The Effect of Different Filament Arrangements on Thermal

Total Page:16

File Type:pdf, Size:1020Kb

The Effect of Different Filament Arrangements on Thermal applied sciences Article The Effect of Different Filament Arrangements on Thermal and Optical Performances of LED Bulbs Wei Wang 1, Jun Zou 1,*, Qiaoyu Zheng 1, Yuefeng Li 1 , Bobo Yang 1, Mingming Shi 1, Yang Li 2, Xinyu Li 3, Canyun Zhang 1, Cao Li 4 and Difei Chen 5 1 School of Science, Shanghai Institute of Technology, Shanghai 201418, China; [email protected] (W.W.); [email protected] (Q.Z.); [email protected] (Y.L.); [email protected] (B.Y.); [email protected] (M.S.); [email protected] (C.Z.) 2 School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China; [email protected] 3 School of Science and Engineering, Curtin University of Technology, Kent Street, Bently 6102, Australia; [email protected] 4 Hangzhou Silan Azure Technology Co., Ltd., Hangzhou 310018, China; [email protected] 5 Zhejiang MKOPTO Co., Ltd., Shaoxing 312073, China; [email protected] * Correspondence: [email protected]; Tel.: +86-18957392108 Received: 24 December 2019; Accepted: 21 January 2020; Published: 18 February 2020 Abstract: The influences on thermal and optical performances of light emitting diode (LED) bulbs with three different filament arrangements are investigated in detail. The average junction temperature, temperature of the surface of the bulb, and luminous flux of three samples all increased with increasing power. The thermal performance test results show that between the average junction, temperature and power were linear. The junction temperatures of the three samples at a power of 3.5 W were 102.48, 98.46, and 88.88 ◦C. The optical performance test results revealed that the luminous flux and efficiency in the two vertical filament arrangements were closely related to each other and higher than that of the horizontal filament arrangement. A numerical model of LED filament bulbs was established by the Floefd 17.2 software for analyzing the temperature distribution of the cross section and the gas flow path inside the bulb. The simulation results illustrated that the average temperatures of three samples were 105.88, 101.83, and 96.12 ◦C. Additionally, the gas flow inside the bulb of the two vertical filament arrangements was subject to forming a thermal cycle during operation work more than that of the horizontal filament arrangement. As a result, the flexible spiral LED filament bulb is feasible as a new light source. Keywords: thermal; optical; filament arrangement; led filament bulb 1. Introduction As a new light source, light emitting diodes (LEDs) are regarded as the fourth generation of solid-state lighting sources owing to their advantages of environmental friendliness, energy saving, long lifetime, quick start up, and so on [1–4]. So far, environment protection and energy saving have generated considerable research interest, the white light emitting diodes (WLEDs) have been developed rapidly in the commercial market and widely used in various lighting fields [5–7]. Early devices only provided lighting in one direction and could not meet the requirements for omnidirectional luminescent applications [8–10]. The flexible spiral LED filament bulbs combine the bulb shell of traditional incandescent bulbs with a new LED filament to achieve 360-degree illumination [11,12]. However, there is no effective radiator installed in the limited space, which seriously affects the thermal and optical performance of the filament. The heat generated by the chip is difficult to dissipate from inside of the bulb to the environment [13–16]. Appl. Sci. 2020, 10, 1373; doi:10.3390/app10041373 www.mdpi.com/journal/applsci Appl. Sci. 2020, 1, x 2 of 10 Appl. Sci. 2020, 10, 1373 2 of 10 The study of the effect of filament overheating, is of great value to the thermal design and management of LED filament bulbs. The properties of phosphors, such as the diameters, shapes, thickness,The study and concentration, of the effect may of filament affect the overheating, luminous flux is and of greatjunction value temperature to the thermal [11,17]. Liu design [17] andet al. management reduced the average of LED junction filament temperature bulbs. The of propertiesthe LED filament of phosphors, by optimizing such the as thesize diameters,of the bulb shapes,and the thickness, structure andof the concentration, phosphor. Moreover, may affect heat the luminousgenerated fluxfrom and LED junction chips temperatureis transferred [11 to, 17the]. Liusurface [17] etof al.the reduced filament the by average conduction, junction then temperature transferred of to the the LED bulb filament shell by by convection, optimizing and the sizefinally of thedissipated bulb and to the the structure environment of the [18,19 phosphor.]