Regulation and Release of VSH-1, a Prophage and Gene Transfer Agent of Brachyspira Hyodysenteriae Eric Glenn Matson Iowa State University

Total Page:16

File Type:pdf, Size:1020Kb

Regulation and Release of VSH-1, a Prophage and Gene Transfer Agent of Brachyspira Hyodysenteriae Eric Glenn Matson Iowa State University Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2004 Regulation and release of VSH-1, a prophage and gene transfer agent of Brachyspira hyodysenteriae Eric Glenn Matson Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Microbiology Commons Recommended Citation Matson, Eric Glenn, "Regulation and release of VSH-1, a prophage and gene transfer agent of Brachyspira hyodysenteriae " (2004). Retrospective Theses and Dissertations. 1183. https://lib.dr.iastate.edu/rtd/1183 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. NOTE TO USERS This reproduction is the best copy available. ® UMI Regulation and release of VSH-1, a prophage and gene transfer agent of Brachyspira hyodysenteriae by Eric Glenn Matson A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Microbiology Program of Study Committee: Thaddeus B. Stanton, Co-major Professor Gregory J. Phillips, Co-major Professor Gwyn A. Beattie F. Chris Minion Vijay Sharma Richard L. Zuerner Iowa State University Ames, Iowa 2004 UMI Number: 3158357 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. UMI UMI Microform 3158357 Copyright 2005 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 ii Graduate College Iowa State University This is to certify that the doctoral dissertation of Eric G. Matson has met the requirements of Iowa State University Signature was redacted for privacy. ^Co-major Profess Signature was redacted for privacy. Co-m Professor Signature was redacted for privacy. For the Major Program iii To my parents, Charles and Faye and my wife, Theresa for their enduring support and encouragement iv TABLE OF CONTENTS LIST OF FIGURES vi LIST OF TABLES viii CHAPTER 1. GENERAL INTRODUCTION 1 Dissertation Organization 2 Literature Review 2 References 27 CHAPTER 2. IDENTIFICATION OF GENES OF VSH-1, A DEFECTIVE BACTERIOPHAGE AND GENE TRANSFER AGENT OF BRACHYSPIRA HYOD YSENTERIAE 43 Abstract 43 Introduction 44 Materials and Methods 45 Results 49 Discussion 51 References 61 CHAPTER 3. CHARACTERIZATION OF AN ENDOLYSIN OF VSH-1, A DEFECTIVE BACTERIOPHAGE AND GENE TRANSFER AGENT OF BRACHYSPIRA HYODYSENTERIAE 67 Abstract 67 Introduction 68 Materials and Methods 69 Results 75 Discussion 78 References 93 CHAPTER 4. INDUCTION AND CHARACTERIZATION OF VSH-1 TRANSCRIPTION IN BRACHYSPIRA HYODYSENTERIAE 97 Abstract 97 Introduction 98 Materials and Methods 100 Results 108 Discussion 113 References 129 V CHAPTER 5. GENERAL CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 133 General Conclusions 133 Recommendations for Future Research 135 ACKNOWLEDGEMENTS 137 vi LIST OF FIGURES CHAPTER 1. Figure 1. B. hyodysenteriae cell 7 Figure 2. VSH-1 particles 17 CHAPTER 2. Figure 1. PGR amplicons pattern for the svplOl region 59 Figure 2. Genetic map of VSH-1 and adjacent ORFs 60 CHAPTER 3. Figure 1. Basic structure of a peptidoglycan oligosaccharide chain shown with a peptide cross-link 87 Figure 2. L-arabinose induction of E. coli clones 88 Figure 3. Purification of recombinant LysV 89 Figure 4. Lysis of E. coli cells by purified LysV 90 Figure 5. Activity of LysV on purified B. hyodysenteriae peptidoglycan 91 Figure 6. Reducing sugar assay for peptidoglycan hydrolysis 92 CHAPTER 4. Figure 1. Northern slot blot of B. hyodysenteriae RNA 120 Figure 2. Transcript levels of VSH-1 genes in B. hyodysenteriae cells treated with mitomycin C 121 Figure 3. Transcript levels offlaAl in B. hyodysenteriae cells treated with mitomycin C 122 Figure 4. Intergenic RT-PCR amplification of VSH-1 genes 123 Figure 5. Northern blots of B. hyodysenteriae RNA 124 Figure 6. VSH-1 transcriptional start signals 125 vii Figure 7. Nucleotide positions of VSH-1 transcriptional start sites 126 Figure 8. Hydrogen peroxide-induced transcription of the VSH-1 svp38 gene 127 Figure 9. Chloramphenicol inhibition of VSH-1 transcription 128 viii LIST OF TABLES CHAPTER 1. Table 1. Properties of Gene Transfer Agents 19 CHAPTER 2. Table 1. Oligonucleotide