DOGGER BANK Environmental Statement Chapter 12

Total Page:16

File Type:pdf, Size:1020Kb

DOGGER BANK Environmental Statement Chapter 12 March 2014 Environmental Statement Chapter 12 - Marine and Intertidal Ecology Application Reference: 6.12 DOGGER BANK TEESSIDE A & B Cover photograph: Installation of turbine foundations in the North Sea F-OFL-CH-012 Issue 4.1 Chapter 12 Page ii © 2014 Forewind DOGGER BANK TEESSIDE A & B Document Title Dogger Bank Teesside A & B Environmental Statement – Chapter 12 Marine and Intertidal Ecology Forewind Document Reference F-OFL-CH-012 Issue 4.1 Date March 2014 Drafted by Royal HaskoningDHV (Jonny Lewis) Checked by Ben Orriss Date / initials check 21 February 2014 Approved by Angela Lowe Date / initials approval 21 February 2014 Forewind Approval Date / Reference approval Gareth Lewis 14 February 2014 F-OFL-CH-012 Issue 4.1 Chapter 12 Page iii © 2014 Forewind DOGGER BANK TEESSIDE A & B Title: Contract No. (if applicable) Dogger Bank Teesside A & B Draft Environmental Statement Chapter Onshore Offshore 12 Marine and Intertidal Ecology Document Number: Issue No: Issue Date: F-OFL-CH-012 4.1 28 February 2014 Status: Issued for 1st. Technical Review Issued for PEI3 Issued for 2nd. Technical Review Issued for Application Submission Prepared by: Checked by: Royal HaskoningDHV (Jonathan Lewis) Ben Orriss Approved by: Signature / Approval (Forewind) Approval Date: Angela Lowe 14 February 2014 Gareth Lewis Revision History Date Issue No. Remarks / Reason for Issue Author Checked Approved 31 May2013 1 Issued for 1st Technical review JL AL AMP 08 July 2013 2 Issued for 2nd Technical review JL AL AL 23 August 2.1 Issued for Approval JL AL AL 2013 08 October 3 Issued for PEI 3 JL AL RAH 2013 07 February 4 Pre-DCO Submission Review JL BLO AL 2014 28 February 4.1 DCO Submission JL BLO AL 2014 F-OFL-CH-012 Issue 4.1 Chapter 12 Page iv © 2014 Forewind DOGGER BANK TEESSIDE A & B Contents 1. Introduction ................................................................................................................. 1 2. Guidance and Consultation ........................................................................................... 2 2.1. Legislation, policy and guidance ......................................................................... 2 2.2. Consultation ........................................................................................................ 4 3. Methodology ............................................................................................................... 12 3.1. Study area ........................................................................................................ 12 3.2. Characterisation of existing environment – methodology .................................. 12 3.3. Assessment of impacts – methodology ............................................................. 28 4. Existing Environment .................................................................................................. 32 4.1. Dogger Bank Teesside A & B and the Dogger Bank Teesside A & B Export Cable Corridor ................................................................................................... 32 4.2. Intertidal ............................................................................................................ 54 4.3. Biotopes and habitats ....................................................................................... 55 4.4. Habitats and species of conservation importance ............................................. 61 5. Assessment of Impacts – Worst Case Definition ........................................................ 75 5.1. General ............................................................................................................. 75 5.2. Construction Scenarios ..................................................................................... 75 5.3. Operation Scenario ........................................................................................... 76 5.4. Decommissioning scenarios ............................................................................. 77 5.5. Realistic Worst case Scenario .......................................................................... 77 6. Assessment of Impacts during Construction ............................................................... 85 6.1. General ............................................................................................................. 85 6.2. Physical disturbance to habitats and species and temporary habitat loss ........ 85 6.3. Increased suspended sediment concentration and sediment deposition .......... 94 6.4. Release of sediment contaminants resulting in potential effects on benthic ecology ............................................................................................................. 