. LED Moreover, filament bulbs heat generatedmainly rely from on convection LED chips isheat transferred dissipation to theand surface have a of poor the filamentheat dissipation by conduction, performance then transferred [17,20,21]. to The the previous bulb shell report by convection, put forward and several finally dissipatedplans. to the environment [18,19]. LED filament bulbs mainly rely on convection heat dissipation and haveHigh a poorthermal heat conductive dissipation materials performance and [17 high,20, 21th].ermal The previousconductive report gases put are forward chosen several to decrease plans. the averageHigh thermal junction conductive temperature materials of the andLED high filament thermal [15,22,23]. conductive To increase gases are the chosen flow of to gas decrease inside thethe averagebulb, Xu junction [24] et al. temperature used ionic wind of the to LED improve filament the [heat15,22 dissipation,23]. To increase ability the of LED flow filament of gas inside bulb. theIt was bulb, also Xu necessary [24] et al. usedto consider ionic wind the optical to improve and thermal the heat properties dissipation with ability various of LED currents filament [24–26]. bulb. ItNevertheless, was also necessary they did to not consider study thethe opticaleffect of and different thermal filament properties arrangements with various on currentsthe thermal [24– 26and]. Nevertheless,optical performances, they did nor not did study they the design effect and of di simulatefferent filament the temperature arrangements distribution on the and thermal gas flow and opticalpath inside performances, the bulbs, norso it did was they worthwhile design and to an simulatealyze the the thermal temperature and optical distribution performances and gas during flow paththe operating inside the time. bulbs, so it was worthwhile to analyze the thermal and optical performances during the operatingHence, the time. purpose of this paper is to investigate the thermal and optical performances of flexibleHence, spiral the purposeLED filaments of this paper bulbs is towith investigate three different the thermal filament and optical arrangements. performances The of junction flexible spiraltemperature, LED filaments temperature bulbs of with surface three bulb, different luminous filament flux, arrangements. and luminous Theefficiency junction of LED temperature, filament temperaturebulbs are studied. of surface In bulb, addition, luminous for flux,better and analysis luminous and effi understandingciency of LED filamentof the bulbsprinciple are studied.of heat Indissipation addition, forof LED better filament analysis bulbs, and understandingsimulation models of the were principle carried of out. heat dissipation of LED filament bulbs, simulation models were carried out. 2. Experimental Method 2. Experimental Method 2.1. Flexible Spiral Light Emitting Diode (LED) Filament Bulb Structure 2.1. Flexible Spiral Light Emitting Diode (LED) Filament Bulb Structure The main work of this paper is to examine the thermal and optical performances of LED bulbs withThe different main work filament of this arrangements. paper is to examine In addition the thermal to the and driving optical equipment performances and ofthe LED lamp bulbs cap, with the ditypicalfferent flexible filament spiral arrangements. LED filament In addition bulb is tomain thely driving composed equipment of two and parts: the lampa flexible cap, thespiral typical LED flexiblefilament spiral with LEDmade filament by aluminum bulb isor mainly aluminum composed alloy and of twoa glass parts: bulb a shell flexible with spiral filling LED air. There filament are with99 chips made evenly by aluminum distributed or aluminum on the flexible alloy spiral and a glassfilament bulb substrate shell with with filling a length air. There of 26 are cm. 99 A chips few evenlycommercially distributed available on the LED flexible filament spiral filamentbulbs, which substrate rate withtheir a voltage length of at 26 260 cm. V, A were few commerciallybought from availableZhejiang LEDEmitting filament Optoelectronic bulbs, which Technology rate their voltageCo., Ltd at., and 260 V,tested were to bought obtain fromvalid Zhejiang and reliable Emitting data. OptoelectronicAs mentioned Technology above, Co.,the flexible Ltd., and spiral tested LED to obtainbulbs have valid three and reliabledifferent data. filament arrangements, namelyAs mentioneda horizontal above, filament the flexiblearrangement spiral LEDand two bulbs vertical have threefilame dintfferent arrangements filament arrangements,with different namelystretch height, a horizontal as shown filament below arrangement in Figure 1. and two vertical filament arrangements with different stretch height, as shown below in Figure1. FigureFigure 1.1. Three different different filament filament arrangements arrangements of of flexib flexiblele spiral spiral light
Recommended publications
  • Lamp Catalog Ce
