (Euphorbiaceae) and an evergreen oak Quercus myrsinaefolia myrsinaefolia Blume (Fagaceae) to identify factors responsible for the population dynamics and the host utilization patterns. patterns. The density of cocoons was significantly higher in deciduous hosts than in evergreen hosts in the first generation , but this tendency disappeared in the second generation. Life table analyses revealed there was a higher cocoon cocoon density in deciduous T. -
Lepidoptera, Limacodidae) 23 Doi: 10.3897/Zookeys.306.5216 Research Article Launched to Accelerate Biodiversity Research
A peer-reviewed open-access journal ZooKeys 306: 23–36A review (2013) of the genus Monema Walker in China (Lepidoptera, Limacodidae) 23 doi: 10.3897/zookeys.306.5216 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research A review of the genus Monema Walker in China (Lepidoptera, Limacodidae) Zhaohui Pan1,†, Chaodong Zhu2,‡, Chunsheng Wu2,§ 1 Institute of Plateau Ecology, Agriculture and Animal Husbandry College of Tibet University, Linzhi 860000, P.R. China 2 Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China † urn:lsid:zoobank.org:author:327D5273-1638-4F19-BF87-345AA1E264D9 ‡ urn:lsid:zoobank.org:author:8B542B39-2118-4146-83F8-73AB65257FB9 § urn:lsid:zoobank.org:author:9ED21D9F-83DB-4F22-AAB2-C9F0F5ABD12C Corresponding author: Chaodong Zhu ([email protected]); Chunsheng Wu ([email protected]) Academic editor: E. van Nieukerken | Received 27 March 2013 | Accepted 29 May 2013 | Published 3 June 2013 urn:lsid:zoobank.org:pub:4FFDB920-7E4A-4F33-9D8E-16CC7189723F Citation: Pan Z, Zhu C, Wu C (2013) A review of the genus Monema Walker in China (Lepidoptera, Limacodidae). ZooKeys 306: 23–36. doi: 10.3897/zookeys.306.5216 Abstract Four species and one subspecies of the genus Monema Walker, 1855 are recognized from China, in which M. tanaognatha Wu & Pan sp. n. is described as new, M. coralina Dudgeon, 1895 and M. meyi Solovyev & Witt, 2009 are newly recorded for China. The female of M. meyi is reported for the first time. Monema ni- grans de Joannis, 1901 and M. melli Hering, 1931 are synonymized with M. -
Attraction of Monema Flavescens Males to Synthetic Blends of Sex Pheromones
Bulletin of Insectology 69 (2): 193-198, 2016 ISSN 1721-8861 Attraction of Monema flavescens males to synthetic blends of sex pheromones 1 2 1 2 3 2 Shuzhen YANG , Hongxia LIU , Haixia ZHENG , Meihong YANG , Yanxia REN , Jintong ZHANG 1Agronomy College, Shanxi Agricultural University, Taigu, Shanxi, China 2Institute of Chemical Ecology, Shanxi Agricultural University, Taigu, Shanxi, China 3Shanxi Branch Valley Biological Pesticide Co. Ltd, Taigu, Shanxi, China Abstract This study was performed in Luanxian County, Hebei Province, China, from June to August of 2014 and 2015. We sought to de- velop a new and effective method for controlling the moth Monema flavescens. We synthesized the principal female sex phero- mones and conducted a series of field experiments using traps baited with (E)-8-decen-1-ol (E8-10:OH), (Z)-7,9-decadien-1-ol (Z7,9-10:OH), and (Z)-9,11-dodecadien-1-ol (Z9,11-12:OH), alone or in combination. The number of males captured by traps baited with synthetic E8-10:OH increased when Z7,9-10:OH, Z9,11-12:OH, or both was/were added. Traps baited with a 10:2:1 (w/w/w) mixture of E8-10:OH, Z7,9-10:OH, and Z9,11-12:OH at a total dose of 650 µg septum−1 were the most efficient. Further, a delta trap hung about 1.5 m above the ground was very effective. Our work will facilitate safer and more environmentally friendly management of M. flavescens. Key words: Monema flavescens, sex pheromone trapping, (E)-8-decen-1-ol, (Z)-7,9-decadien-1-ol, (Z)-9,11-dodecadien-1-ol. -
Moths of Ohio Guide
MOTHS OF OHIO field guide DIVISION OF WILDLIFE This booklet is produced by the ODNR Division of Wildlife as a free publication. This booklet is not for resale. Any unauthorized INTRODUCTION reproduction is prohibited. All images within this booklet are copyrighted by the Division of Wildlife and it’s contributing artists and photographers. For additional information, please call 1-800-WILDLIFE. Text by: David J. Horn Ph.D Moths are one of the most diverse and plentiful HOW TO USE THIS GUIDE groups of insects in Ohio, and the world. An es- Scientific Name timated 160,000 species have thus far been cata- Common Name Group and Family Description: Featured Species logued worldwide, and about 13,000 species have Secondary images 1 Primary Image been found in North America north of Mexico. Secondary images 2 Occurrence We do not yet have a clear picture of the total Size: when at rest