99 6.5. Increased suspended sediment concentration leading to impacts on plankton and primary productivity .................................................................................. 101 6.6. Physical disturbance to intertidal habitats and species during landfall works . 102 F-OFL-CH-012 Issue 4.1 Chapter 12 Page v © 2014 Forewind DOGGER BANK TEESSIDE A & B 6.7. Potential construction phase impacts on the Dogger Bank cSAC ................... 103 6.8. Potential construction phase impacts on sites of marine conservation interest .... ............................................................................................................. 107 6.9. Monitoring of construction phase impacts ....................................................... 110 7. Assessment of Impacts during Operation ................................................................. 112 7.1. Permanent loss of habitat via placement of project infrastructure (foundations, cable protection, scour protection) .................................................................. 112 7.2. Temporary impact on benthos due to physical disturbance caused by maintenance activities ..................................................................................... 116 7.3. Change in hydrodynamics and inter-related effects on benthos ..................... 117 7.4. Increase in suspended sediment concentration due to scour associated with foundations ..................................................................................................... 119 7.5. Increase in sediment deposition following increase in suspended sediment concentration due to scour associated with foundations ................................. 121 7.6. Introduction of new habitat in the form of foundation structures, leading to potential colonisation ...................................................................................... 122 7.7. Effect of electromagnetic fields on benthic communities ................................. 125 7.8. Potential operational phase impacts on the Dogger Bank cSAC .................... 126 7.9. Potential operational phase impacts on sites of marine conservation interest 128 7.10. Monitoring of operational phase impacts ........................................................ 130 8. Assessment of Impacts during Decommissioning ..................................................... 132 8.1. Increased suspended sediment concentration and sediment deposition ........ 132 8.2. Loss of species colonising hard structures ..................................................... 132 8.3. Temporary disturbance to habitats via removal of cables ............................... 133 8.4. Potential decommissioning phase impacts on the Dogger Bank cSAC .......... 133 8.5. Monitoring of decommissioning phase impacts............................................... 134 9. Inter-relationships...................................................................................................... 135 10. Cumulative Impacts ................................................................................................... 136 10.1. CIA strategy and screening ............................................................................. 136 10.2. Temporary disturbance to marine habitats during construction (seabed preparation, cable installation, vessel jacking-up etc.) .................................... 143 F-OFL-CH-012 Issue 4.1 Chapter 12 Page vi © 2014 Forewind DOGGER BANK TEESSIDE A & B 10.3. Increased suspended sediment concentration and sediment deposition during construction phase .......................................................................................... 144 10.4. Permanent loss of marine habitats via installation of project infrastructure associated with offshore wind farm development and other activities ............. 145 10.5. Increased suspended sediment concentration and sediment deposition during operational phase. .......................................................................................... 146 10.6. Direct impact via vessel activity (jacking-up and anchoring in operational phase) ............................................................................................................. 147 10.7. Cumulative impact of introduction of hard substrates in form or foundations / scour & cable protection into a mainly sedimentary environment (southern North Sea) ............................................................................................................. 148 10.8. Impact on the Dogger Bank cSAC via cumulative impacts ............................. 148 11. Transboundary Effects .............................................................................................. 151 12. Summary ............................................................................................................
Recommended publications
  • Integrated Offshore Networks: the Context of Our Work