    BRAT LE ING LAMP CATALOG CE YEARS 19 46 - 2016 CONTENTS CONTENTS COMPACT FLUORESCENT BUILDING A LEGACY ... 4-5 LED LAMPS 10-17 LAMPS 18-23 MAKE THE SWITCH. 6 Decorative Lamps ........................11 Twist Lamps. .19 General Purpose Lamps .................12 Covered Lamps .........................20 UNDERSTAND LIGHT ..... 7 Reflector Lamps ........................13 Reflector Lamps ........................20 LAMP PACKAGING ........ 8 Specialty General Purpose Lamps ........14 Pin Base Lamps. 21 Specialty Halogen Alternative Lamps .....14 Color Temperature ......................22 HOW TO Filament Lamps .........................15 Compact Fluorescent Lamp Base Types ..23 USE THIS CATALOG. 9 Linear Lamps ...........................16 Compact Fluorescent Lamp Shapes ......23 Recessed LED Downlights ...............16 LED Lamp Components .................17 LED Lamp Base Types ...................17 LED Lamp Shapes .......................17 To better serve you, Westinghouse Lighting reserves the right to make changes and/or improvements (both visually and technically) to the products in this catalog without notice. As a result, some products and/or product information may change during the life of this catalog. Visit our website for the latest specifications. www.westinghouselighting.com 1 CONTENTS INCANDESCENT LAMPS 24-47 Glowescent® Lamps (Spun Satin) .........25 BR38 Indoor/Outdoor Lamps ............37 Flicker Flame Lamps ....................25 C7 Lamps ..............................38 F15 and Decorative Specialty Lamps ......25 S6, S11
    [Show full text]
  • 1 CMGT 235 – Electrical and Mechanical Systems Discussion No
    CMGT 235 – Electrical and Mechanical Systems Discussion No. 25 Unit 3 - Electrical Systems Fall 2020 Commercial Building Electrical Systems - Lighting Systems Lighting Terminology Lamp Types Watts vs. Lumens Light Emitting Diode - LED 40W bulb: at least 450 lumens Fluorescent - FL 60W bulb: at least 800 lumens Compact Fluorescent (CFL) 75W bulb: at least 1,100 lumens Incandescent (INC) 100W bulb: at least 1,500 lumens Halogens High Intensity Discharge (HID) Fact: The more lumens of light you get per watt of High Pressure Sodium (HPS) electricity, the more efficient the bulb is. Metal Halide (MH) Mercury Vapor (MV) A 10W LED can easily outshine a 12W competitor if it Low Pressure Sodium converts watts to lumens more efficiently. Efficiency = lumens / watts 1 Light Emitting Diode – LED https://www.youtube.com/watch?v=oPYrldvk2is Energy-efficient LED bulbs are available in a variety of shapes and sizes. LEDs deliver quality light across a broad spectrum of color temperatures from warm ambient light to the bright white look of daylight, to suit any indoor or outdoor application. LED light bulbs, or light emitting diodes, are low heat, long lasting, energy efficient lighting alternatives for your home or business. The availability and selection of LED light bulbs has expanded greatly. No longer are LEDs just for exit signs. LEDs are available in almost all base and shape configurations. A Group: A15, A19, A21, and A25 From top left to bottom right: A19 LED filament bulbs in ceiling fan fixture, A21 LED bulbs in bedroom lamps, A19 gold-tint LED filament bulb in porch light fixture, A19 LED fireworks bulbs in string lights Standard/arbitrary (A) bulbs are the most widely used and thought of when it comes to household lighting.
    [Show full text]
  • Lamps & Fixtures
    January 2019 LED Catalog Lamps & Fixtures · Winter 2018 selection. solutions. simplicity. eiko.com Contents LitespanLED® Replacement Lamps ...................................................... 2 HID Replacement Lamps.....................................................................................................................................2 Linear Tubes.............................................................................................................................................................. 5 A19/A21 Replacement Lamps .......................................................................................................................... 9 Filament Dimmable Decorative Lamps ......................................................................................................12 PL CFL Replacement Lamps ........................................................................................................................... 14 PLL Replacement Lamps .................................................................................................................................. 16 BR Replacement Lamps .....................................................................................................................................17 PAR Replacement Lamps ................................................................................................................................. 18 MR Replacement Lamps ................................................................................................................................