number of moth species in Ohio, as new species Visual Index Ohio Distribution are still added annually, but the number of species Current Page Description: Habitat & Host Plant is certainly over 3,000. Although not as popular Credit & Copyright as butterflies, moths are far more numerous than their better known kin. There is at least twenty Compared to many groups of animals, our knowledge of moth distribution is very times the number of species of moths in Ohio as incomplete. Many areas of the state have not been thoroughly surveyed and in some there are butterflies. counties hardly any species have been documented. Accordingly, the distribution maps in this booklet have three levels of shading: 1. -
Entomology) Onwards Google Meet) on 15Th May, 2021 at 10 Am Participants: I
Board of Studies Meeting (Department of Organised virtually (on Entomology) onwards google meet) on 15th May, 2021 at 10 am Participants: I. Prof. Nand Lal, Deppt. of life 2. Prof. C. P. science, CSJM Srivastav, Professor of University, Kanpur 3. Prof.Y. P. Entomology, B.H.U. Malik, Professor Varanasi of Entomology, CSA Kanpur Univ. of Agri. and Tech. 4. Dr. Dev Narayan Singh, Associate Professor, of College, Bakewar (Etawah) Deptt. Entomology, Janta 5. Dr. B. B. Singh, Assistant Professor, Mahavidyalay, Ajitmal (Auraiya) Deptt. of Entomology, Janta 6. Dr. Mahesh Prasad Yadav, Convenor and Associate Horticulture, Janta professor, Deptt. of College, Bakewar (Etawah) Minutes Of Meeting: BOS mecting of of deptt. Entomology was held to New Education adapt syllabus as under Policy (NEP 2020) with the suggested the presence of various renowed subjects. The outcomes of experts of meetings are as under. 1. Syllabus under suggested NEP 2020 is and implementation. accepted recommended for 2. Prof. Suggestions given by C. P. Srivastav and Prof. Y. minor P. Malik regarding ammendments and corrections have been 3. incorporated. Website names as well as books names have also been syllabus adapted by board. suggested in the 4. Board also that as the suggested per norms of ICAR the name of should be "Entomology". Department 5. Board also that master suggested degree in subject will be "M. Sc. Entomology" (Ag.) Enclosures: Corrected final of syllabus Entomology for B. Sc. (Ag.) programme. Prepared by: Dr. Dev Narayan Singh Convenor Dr. M. P. Yadav Department of Entomology Sr. Course semester No. code Name of papers AG-203 II Credit hrs. -
Biosecurity Risk Assessment
An Invasive Risk Assessment Framework for New Animal and Plant-based Production Industries RIRDC Publication No. 11/141 RIRDCInnovation for rural Australia An Invasive Risk Assessment Framework for New Animal and Plant-based Production Industries by Dr Robert C Keogh February 2012 RIRDC Publication No. 11/141 RIRDC Project No. PRJ-007347 © 2012 Rural Industries Research and Development Corporation. All rights reserved. ISBN 978-1-74254-320-8 ISSN 1440-6845 An Invasive Risk Assessment Framework for New Animal and Plant-based Production Industries Publication No. 11/141 Project No. PRJ-007347 The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication. -
In the Oregon State Arthropod Collection. Zygaenoidea
2019 Vol 3 (2) Catalog: Oregon State Arthropod Collection Specimen records for North American Lepidoptera (Insecta) in the Oregon State Arthropod Collection. Zygaenoidea: Zygaenidae, Latreille 1809, Limacodidae, Moore 1879, Dalceridae Dyar, 1898 and Megalopygidae Herrich-Schäffer, 1855 Jon H. Shepard Paul C. Hammond Christopher J. Marshall Oregon State Arthropod Collection, Department of Integrative Biology, Oregon State University, Corvallis OR 97331 Cite this work, including the attached dataset, as: Shepard, J. H., P. C. Hammond, C. J. Marshall. 2019. Specimen records for North American Lepidoptera (Insecta) in the Oregon State Arthropod Collection. Zygaenoidea: Zygaenidae, Latreille 1809, Limacodidae, Moore 1879, Dalceridae Dyar, 1898 and Megalopygidae Herrich-Schäffer, 1855. Catalog: Oregon State Arthropod Collection 3(2) (beta version). http://dx.doi.org/10.5399/osu/cat_osac.3.2.4593 Introduction These records were generated using funds from the LepNet project (Seltmann et. al., 2017) - a national effort to create digital records for North American Lepidoptera. The dataset published herein contains the label data for all North American specimens of Zygaenidae, Limacodidae, Dalceridae and Megalopygidae residing at the Oregon State Arthropod Collection as of March 2019. A beta version of these data records will be made available on the OSAC server (http://osac.oregonstate.edu/IPT) at the time of this publication. The beta version will be replaced in the near future with an official release (version 1.0), which will be archived as a supplemental file to this paper. Methods Basic digitization protocols and metadata standards can be found in (Shepard et al. 2018). Identifications were confirmed prior to determination by Jon Shepard and Paul Hammond using the online Digital Guide to Moth Identification website (Moth Photographers Group, 2019). -