    Developing offshore grids : An integrated approach Place your chosen image here. The four corners must just cover the arrow tips. For covers, the three pictures should be the same size and in a straight line. Andrew Hiorns Integrated offshore networks: the context of our work Sustainability We are interested in establishing workable arrangements at the lowest costs for UK consumers such that: The potential deliverability of offshore wind is maximised Security of supply and network resilience are maximised The overall cost to consumers is minimised Affordability The scale of potential offshore a Offshore wind leased wind necessitates reflection on capacity* the delivery challenges: 1GW Security of supply 7GW European interconnection Technology development Security of 32GW supply Supply chain capability Planning consents Financing Round 1 Round 2 Round 3 Skills * Source: DECC website 2 http://www.decc.gov.uk/en/content/cms/what_we_do/uk_supply/energy_mix/renewable/policy/offshore/wind_leasing/wind_leasing.aspx 1 Assumptions: Generation mix scenarios 2008/09 TRANSMISSION SYSTEM AS AT 31st DECEMBER 2007 400kV Substations 275kV Substations Slow Progression 132kV Substations 400kV Circuits 275kV Circuits 132kV Circuits Major Generating Sites Including Pumped Storage Pentland Firth Connected at 400kV THE SHETLAND ISLANDS 6 Connected at 275kV 9,724MW offshore wind in 2020 Hydro Generation 23,174MW offshore wind in 2030 1 21% renewable electricity generation 2020 target missed 5 7 8 9 2 10 Gone Green 4 3 16,374MW offshore wind
    [Show full text]
  • Länderprofil Großbritannien Stand: Juli / 2013
    Länderprofil Großbritannien Stand: Juli / 2013 Impressum Herausgeber: Deutsche Energie-Agentur GmbH (dena) Regenerative Energien Chausseestraße 128a 10115 Berlin, Germany Telefon: + 49 (0)30 72 6165 - 600 Telefax: + 49 (0)30 72 6165 – 699 E-Mail: [email protected] [email protected] Internet: www.dena.de Die dena unterstützt im Rahmen der Exportinitiative Erneuerbare Energien des Bundesministeriums für Wirtschaft und Technologie (BMWi) deutsche Unternehmen der Erneuerbare-Energien-Branche bei der Auslandsmarkterschließung. Dieses Länderprofil liefert Informationen zur Energiesituation, zu energiepolitischen und wirtschaftlichen Rahmenbedingungen sowie Standort- und Geschäftsbedingungen für erneuerbare Energien im Überblick. Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung der dena. Sämtliche Inhalte wurden mit größtmöglicher Sorgfalt und nach bestem Wissen erstellt. Die dena übernimmt keine Gewähr für die Aktualität, Richtigkeit, Vollständigkeit oder Qualität der bereitgestellten Informationen. Für Schäden materieller oder immaterieller Art, die durch Nutzen oder Nichtnutzung der dargebotenen Informationen unmittelbar oder mittelbar verursacht werden, haftet die dena nicht, sofern ihr nicht nachweislich vorsätzliches oder grob fahrlässiges Verschulden zur Last gelegt werden kann. Offizielle Websites www.renewables-made-in-germany.com www.exportinitiative.de Länderprofil Großbritannien – Informationen für
    [Show full text]
  • ABLE Marine Energy Park (AMEP) ABLE Humber Port, East Coast, UK Establishing a New Offshore Wind Cluster
    ABLE Marine Energy Park (AMEP) ABLE Humber Port, East Coast, UK Establishing a New Offshore Wind Cluster Information on AMEP to Support the Attraction of Offshore Wind Activity - 2021 Contents 3. Introduction 4. ABLE Marine Energy Park Aerial View 5. Location - Connectivity to Europe 6. Location - Road & Rail 7. Location - Proximity to Market 8. AMEP - The Offer 9. AMEP - Freeport Status 10. AMEP - Optimum Site Solutions 11. AMEP - Indicative Working Plan 12. AMEP - Offshore Wind Work Flow 13. Hornsea One Offshore Wind Farm 14. Triton Knoll Offshore Wind Farm 15. Dogger Bank Offshore Wind Farm 16. Planning - Fully Consented 17. Cost Reduction Opportunities 18. Wind Installation Vessels - Benefits 19. AMEP - Technical Specification 21. AMEP - Operating Model 22. AMEP - Competitive Advantage 23. Heavy Lift & Transport Services 24. The Humber Estuary Characteristics 25. Humber - Tees & Tyne Comparisons 27. Workforce - Productivity 28. Workforce - Availability 29. Production & Assembly - Workforce 31. Financial Support for Investment Document Reference: CM.NFE-AMEP-OSW-29 January 2021 Introduction ABLE Marine Energy Park (AMEP). Able Marine Energy Park (AMEP) is a port development on the south bank of the Humber Estuary on the East Coast of the United Kingdom. It is a nationally significant infrastructure project (NSIP) and is recognised as a core development within the UK Government Infrastructure Roadmap. The AMEP project base case involves developing Phase 1 with 1,349m of installation quays, 4no. installation yards (78.63 ha), with an additional 139 ha for manufacturer storage. It represents a singular opportunity for the UK to establish a world-scale industrial cluster and enable the UK to maximise the economic development potential provided by the combination of the emerging market and supportive policies.