    [Show full text]
  • 41 Photometry Standardization Measurement with Integrating Spheres Standards for Smart Lighting Voltage Limits for PWM Operated
    www.led-professional.com ISSN 1993-890X Review LpR The leading worldwide authority for LED & OLED lighting technology information Jan/Feb 2014 | Issue 41 Photometry Standardization Measurement with Integrating Spheres Standards for Smart Lighting Voltage Limits for PWM Operated LED Drivers EDITORIAL 1 Safety & Quality Experience shows that early adoption of many new technology developments into the market goes hand in hand with a lack of quality, and in some cases, a critical lack of safety. There are several reasons for this: One is the balancing of test time and test conditions against proven data before entering the market. Another reason is that every new technology and/or technical system displays “unexpected” or “unknown” behaviors under certain conditions. Third of all, international standards are lagging behind the rapidly changing technologies. Standardization bodies need input and experiences as well as concrete problems in order to be able to adapt and/or expand their standards. Everyone seems to be confronted with a more or less “insecure” situation where quality and safety issues may arise and possibly target LED technology in general. When looking at lighting systems or luminaires, all components and modules are important and somehow related to safety and quality. In addition to that, the combination and integration of different parts can have unforeseen effects. There is an article in this issue of LED professional Review which covers one aspect of this: How specific conditions in real applications may lead to critical operation behaviors in regards to safety in the PWM mode of LED drivers. The electronic circuit design can be seen as a very relevant topic for guaranteeing the necessary quality and safety levels.
    [Show full text]
  • Light Bulb Cross Reference Chart
    Light Bulb Cross Reference Chart Which Tray line-ups so modishly that Avram abjure her litholapaxy? Presented and toiling Richmond massagesqueue her railerthat kumquats bays half-wittedly duplicates or restrictedlyclamor unchangeably, and chords issteaming. Tedie unexalted? Uncursed Harland Here is measured by the chart and the same socket which are offered in it, volts and life tests are. Light Bulbs Etc Inc 0 items 000 Your shopping cart should empty Categories Incandescent Bulbs LED Products. Headlight bulb cross reference DodgeForumcom. Cross reference neon tubing chart for signage Light Sources. Replacement Bulb Cross Reference Chart Petco. Sylvania in candelabra and levering screwdrivers as auxiliary lighting, wiko and socket. Bulbs that is logged at the chart. Filament wire reduces thermal protector wiring, light to reference chart for ordering the lights better downroad, and any auto tale? These are bulbs that answer will remind in the charge with chance of them playing to key role in. Did a light? Austin machine and money for the amount of a cross reference. The light bulb cross referenced on the locking tab designs are. We will never guarantee a bulb reference from the lighting regulations within these cookies may be taken into consideration should be inadequate contact is copyrighted property of. 3157 Bulb Guide Today sulfur is tri cents LED precise and level one's a replacement for american car or motorcycle bulbs 3157 Bulb Cross Reference 3157 T25 3155. Looking for as rich text field within the lighting technologies including optimized energy costs. Auto Headlight Bulbs Cross Reference Guide LED-Colight. Light transparent cross reference Harley to regular Harley Davidson.
    [Show full text]
  • Effect of Different Welding Methods on Flip-Chip LED (FC-LED) Filament Properties
    applied sciences Article Effect of Different Welding Methods on Flip-Chip LED (FC-LED) Filament Properties Mengtian Li 1, Jun Zou 2,3,4,*, Wengjuan Wu 2,*, Mingming Shi 2, Bobo Yang 2,5, Wenbo Li 3 and Bin Guo 6 1 School of Material Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China; [email protected] 2 School of Science, Shanghai Institute of Technology, Shanghai 201418, China; [email protected] (M.S.); [email protected] (B.Y.) 3 Zhejiang Emitting Optoelectronic Technology Co., Ltd., Jiaxing 314100, China; [email protected] 4 Institute of New Materials & Industrial Technology, WenZhou University, Wenzhou 325000, China 5 Institute of Beyond Lighting, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China 6 School of Electronics and Information Engineering, Changchun University of Science and Technology, Changchun 130022, China; [email protected] * Correspondence: [email protected] (J.Z.); [email protected] (W.W.) Received: 22 October 2018; Accepted: 7 November 2018; Published: 15 November 2018 Abstract: This paper investigates the effect of two different welding methods, direct welding (DW) and vacuum furnace welding (VFW), on flip-chip light-emitting diode (FC-LED) filament properties. Shearing force, SEM, steady-state voltage, steady-state luminous flux, and change of photoelectric performance with aging time were employed to characterize the differences in filament properties between the two welding methods. The shearing test revealed that the average shearing force of the VFW group was higher than that of the DW group, but the two groups followed the standard. Furthermore, the microstructure of the VFW group fault was more smoother, and the voids were fewer and smaller based on the SEM test results.