Saddleback Caterpillar Acharia Stimulea (Clemens) (Insecta: Lepidoptera: Limacodidae)1 Christopher S
EENY-522 Saddleback Caterpillar Acharia stimulea (Clemens) (Insecta: Lepidoptera: Limacodidae)1 Christopher S. Bibbs and J. Howard Frank2 Introduction Acharia stimulea (Clemens) is a limacodid moth, or slug moth, best known for its larval growth phase. Distinct bright color patterns and the presence of venomous, urticating spines lead to its recognition as the saddleback caterpillar. It is native to a large range in the eastern United States and able to feed on a wide array of host plant species. This species can survive well in northern temperate areas and warmer southern climates. The saddleback caterpillar is encountered most frequently as a medically significant pest, and has minor effects in landscaping and agriculture. Synonymys Empretia stimulea Clemens Limacodes ephippiatus Harris Figure 1. Mature larvae of the saddleback caterpillar, Acharia stimulea Sibine stimulea (Clemens) (Clemens). Credits: Lyle J. Buss, University of Florida Acharia stimulea (Clemens) Distribution (Dyar and Morton 1896) Acharia stimulea has a wide range in the eastern United States, occurring as far southward as Florida, northward to New York and Massachusetts, and westward to Texas, Indiana, and Kansas (Snow 1875; Darlington 1952; Nie- senbaum 1992; Landau and Prowell 1999; Heppner 2003; Covell 2005; Wagner 2005). 1. This document is EENY-522, one of a series of the Department of Entomology and Nematology, UF/IFAS Extension. Original publication date March 2012. Revised January 2015. Reviewed April 2018. Visit the EDIS website at http://edis.ifas.ufl.edu. This document is also available on the Featured Creatures website at http://entnemdept.ifas.ufl.edu/creatures/. 2. Christopher S. Bibbs, student; and J. -
REPORT on APPLES – Fruit Pathway and Alert List
EU project number 613678 Strategies to develop effective, innovative and practical approaches to protect major European fruit crops from pests and pathogens Work package 1. Pathways of introduction of fruit pests and pathogens Deliverable 1.3. PART 5 - REPORT on APPLES – Fruit pathway and Alert List Partners involved: EPPO (Grousset F, Petter F, Suffert M) and JKI (Steffen K, Wilstermann A, Schrader G). This document should be cited as ‘Wistermann A, Steffen K, Grousset F, Petter F, Schrader G, Suffert M (2016) DROPSA Deliverable 1.3 Report for Apples – Fruit pathway and Alert List’. An Excel file containing supporting information is available at https://upload.eppo.int/download/107o25ccc1b2c DROPSA is funded by the European Union’s Seventh Framework Programme for research, technological development and demonstration (grant agreement no. 613678). www.dropsaproject.eu [email protected] DROPSA DELIVERABLE REPORT on Apples – Fruit pathway and Alert List 1. Introduction ................................................................................................................................................... 3 1.1 Background on apple .................................................................................................................................... 3 1.2 Data on production and trade of apple fruit ................................................................................................... 3 1.3 Pathway ‘apple fruit’ ..................................................................................................................................... -
EU Project Number 613678