primers and probes used for PCR amplification of svplOJ and screening a B. hyodysenteriae genomic DNA library 56 Table 2. Predicted VSH-1 and adjacent bacterial ORFs 58 CHAPTER 3. Table 1. Most closely matching homologs by a BLAST search of GenBank using the lysV translated amino acid sequence 84 Table 2. Osmosensitivity assay for peptidoglycan-degrading enzymes 85 Table 3. Substrate specificity of LysV 86 CHAPTER 4. Table 1. Oligonucleotide primers and probes used for comparative RT-PCR, primer extension, cloning, and hybridization of VSH-1 and B. hyodysenteriae genes 118 Table 2. Oligonucleotide primers used for intergenic RT-PCR analysis of co-transcription of VSH-1 genes 119 1 CHAPTER 1. GENERAL INTRODUCTION Brachyspira hyodysenteriae is an anaerobic spirochete and an important pathogen of swine. B. hyodysenteriae cells harbor VSH-1, a mitomycin C-inducible prophage that mediates generalized transduction between B. hyodysenteriae strains (40). VSH-1 virions package random fragments of B. hyodysenteriae chromosomal DNA rather than a viral genome, which has complicated genetic investigations (40). N-terminal amino acid sequences generated for proteins from purified VSH-1 whole virions and tailless heads facilitated the identification of VSH-1 structural genes and allowed their assignment as head or tail associated. It remained uncertain however, as to whether or not additional genes important to virion production existed within the prophage sequence. While mitomycin C- induction of the VSH-1 prophage resulted in cell lysis pointed to bacteriophage genes for lytic growth, the identity of these genes was unknown. The ability of VSH-1 virions to mediate horizontal gene transfer in B. hyodysenteriae populations coupled with the recent observation that VSH-1 was common among Brachyspira strains suggested that VSH-1 might play an important role in Brachyspira ecology (99). This dissertation is a continuation of research on VSH-1 to understand the biology of this bacteriophage. In the following studies, additional VSH-1 genes were identified including an endolysin involved in VSH-1 escape from B. hyodysenteriae cells. The organization of genes for head and tail structures and lytic functions was found to be similar to other bacteriophage opérons. Characteristics of VSH-1 transcription were investigated, leading to the identification of an alternative to mitomycin C as VSH-1 inducing agent. 2 Dissertation Organization This dissertation has 5 chapters. Chapter 1 contains a general introduction and literature review. Chapter 2 represents this author's continuation of research initiated by Thad B. Stanton, M. Greg Thompson, Samuel B. Humphrey, and Richard L. Zuerner toward a manuscript on the identification of VSH-1 genes and the development of a VSH-1 genome map. Chapter 3 and Chapter 4 are independent manuscripts. Chapter 3 reports on the identification and characterization of a VSH-1 muralytic enzyme and Chapter 4 reports on characteristics of VSH-1 transcription. Chapter 5 contains general conclusions and recommendations for future research. Literature Review Bacteriophages The simplicity of bacteriophages as biological systems initially led to research focusing on understanding bacteriophage processes as models for more complex systems in higher organisms. Moreover, bacteriophages provided many of the genetic tools that gave rise to the field of molecular biology and are still invaluable genetic tools. A shift in bacteriophage research is reflected in the theme of a recent conference on bacteriophage biology entitled "New Phage Biology" (American Society of Microbiology Conference on the New Phage Biology, Aug 2004, Key Biscayne, FL), which focused on research directed toward understanding bacteriophage biology from the standpoints of diversity, function and ecology of bacteriophages themselves. 3 As genomic sequences have become available, it is clear that bacteriophages have genomes assembled from a vast pool of nucleic acid. Hendrix and colleagues proposed the modular theory of bacteriophage evolution, suggesting that genes and gene clusters of related function are readily exchanged among bacteriophages from disparate host organisms (35-37). Horizontally acquired bacteriophage DNA that can appropriately complement the function of another bacteriophage gene allows productive recombination and leads to genetic mosaicism of bacteriophage genomes. Evidence for both homologous and non-homologous recombination exists in bacteriophage