    [Show full text]
  • Forecast from 2016-17 to 2019-20
    Tariff Information Paper Forecast TNUoS tariffs from 2016/17 to 2019/20 This information paper provides a forecast of Transmission Network Use of System (TNUoS) tariffs from 2016/17 to 2019/20. These tariffs apply to generators and suppliers. This annual publication is intended to show how tariffs may evolve over the next five years. The forecast tariffs for 2016/17 will be refined throughout the year. 28 January 2015 Version 1.0 1 Contents 1. Executive Summary....................................................................................4 2. Five Year Tariff Forecast Tables ...............................................................5 2.1 Generation Tariffs ................................................................................. 5 2.2 Onshore Local Circuit Tariffs ..............................................................10 2.3 Onshore Local Substation Tariffs .......................................................12 Any Questions? 2.4 Offshore Local Tariffs .........................................................................12 2.5 Demand Tariffs ...................................................................................13 Contact: 3. Key Drivers for Tariff Changes................................................................14 Mary Owen 3.1 CMP213 (Project TransmiT)...............................................................14 Stuart Boyle 3.2 HVDC Circuits.....................................................................................14 3.3 Contracted Generation .......................................................................15
    [Show full text]
  • Transmission Networks Connections Update
    Transmission Networks Connections Update May 2015 SHE-T–TO SPT–TO NG–TO/SO SHE-T–TO SPT–TO NG–TO/SO Back to Contents TNCU – May 2015 Page 01 Contents Foreword ////////////////////////////////////////////////////////////////// 02 1. Introduction /////////////////////////////////////////////////////////// 03 2. Connection timescales ///////////////////////////////////////////// 04 Illustrative connection timescales /////////////////////////////////////// 04 Connections by area /////////////////////////////////////////////////////// 05 3. GB projects by year ///////////////////////////////////////////////// 06 Contracted overall position /////////////////////////////////////////////// 08 Renewable projects status by year ///////////////////////////////////// 10 Non-Renewable projects status by year – Excluding Nuclear /// 11 Non-Renewable projects status by year – Nuclear only ////////// 12 Interconnector projects status by year //////////////////////////////// 13 4. Additional data by transmission owner ///////////////////////// 14 National Grid Electricity Transmission plc //////////////////////////// 16 Scottish Hydro Electricity Transmission plc ////////////////////////// 18 Scottish Power Transmission Limited ///////////////////////////////// 20 5. Connection locations /////////////////////////////////////////////// 22 Northern Scotland projects map //////////////////////////////////////// 25 Southern Scotland projects map /////////////////////////////////////// 28 Northern England projects map /////////////////////////////////////////
    [Show full text]
  • Sofia Ground Model Developed by NGI Not Confidential
    EV108 Sofia ground model developed by NGI Not confidential Sofia Offshore Wind Farm Limited 154 - Synthetic CPTs from Intelligent Ground Models based on the integration of geology, geotechnics and geophysics as a tool for conceptual foundation design and soil investigation planning CF Forsberg, T Lunne and M Vanneste Norwegian Geotechnical Institute, Oslo, Norway L James Forewind, UK/RPS, UK TI Tjelta Forewind, UK /Statoil, Norway A Barwise Statkraft UK Ltd. / RWE Innogy UK Ltd C Duffy Forewind, UK/Statkraft UK Ltd. Abstract Early phase soil investigation campaigns do not as a rule include all the locations where infrastructure is to be placed on the seafloor. However, background information on geology, bathymetric and seismic data may be available across the area at an early stage. The combination of these datasets thus provides the basis for devel- oping a ground model of the development area. The inclusion of geotechnical data in such ground models is not always straightforward since geotechnical properties may vary laterally and with depth. In this paper we present an "Intelligent Ground Model", developed at NGI, and used at several large wind farm projects. The model combines interpreted seismic horizons with geological understanding and acquired CPTU data to allow synthetic CPTUs to be generated at any location within the investigated area. In the Dogger Bank wind farm area, synthetic CPTUs were generated at numerous locations to guide initial evaluations of foundation require- ments and to group locations with similar synthetic profiles. The model was tested by removing known CPTU data from the database and comparing them to synthetic results from the same locations.