EU project number 613678 Strategies to develop effective, innovative and practical approaches to protect major European fruit crops from pests and pathogens Work package 1. Pathways of introduction of fruit pests and pathogens Deliverable 1.3. PART 7 - REPORT on Oranges and Mandarins – Fruit pathway and Alert List Partners involved: EPPO (Grousset F, Petter F, Suffert M) and JKI (Steffen K, Wilstermann A, Schrader G). This document should be cited as ‘Grousset F, Wistermann A, Steffen K, Petter F, Schrader G, Suffert M (2016) DROPSA Deliverable 1.3 Report for Oranges and Mandarins – Fruit pathway and Alert List’. An Excel file containing supporting information is available at https://upload.eppo.int/download/112o3f5b0c014 DROPSA is funded by the European Union’s Seventh Framework Programme for research, technological development and demonstration (grant agreement no. 613678). www.dropsaproject.eu [email protected] DROPSA DELIVERABLE REPORT on ORANGES AND MANDARINS – Fruit pathway and Alert List 1. Introduction ............................................................................................................................................... 2 1.1 Background on oranges and mandarins ..................................................................................................... 2 1.2 Data on production and trade of orange and mandarin fruit ........................................................................ 5 1.3 Characteristics of the pathway ‘orange and mandarin fruit’ ....................................................................... -
Ecdysteroid Effects on Algae
COMPILATION OF THE LITERATURE REPORTS FOR THE EFFECTS OF ECDYSTEROIDS ON ALGAE, VASCULAR PLANTS, MICROBES, INSECTS AND MAMMALS, THEIR BIOTECHNOLOGICAL APPLICATIONS AND THEIR BIOLOGICAL ACTIVITIES Compiled by Laurie Dinan and René Lafont, Sorbonne Universités – UPMC Université Paris 06, IBPS-BIOSIPE, Case Courrier 29, 7 Quai St. Bernard, F-75252 Paris Cedex 05, France. Version 3: Date of last update: 21/04/17 Important notice: This database has been designed as a tool to help the scientific community in research on ecdysteroids. The authors wish it to be an evolving system and would encourage other researchers to submit new data, additional publications, proposals for modifications or comments to the authors for inclusion. All new material will be referenced to its contributor. Reproduction of the material in this database in its entirety is not permitted. Reproduction of parts of the database is only permitted under the following conditions: reproduction is for personal use, for teaching and research, but not for distribution to others reproduction is not for commercial use the origin of the material is indicated in the reproduction we should be notified in advance to allow us to document that the reproduction is being made Where data are reproduced in published texts, they should be acknowledged by the reference: Lafont R., Harmatha J., Marion-Poll F., Dinan L., Wilson I.D.: The Ecdysone Handbook, 3rd edition, on-line, http://ecdybase.org Illustrations may not under any circumstances be used in published texts, commercial or otherwise, without previous written permission of the author(s). Please notify Laurie Dinan ([email protected]) of any errors or additional literature sources. -
Insecticidal Activities of Essential Oils from Some Cultivated Aromatic Plants Against Spodoptera Littoralis (Boisd)
JOURNAL OF PLANT PROTECTION RESEARCH Vol. 53, No. 4 (2013) DOI: 10.2478/jppr-2013-0057 INSECTICIDAL ACTIVITIES OF ESSENTIAL OILS FROM SOME CULTIVATED AROMATIC PLANTS AGAINST SPODOPTERA LITTORALIS (BOISD) Salaheddine Souguir*, Ikbal Chaieb, Zohra Ben Cheikh, Asma Laarif Entomological Laboratory, Regional Research Center in Horticulture and Organic Agriculture, Chott Mariem 4042, Sousse, Tunisia Received: February 1, 2013 Accepted: October 16, 2013 Abstract: Medicinal plant species were tested for their fumigant activity against Spodoptera littoralis third instar larvae. Responses varied according to plant species and parts used. For the present investigation, volatile oils were obtained from: Foeniculum vulgare (flowers and seeds), Coriandrum sativum (seeds), Daucus carota (flowers), Pelargonium graveolens (leaves and flowers), Origanum ma- jorana (leaves and flowers), and Salvia officinalis (leaves). Fumigant activity was observed after 24 hours of exposure. All essential oils were proved to be toxic to the third instar larvae. However, the highest mortality was observed in the essential oil of S. officinalis leaves, C. sativum seeds, F. vulgare seeds, D. carota flowers, and O. majorana leaves with LC50 = 23.050 µl/l air, 68.925 µl/l air, 95.075 µl/l air, 99.300 µl/l air, and 100.925 µl/l air, respectively. Other oils showed an LC50 between 101 and 183 µl/l air. Key words: Coriandrum sativum, Daucus carota, essential oils, Foeniculum vulgare, Fumigant activity, LC50 , Origanum majorana, Pelar- gonium graveolens, Salvia officinalis, Spodoptera littoralis INTRODUCTION The aim of our study was to assess the insecticide ac- Insect pests are a major constraint on crop production, tivity of the essential oils obtained by six Mediterranean especially in developing countries.