    [Show full text]
  • Filament Light Bulbs Collection 5W 7.5W Item# 67000 Item # 67001 Item# 67000-Ul Item # 67001-Ul 4 Filaments 6 Filaments Very Warm White Very Warm White
    FILAMENT LIGHT BULBS COLLECTION 5W 7.5W ITEM# 67000 ITEM # 67001 ITEM# 67000-UL ITEM # 67001-UL 4 FILAMENTS 6 FILAMENTS VERY WARM WHITE VERY WARM WHITE High Color Rendering Index Very warm white 2200K 60 WATT, 90 WATT Halogen Equivalent ST-64 Extra Long Filament Dimmable Product Description Features Construction This vintage looking light bulb is in • 30,000 hrs rated life Aluminum Housing the form of the historic original Edison • Dimmable Clear Glass Lens light bulb. This nostalgic bulb is great • 900 lumens E26 Base for chandeliers and sconces. Although • 360 degree lighting this bulb appears antique it uses linear • No UV / No IR LED filaments and is incredibly energy • Operating temperature: efficient. -10°C to +40°C -24° F to +104° F ITEM No. Form Lens Input Base Watts CCT Lumens Rated Life (hrs) CRI Beam Angle Dimming 67000 ST-64 Clear 120V E26 5W 2200K 600 30,000 92 360 Yes 67000-UL ST-64 Clear 120V E26 5W 2200K 600 30,000 92 360 Yes 67001 ST-64 Clear 120V E26 7.5W 2200K 900 30,000 92 360 Yes 67001-UL ST-64 Clear 120V E26 7.5W 2200K 900 30,000 92 360 Yes 2 Filament Collection 2.5W 5W 7.5W 10W 12.5W ITEM # 67024 ITEM # 67025 ITEM # 67026 ITEM # 67027 ITEM # 67028 2 FILAMENTS 4 FILAMENTS 6 FILAMENTS 8 FILAMENTS 10 FILAMENTS 30 WATT, 60 WATT, 90 WATT 120 WATT, 150 WATT Halogen Equivalent ST-64 Extra Long Filament Dimmable Product Description Features Construction This vintage looking light bulb is in • 30,000 hrs rated life Aluminum Housing the form of the historic original Edison • Dimmable Clear Glass Lens light bulb.
    [Show full text]
  • Status of LED-Lighting World Market in 2017
    Status of LED-Lighting world market in 2017 ZISSIS, Georges BERTOLDI, Paolo 2018 This publication is a Technical report by the Joint Research Centre (JRC), the European Commission’s science and knowledge service. It aims to provide evidence-based scientific support to the European policymaking process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of this publication. Contact information Name: Paolo Bertoldi Address: Joint Research Centre, Via Enrico Fermi 2749, TP 450, 21027 Ispra (VA), Italy Email: [email protected] Tel.: +39 0332 78 9299 JRC Science Hub https://ec.europa.eu/jrc JRCxxxxx Ispra, European Commission, 2018 © European Union, 2018 The reuse policy of the European Commission is implemented by Commission Decision 2011/833/EU of 12 December 2011 on the reuse of Commission documents (OJ L 330, 14.12.2011, p. 39). Reuse is authorised, provided the source of the document is acknowledged and its original meaning or message is not distorted. The European Commission shall not be liable for any consequence stemming from the reuse. For any use or reproduction of photos or other material that is not owned by the EU, permission must be sought directly from the copyright holders. All content © European Union, 2018, except: cover page, ©Silvano Rebai, # 85636606. Source: stock.adobe.com How to cite this report: Author(s), Title, Ispra, European Commission, 2018, JRCXXXXXX Contents Abstract ............................................................................................................... 1 1 Introduction ...................................................................................................... 2 2 Technology Evolutions .......................................................................................