Recommended publications
  • Genomics 98 (2011) 370–375
    Genomics 98 (2011) 370–375 Contents lists available at ScienceDirect Genomics journal homepage: www.elsevier.com/locate/ygeno Whole-genome comparison clarifies close phylogenetic relationships between the phyla Dictyoglomi and Thermotogae Hiromi Nishida a,⁎, Teruhiko Beppu b, Kenji Ueda b a Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan b Life Science Research Center, College of Bioresource Sciences, Nihon University, Fujisawa, Japan article info abstract Article history: The anaerobic thermophilic bacterial genus Dictyoglomus is characterized by the ability to produce useful Received 2 June 2011 enzymes such as amylase, mannanase, and xylanase. Despite the significance, the phylogenetic position of Accepted 1 August 2011 Dictyoglomus has not yet been clarified, since it exhibits ambiguous phylogenetic positions in a single gene Available online 7 August 2011 sequence comparison-based analysis. The number of substitutions at the diverging point of Dictyoglomus is insufficient to show the relationships in a single gene comparison-based analysis. Hence, we studied its Keywords: evolutionary trait based on whole-genome comparison. Both gene content and orthologous protein sequence Whole-genome comparison Dictyoglomus comparisons indicated that Dictyoglomus is most closely related to the phylum Thermotogae and it forms a Bacterial systematics monophyletic group with Coprothermobacter proteolyticus (a constituent of the phylum Firmicutes) and Coprothermobacter proteolyticus Thermotogae. Our findings indicate that C. proteolyticus does not belong to the phylum Firmicutes and that the Thermotogae phylum Dictyoglomi is not closely related to either the phylum Firmicutes or Synergistetes but to the phylum Thermotogae. © 2011 Elsevier Inc.
    [Show full text]
  • Evolution Génomique Chez Les Bactéries Du Super Phylum Planctomycetes-Verrucomicrobiae-Chlamydia
    AIX-MARSEILLE UNIVERSITE FACULTE DE MEDECINE DE MARSEILLE ECOLE DOCTORALE : SCIENCE DE LA VIE ET DE LA SANTE THESE Présentée et publiquement soutenue devant LA FACULTE DE MEDECINE DE MARSEILLE Le 15 janvier 2016 Par Mme Sandrine PINOS Née à Saint-Gaudens le 09 octobre 1989 TITRE DE LA THESE: Evolution génomique chez les bactéries du super phylum Planctomycetes-Verrucomicrobiae-Chlamydia Pour obtenir le grade de DOCTORAT d'AIX-MARSEILLE UNIVERSITE Spécialité : Génomique et Bioinformatique Membres du jury de la Thèse: Pr Didier RAOULT .................................................................................Directeur de thèse Dr Pierre PONTAROTTI ....................................................................Co-directeur de thèse Pr Gilbert GREUB .............................................................................................Rapporteur Dr Pascal SIMONET............................................................................................Rapporteur Laboratoires d’accueil Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes – UMR CNRS 6236, IRD 198 I2M - UMR CNRS 7373 - EBM 1 Avant propos Le format de présentation de cette thèse correspond à une recommandation de la spécialité Maladies Infectieuses et Microbiologie, à l’intérieur du Master de Sciences de la Vie et de la Santé qui dépend de l’Ecole Doctorale des Sciences de la Vie de Marseille. Le candidat est amené à respecter des règles qui lui sont imposées et qui comportent un format de thèse utilisé dans le Nord de l’Europe permettant un meilleur rangement que les thèses traditionnelles. Par ailleurs, la partie introduction et bibliographie est remplacée par une revue envoyée dans un journal afin de permettre une évaluation extérieure de la qualité de la revue et de permettre à l’étudiant de le commencer le plus tôt possible une bibliographie exhaustive sur le domaine de cette thèse. Par ailleurs, la thèse est présentée sur article publié, accepté ou soumis associé d’un bref commentaire donnant le sens général du travail.