    [Show full text]
  • Concrete Support Structures for Offshore Wind Turbines: Current Status, Challenges, and Future Trends
    energies Review Concrete Support Structures for Offshore Wind Turbines: Current Status, Challenges, and Future Trends Alexandre Mathern 1,2,* , Christoph von der Haar 3 and Steffen Marx 4 1 Department of Architecture and Civil Engineering, Chalmers University of Technology, Sven Hultins Gata 6, SE-41296 Gothenburg, Sweden 2 Research and Innovation, NCC AB, Lilla Bomen 3c, SE-41104 Gothenburg, Sweden 3 grbv Ingenieure im Bauwesen GmbH & Co. KG, Expo Plaza 10, 30539 Hannover, Germany; [email protected] 4 Institute of Concrete Structures, Technische Universität Dresden, August-Bebel-Straße 30/30A, 01219 Dresden, Germany; [email protected] * Correspondence: [email protected] or [email protected] Abstract: Today’s offshore wind turbine support structures market is largely dominated by steel structures, since steel monopiles account for the vast majority of installations in the last decade and new types of multi-leg steel structures have been developed in recent years. However, as wind turbines become bigger, and potential sites for offshore wind farms are located in ever deeper waters and ever further from the shore, the conditions for the design, transport, and installation of support structures are changing. In light of these facts, this paper identifies and categorizes the challenges and future trends related to the use of concrete for support structures of future offshore wind projects. To do so, recent advances and technologies still under development for both bottom-fixed and floating concrete support structures have been reviewed. It was found that these new developments meet the Citation: Mathern, A.; von der Haar, challenges associated with the use of concrete support structures, as they will allow the production C.; Marx, S.
    [Show full text]
  • Planning Statement
    Dogger Bank C/Sofia Onshore Works Application Planning Statement Classification: N/A Status: ISSUE Expiry date: N/A 1 of 44 Classification: N/A Status: ISSUE Expiry date: N/A 2 of 44 Doc. No. Rev. no. 01 Planning Statement Valid from: July 2020 Table of contents 1 Introduction ....................................................................................................................................................5 1.1 Purpose of the Report ......................................................................................................................................5 1.2 The Development .............................................................................................................................................5 1.3 The Site and its Surroundings ..........................................................................................................................5 1.4 Planning History ...............................................................................................................................................6 2 Project Description ........................................................................................................................................6 2.1 Overview ..........................................................................................................................................................6 3 Planning Policy Framework ..........................................................................................................................6 3.1
    [Show full text]
  • TOP 100 POWER PEOPLE 2015 the Movers and Shakers in Wind
    2015 Top 100 Power People 1 TOP 100 POWER PEOPLE 2015 The movers and shakers in wind LordFeaturing Irvine anLaidlaw exclusive talks interview exclusively with to ALord Word Irvine© AAbout Word AboutLaidlaw Wind,Wind 2015 2015 Top 100 Power People Contents 2 CONTENTS Editorial: Introducing the Top 100 Power People 3 Compiling the Top 100: Advisory panel and ranking process 4 Exclusive: A Word About Wind meets Lord Laidlaw 7 Top 100 breakdown: Statistics on this year’s table 13 Profles: Numbers 100 to 26 14 Profles: Numbers 25 to 6 24 Top fve profles: The most infuential people in global wind 26 Top 100 list: The full Top 100 Power People for 2015 28 Next year: Key dates for your diary in 2016 31 Networking at A Word About Wind annual conference in 2015 © A Word About Wind, 2015 2015 Top 100 Power People Editorial 3 EDITORIAL re institutional lenders more vital to growing their operations in emerging wind Awind than developers? markets in Asia, Africa and South America. That international focus has remained this Do private equity frms make a larger year, but we have seen other changes. contribution than big turbine makers? One big trend we have seen this year is And are senior advisers more infuential the number of private equity players in the than those inventing groundbreaking tech? table. There are 12 people from private equity frms in this year’s Top 100, including by Richard Heap, These are three tough questions, and the nine who have not featured before. editor at A Word About Wind truthful answer is that it is very diffcult to compare the different contributions made The wide range of investments made by these hugely diverse types of businesses.