    [Show full text]
  • Automotive Lighting
    AUTOMOTIVE LIGHTING EUROPEAN QUALITY LIGHTING INFORMATION AUTOMOTIVE LIGHTING Our general terms and conditions of deliveries and/or services are applicable to all offers and agreements. Ormalight® will send you a free copy at your request. The data mentioned in this copy are provided for information only. Ormalight® reserves the right to implement any changes it may deem necessary. Subject to alterations. www.ormalight.com 1 INDEX Lamp Base Page Lamp Base Page COMPANY INTRODUCTION 3 STOP / PARKING / REAR (TAIL) / FLASHER LAMPS 28 BULBS APPLICATION OVERVIEW (CAR) OVERVIEW 6 SINGLE FILAMENT BA15s 29 BULBS APPLICATION OVERVIEW (TRUCK) OVERVIEW 7 SINGLE FILAMENT S25 BA15s 29 BULBS APPLICATION OVERVIEW (MOTORCYCLE) OVERVIEW 8 SINGLE FILAMENT S25 BA15d 30 BASES OVERVIEW 10 SINGLE FILAMENT S25 BAU15s 30 DOUBLE FILAMENT S25 BA15d 31 HALOGEN HEADLIGHT LAMPS 12 DOUBLE FILAMENT S25 BAY15d 31 H1 HALOGEN P14,5s 13 DOUBLE FILAMENT S25 BAZ15d 31 H2 HALOGEN X511 13 PARKING/TAIL/INDICATOR/WARNING/INTERIOR G-18 BA15s 32 H3 HALOGEN PK22s 14 PARKING/TAIL/INDICATOR/WARNING/INTERIOR G-18 BA15d 32 H4 HALOGEN P43t 15 PARKING/TAIL/INDICATOR/WARNING/INTERIOR T-16 BA15s 33 H4 HALOGEN P45t 16 PARKING/TAIL/INDICATOR/WARNING/INTERIOR T-16 BA15d 33 H4 HALOGEN YELLOW P43t 16 PREFOCUS SYMMETRIC PK22s 33 H5 HALOGEN P45t 16 PREFOCUS SYMMETRIC P22d 34 H7 HALOGEN PX26d 17 SPECIAL AUTO LAMP P36s 34 H8 HALOGEN PGJ19-1 17 HB8 HALOGEN PGJ19-1 17 DASHBOARD / PARKING / INTERIOR LAMPS 36 H9 HALOGEN PGJ19-5 17 DASHBOARD BA7s 37 H9B HALOGEN PGJY19-5 18 DASHBOARD BA9s 37 H10 HALOGEN PY20d 18 DASHBOARD / PARKING BA9s 37 H11 HALOGEN PGJ19-2 18 WEDGE BASE T5 W2x4,6d 38 H11B HALOGEN PGJY19-2 18 WEDGE BASE T10 W2,1x9,5d 38 H12 HALOGEN PZ20d 18 WEDGE BASE T15 W2,1x9,5d 39 H13 HALOGEN P26,4t 19 WEDGE BASE T20 W3x16d/q 39 H15 HALOGEN PGJ23t-1 19 H16 HALOGEN PGJ19-3 19 INTERIOR / FESTOON LAMPS 40 HALOGEN INFRARED PX20d/PX22d 19 WIRE ENDED 41 H.I.D.
    [Show full text]
  • Final Report, Task 4 Technologies
    Preparatory Study on Light Sources for Ecodesign and/or Energy Labelling Requirements (‘Lot 8/9/19’). Final report, Task 4 Technologies Energy European Commission Light Sources, Task 4 Report, Final Prepared by: VITO, in cooperation with VHK Date: 31 October 2015 Prepared for the European Commission, DG ENER.C.3 Contact person: Ruben KUBIAK SPECIFIC CONTRACT No ENER/C3/2012-418 LOT1/07/SI2.668526 Implementing Framework Contract No ENER/C3/2012-418-Lot 1 Main contractor: Consortium of VITO NV, VHK BV, Viegand & MaagØe ApS, Wuppertal Institute for Climate, Environment and Energy GmbH, ARMINES, represented by Dirk Fransaer, Managing Director VITO Technical Team Leader: René KEMNA (VHK) Contract Manager: Caroline LEMEIRE (VITO) Other Participants: Roy VAN DEN BOORN, Leo WIERDA (VHK) Stuart JEFFCOTT (external collaboration) Lieven VANHOOYDONCK, Paul VAN TICHELEN, Dominic ECTORS (VITO) Wai Chung LAM (VITO, Quality Control) Status: Final report This report was ordered and paid for by the European Commission, Directorate-General for Energy. The information and views set out in this report are those of the author(s) and do not necessarily reflect the official opinion of the Commission. The Commission does not guarantee the accuracy of the data included in this study. Neither the Commission nor any person acting on the Commission’s behalf may be held responsible for the use which may be made of the information contained therein. © European Union, October 2015 Reproduction is authorised provided the source is acknowledged. This report has been prepared by the authors to the best of their ability and knowledge. The authors do not assume liability for any damage, material or immaterial, that may arise from the use of the report or the information contained therein.