    [Show full text]
  • Arxiv:2105.11503V2 [Physics.Bio-Ph] 26 May 2021 3.1 Geometry and Swimming Speeds of the Cells
    The Bank Of Swimming Organisms at the Micron Scale (BOSO-Micro) Marcos F. Velho Rodrigues1, Maciej Lisicki2, Eric Lauga1,* 1 Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom. 2 Faculty of Physics, University of Warsaw, Warsaw, Poland. *Email: [email protected] Abstract Unicellular microscopic organisms living in aqueous environments outnumber all other creatures on Earth. A large proportion of them are able to self-propel in fluids with a vast diversity of swimming gaits and motility patterns. In this paper we present a biophysical survey of the available experimental data produced to date on the characteristics of motile behaviour in unicellular microswimmers. We assemble from the available literature empirical data on the motility of four broad categories of organisms: bacteria (and archaea), flagellated eukaryotes, spermatozoa and ciliates. Whenever possible, we gather the following biological, morphological, kinematic and dynamical parameters: species, geometry and size of the organisms, swimming speeds, actuation frequencies, actuation amplitudes, number of flagella and properties of the surrounding fluid. We then organise the data using the established fluid mechanics principles for propulsion at low Reynolds number. Specifically, we use theoretical biophysical models for the locomotion of cells within the same taxonomic groups of organisms as a means of rationalising the raw material we have assembled, while demonstrating the variability for organisms of different species within the same group. The material gathered in our work is an attempt to summarise the available experimental data in the field, providing a convenient and practical reference point for future studies. Contents 1 Introduction 2 2 Methods 4 2.1 Propulsion at low Reynolds number .
    [Show full text]
  • Supplemental Material S1.Pdf
    Phylogeny of Selenophosphate synthetases (SPS) Supplementary Material S1 ! SelD in prokaryotes! ! ! SelD gene finding in sequenced prokaryotes! We downloaded a total of 8263 prokaryotic genomes from NCBI (see Supplementary Material S7). We scanned them with the program selenoprofiles (Mariotti 2010, http:// big.crg.cat/services/selenoprofiles) using two SPS-family profiles, one prokaryotic (seld) and one mixed eukaryotic-prokaryotic (SPS). Selenoprofiles removes overlapping predictions from different profiles, keeping only the prediction from the profile that seems closer to the candidate sequence. As expected, the great majority of output predictions in prokaryotic genomes were from the seld profile. We will refer to the prokaryotic SPS/SelD !genes as SelD, following the most common nomenclature in literature.! To be able to inspect results by hand, and also to focus on good-quality genomes, we considered a reduced set of species. We took the prok_reference_genomes.txt list from ftp://ftp.ncbi.nlm.nih.gov/genomes/GENOME_REPORTS/, which NCBI claims to be a "small curated subset of really good and scientifically important prokaryotic genomes". We named this the prokaryotic reference set (223 species - see Supplementary Material S8). We manually curated most of the analysis in this set, while we kept automatized the !analysis on the full set.! We detected SelD proteins in 58 genomes (26.0%) in the prokaryotic reference set (figure 1 in main paper), which become 2805 (33.9%) when considering the prokaryotic full set (figure SM1.1). The difference in proportion between the two sets is due largely to the presence of genomes of very close strains in the full set, which we consider redundant.
