bioRxiv preprint doi: https://doi.org/10.1101/240879; this version posted December 29, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Candidatus Nitrosocaldus cavascurensis, an ammonia oxidizing, 2 extremely thermophilic archaeon with a highly mobile genome 3 4 5 Sophie S. Abby1,2&, Michael Melcher1&, Melina Kerou1, Mart Krupovic3, Michaela 6 Stieglmeier1, Claudia Rossel1, Kevin Pfeifer1, Christa Schleper1,* 7 1 Archaea Biology and Ecogenomics Division, Dep. of Ecogenomics and Systems Biology, 8 University of Vienna, Vienna, Austria. 9 2 Univ. Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Laboratoire 10 Techniques de l’Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et 11 Applications, Grenoble (TIMC-IMAG), Grenoble, France. 12 3 Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, Paris, France. 13 &These authors contributed equally 14 15 CORRESPONDENCE: 16 Prof. Christa Schleper 17
[email protected] 18 19 KEYWORDS: ammonia oxidation; archaea; thaumarchaeota; nitrification; mobile genetic 20 elements; thermophily; adaptations 21 22 RUNNING TITLE: Thermophilic Thaumarchaeon cultivation and genome 23 1 bioRxiv preprint doi: https://doi.org/10.1101/240879; this version posted December 29, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 24 Abstract 25 Ammonia oxidizing archaea (AOA) of the phylum Thaumarchaeota are widespread in 26 moderate environments but their occurrence and activity has also been demonstrated in 27 hot springs. Here we present the first cultivated thermophilic representative with a 28 sequenced genome, which allows to search for adaptive strategies and for traits that 29 shape the evolution of Thaumarchaeota.