    [Show full text]
  • Chapter 2 Incandescent Light Bulb
    Lamp Contents 1 Lamp (electrical component) 1 1.1 Types ................................................. 1 1.2 Uses other than illumination ...................................... 2 1.3 Lamp circuit symbols ......................................... 2 1.4 See also ................................................ 2 1.5 References ............................................... 2 2 Incandescent light bulb 3 2.1 History ................................................. 3 2.1.1 Early pre-commercial research ................................ 4 2.1.2 Commercialization ...................................... 5 2.2 Tungsten bulbs ............................................. 6 2.3 Efficacy, efficiency, and environmental impact ............................ 8 2.3.1 Cost of lighting ........................................ 9 2.3.2 Measures to ban use ...................................... 9 2.3.3 Efforts to improve efficiency ................................. 9 2.4 Construction .............................................. 10 2.4.1 Gas fill ............................................ 10 2.5 Manufacturing ............................................. 11 2.6 Filament ................................................ 12 2.6.1 Coiled coil filament ...................................... 12 2.6.2 Reducing filament evaporation ................................ 12 2.6.3 Bulb blackening ........................................ 13 2.6.4 Halogen lamps ........................................ 13 2.6.5 Incandescent arc lamps .................................... 14 2.7 Electrical
    [Show full text]
  • Spotlite Filament Collection 1.25" 3.65"
    SPOTLITE FILAMENT COLLECTION 1.25" 3.65" 2W ITEM# 41116 4W ITEM# 41117 25 WATT 40 WATT Halogen Equivalent Candle Flame Tip Short & Slim Dimmable Product Description Construction Available in a clear lens these lamps cast light in Aluminum Housing all directions, including down. Light is properly centered Clear Glass Lens so chandeliers and shaded fixtures illuminate with no E12 Base shadowing or dark spots. Features • 30000 hrs rated life • Dimmable • 200-400 lumens • 360 degree lighting • 2700k warm white • No UV / No IR Item No. Form Lens Input Base Watts CCT Lumens Rated Life (hrs) CRI Beam Angle Dimming 41116 Flame Tip Clear 120V E12 2W 2700K 200 30,000 82 360 Yes 41117 Flame Tip Clear 120V E12 4W 2700K 400 30,000 82 360 Yes 2 Spotlite Catalog V6 6 W 6 W 6 W 6 W #55000 #55001 #55004 #55005 2700 K 2200 K 2700 K 2700 K CRI 82 CRI 92 CRI 82 CRI 82 Warm White Very Warm White Milky White Frosted 55 WATT Halogen Equivalent Torpedo Collection Dimmable Product Description With a clear, milky white and frosted all glass bodies these lamps cast light in all directions, including down. Light is properly centered so chandeliers and shaded fixtures illuminate with no shadowing or dark spots. Features 6 FILAMENTS • 30000 hrs rated life • Dimmable VERY BRIGHT • 550 lumens • 360 degree lighting • No UV / No IR Item No. Form Lens Input Base Watts CCT Lumens Rated Life (hrs) CRI Beam Angle Dimming 55000 Torpedo Clear 120V E12 6W 2700K 550 30,000 82 360 Yes 55001 Torpedo Clear 120V E12 6W 2200K 550 30,000 92 360 Yes 55004 Torpedo White 120V E12 6W 2700K 550 30,000 82 360 Yes 55005 Torpedo Frosted 120V E12 6W 2700K 550 30,000 82 360 Yes Spotlite Catalog V6 3 1.25" 2W ITEM# 41067 3.75" 25 WATT 40 WATT Halogen Equivalent 4W All Glass Body ITEM# 41063 Candle LED Torpedo Dimmable Product Description Construction With a clear all glass body these lamps cast light in Aluminum Housing all directions, including down.
    [Show full text]