    [Show full text]
  • Anaerobic Bacteria Confirmed Plenary Speakers
    OFFICIALOFFICIAL JOURNALJOURNAL OFOF THETHE AUSTRALIAN SOCIETY FOR MICROBIOLOGY INC.INC. VolumeVolume 3636 NumberNumber 33 SeptemberSeptember 20152015 Anaerobic bacteria Confirmed Plenary speakers Professor Peter Professor Dan Assoc Prof Susan Lynch Dr Brian Conlon Professor Anna Hawkey Andersson University of California Northeastern Durbin University of Upsalla University San Francisco University, Boston Johns Hopkins Birmingham Environmental pollution Colitis, Crohn's Disease Drug discovery in Dengue and vaccines Nosocomial by antibiotics and its and Microbiome soil bacteria infection control and role in the evolution of Research antibiotic resistance resistance As with previous years, ASM 2016 will be co-run with NOW CONFIRMED! EduCon 2016: Microbiology Educators’ Conference 2016 Rubbo Oration Watch this space for more details on the scientific and Professor Anne Kelso social program, speakers, ASM Public Lecture, workshops, CEO NHMRC ASM awards, student events, travel awards, abstract deadlines and much more.. Perth, WA A vibrant and beautiful city located on the banks of the majestic Swan river. Come stay with us in WA and experience our world class wineries and restaurants, stunning national parks, beaches and much more.. www.theasm.org.au www.westernaustralia.theasm.org.au Annual Scientific Meeting and Trade Exhibition The Australian Society for Microbiology Inc. OFFICIAL JOURNAL OF THE AUSTRALIAN SOCIETY FOR MICROBIOLOGY INC. 9/397 Smith Street Fitzroy, Vic. 3065 Tel: 1300 656 423 Volume 36 Number 3 September 2015 Fax: 03 9329 1777 Email: [email protected] www.theasm.org.au Contents ABN 24 065 463 274 Vertical For Microbiology Australia Transmission 102 correspondence, see address below. Jonathan Iredell Editorial team Guest Prof. Ian Macreadie, Mrs Jo Macreadie Editorial 103 and Mrs Hayley Macreadie Anaerobic bacteria 103 Editorial Board Dena Lyras and Julian I Rood Dr Chris Burke (Chair) Dr Gary Lum Under the Prof.
    [Show full text]
  • Antibiotic Susceptibility of Brachyspira
    ACTA VET. BRNO 2014, 83: 003–007; doi:10.2754/avb201483010003 Antibiotic susceptibility of Brachyspira hyodysenteriae isolates from Czech swine farms: a 10-year follow-up study Josef Prášek1, Daniel Šperling2, Dana Lobová1, Jiří Smola2, Alois Čížek1 1University of Veterinary and Pharmaceutical Sciences, Faculty of Veterinary Medicine, Institute of Infectious Diseases and Microbiology, 2Ruminant and Swine Clinic, Brno, Czech Republic Received June 10, 2013 Accepted September 26, 2013 Abstract Brachyspira hyodysenteriae is the causative agent of swine dysentery. Loss of clinical efficacy of some antimicrobial agents authorized for treating swine dysentery was observed on certain Czech pig farms. The aim of the present study was to evaluate the antimicrobial sensitivity of six antibiotics using a set of 202 randomly selected B. hyodysenteriae isolates obtained from farms in the Czech Republic between years 1997 and 2006. Minimum inhibitory concentration of antibiotics tylosin, lincomycin, tylvalosin, chlortetracyclin, tiamulin and valnemulin were tested, using an agar dilution method. All antibiotics tested showed an increase in minimal inhibitory concentrations. Continual decrease in susceptibility of B. hyodysenteriae isolates to tiamulin and valnemulin was observed. Multiresistant B. hyodysenteriae were isolated more frequently in the past years. Only a careful use of antibiotics can ensure their efficacy, especially in case of pleuromutilins, in the strategic therapy of swine dysentery. This rare study demonstrates the minimal inhibitory concentration changes of selected antidysenterics among Czech isolates of Brachyspira hyodysenteriae during a ten-year period. Pigs, swine dysentery, therapy, minimal inhibition concentration, antimicrobial resistance Brachyspira hyodysenteriae is an intestinal spirochete which colonizes the large intestine of pigs after being ingested, and induces diarrhoeal disease – swine dysentery (SD) (Hampson et al.