    [Show full text]
  • World's Largest Wind Farm
    client | Forewind “Having worked so thoroughly on our offshore Tranche A projects, the team from Royal HaskoningDHV is now able to build on the learning and knowledge gleaned so far for our next phase of Tranche B projects and put into practice its expertise to assist Forewind in its delivery objectives for the Dogger Bank Zone.” Gareth Lewis, Head of Offshore Development World’s largest wind farm The Dogger Bank wind farm zone, located in the In June 2010, Royal HaskoningDHV was awarded the North Sea off the coast of East Yorkshire, is potentially roles of ‘Offshore Environmental Impact Assessment the world’s largest offshore wind project. If fully (EIA) Coordinator’ for Tranche A and ‘Onshore EIA Co- developed, the 8,660km2 area could contain more ordinator’ for the first project application, via a competitive than 2,000 wind turbine generators and provide an tender. In October 2011, a framework was agreed for immense 13GW of electricity – enough to supply ten Royal HaskoningDHV to provide complete EIA services up per cent of the UK’s electricity requirements. to, and including, the final project in Tranche B, covering projects up to 6GW of capacity. Given the size of the development, the zone will be developed in a series of ‘Tranches’, each containing a Robert Staniland, Technical Director of Offshore Wind, number of projects with an overall capacity of around Royal HaskoningDHV, said: “We are naturally incredibly 3GW in each Tranche. proud for the team to be working on such a prestigious project”. The plans for the Dogger Bank zone are being developed by Forewind, a four-company consortium comprising “Royal HaskoningDHV has an enviable and proven track SSE, RWE npower renewables, and Norwegian energy record in the offshore wind market, having seen projects companies Statoil and Statkraft.
    [Show full text]
  • Modelling and Control of an ACDC System with Significant Generation from Wind
    Modelling and control of an ACDC system with significant generation from wind Author: Stefanie Tatjana Gertraud Supervisor: Ingeborg Kuenzel Prof. Bikash C. Pal (CID: 00485684) A report submitted in fulfilment of requirements for PhD examination. Control and Power Group Dept. of Electrical and Electronic Engineering Imperial College London July 2, 2014 1 Declaration of Originality and Copyright Declaration The work in this thesis is my own and all other material used is referenced accordingly. The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the licence terms of this work. 2 Abstract This PhD project investigates the modelling and analysis of an AC-DC system with synchronous and asynchronous generation (wind farms). The GB network is undergoing major changes including the installation of large amounts of wind generation. Wind farm developments further offshore will be connected via DC connections, such as the eastern link. The first two chapters of the thesis will provide an outline of these changes to the GB system, and the impact of those changes on the frequency response capability of the GB system. In continuation the thesis will engage in modelling details of an AC system with integration of DC technology and wind. The modelling aim is a comprehensive grid representation in a multi-machine small signal stability framework.
    [Show full text]
  • 'Business Intelligence Offshore Wind'
    ‘Business Intelligence Offshore Wind’ Een studie in opdracht van ECN naar trends en kostenontwikkeling van offshore wind technologie in Europa P.F. van den Oosterkamp A. Curvers S. Dijkstra S.M. Lensink J. Gerdes December 2012 ECN-E--10-006 1 Verantwoording Dit rapport is geschreven in opdracht van ECN. De financiering van dit project is afkomstig van een beschikbaar budget in relatie van extra EZS ten gevolge van loon & prijsbijstelling in 2011. 2 ECN-E--10-006 Inhoud Lijst van tabellen 4 Lijst van figuren 4 Samenvatting 5 1. Inleiding 6 2. Probleemstelling 7 3. Onderzoeksvragen 8 3.1 Centrale onderzoeksvraag 8 3.2 Deelvragen 8 4. Opzet van de studie 9 4.1 Type onderzoek 9 4.2 Gegevensverzameling en methodologie 9 4.3 Gegevensverwerking 9 5. Afbakening en beperking van de studie 10 6. Resultaten van het onderzoek 11 6.1 De offshore wind industrie in Europa 11 6.1.1 Algemeen 11 6.1.2 Geïnstalleerd vermogen aan offshore wind in Europa in 2011 11 6.1.3 Gepland vermogen aan offshore wind in Europa 12 6.1.4 Relatie van geïnstalleerd vermogen en NREAP’s 13 6.1.5 Windaanbod, kustafstand en diepte in de geïdentificeerde locaties 15 6.1.6 Spelers in offshore wind technologie 16 6.1.7 Kostenprofiel en financiering van offshore wind parken 16 6.2 Technologieontwikkelingen offshore wind in de komende 20 jaar 25 6.3 Kosten en leereffecten van offshore windtechnologie 32 6.3.1 Leereffecten van offshore wind energie 32 6.3.2 Inschatting van kostprijs elektriciteit 34 6.3.2.1 Het ECN kosten model voor offshore wind 34 6.3.3 Inschatting van kostprijs elektriciteit in betrokken projecten 38 6.4 Europees beleid t.a.v.
    [Show full text]