    [Show full text]
  • Section 4. Guidance Document on Horizontal Gene Transfer Between Bacteria
    306 - PART 2. DOCUMENTS ON MICRO-ORGANISMS Section 4. Guidance document on horizontal gene transfer between bacteria 1. Introduction Horizontal gene transfer (HGT) 1 refers to the stable transfer of genetic material from one organism to another without reproduction. The significance of horizontal gene transfer was first recognised when evidence was found for ‘infectious heredity’ of multiple antibiotic resistance to pathogens (Watanabe, 1963). The assumed importance of HGT has changed several times (Doolittle et al., 2003) but there is general agreement now that HGT is a major, if not the dominant, force in bacterial evolution. Massive gene exchanges in completely sequenced genomes were discovered by deviant composition, anomalous phylogenetic distribution, great similarity of genes from distantly related species, and incongruent phylogenetic trees (Ochman et al., 2000; Koonin et al., 2001; Jain et al., 2002; Doolittle et al., 2003; Kurland et al., 2003; Philippe and Douady, 2003). There is also much evidence now for HGT by mobile genetic elements (MGEs) being an ongoing process that plays a primary role in the ecological adaptation of prokaryotes. Well documented is the example of the dissemination of antibiotic resistance genes by HGT that allowed bacterial populations to rapidly adapt to a strong selective pressure by agronomically and medically used antibiotics (Tschäpe, 1994; Witte, 1998; Mazel and Davies, 1999). MGEs shape bacterial genomes, promote intra-species variability and distribute genes between distantly related bacterial genera. Horizontal gene transfer (HGT) between bacteria is driven by three major processes: transformation (the uptake of free DNA), transduction (gene transfer mediated by bacteriophages) and conjugation (gene transfer by means of plasmids or conjugative and integrated elements).
    [Show full text]
  • Proteome Characterization of Brachyspira Strains
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Department of Cellular Biology, Physiology and Immunology Doctoral Program in Immunology Proteome characterization of Brachyspira strains. Identification of bacterial antigens. Doctoral Thesis Mª Vanessa Casas López Bellaterra, July 2017 Department of Cellular Biology, Physiology and Immunology Doctoral Program in Immunology Proteome characterization of Brachyspira strains. Identification of bacterial antigens. Doctoral thesis presented by Mª Vanessa Casas López To obtain the Ph.D. in Immunology This work has been carried out in the Proteomics Laboratory CSIC/UAB under the supervision of Dr. Joaquin Abián and Dra. Montserrat Carrascal. Ph.D. Candidate Ph.D. Supervisor Mª Vanessa Casas López Dr. Joaquin Abián Moñux CSIC Research Scientist Department Tutor Ph.D. Supervisor Dra. Dolores Jaraquemada Pérez de Dra. Montserrat Carrascal Pérez Guzmán CSIC Tenured Scientist UAB Immunology Professor Bellaterra, July 2017 “At My Most Beautiful” R.E.M. from the album “Up” (1998) “And after all, you’re my wonderwall” Oasis from the album “(What´s the Story?) Morning Glory” (1995) Agradecimientos A mis directores de tesis, por su tiempo, sus ideas y consejos.
    [Show full text]
  • The Exposed Proteomes of Brachyspira Hyodysenteriae and B. Pilosicoli
    ORIGINAL RESEARCH published: 21 July 2016 doi: 10.3389/fmicb.2016.01103 The Exposed Proteomes of Brachyspira hyodysenteriae and B. pilosicoli Vanessa Casas 1, Santiago Vadillo 2, Carlos San Juan 2, Montserrat Carrascal 1 and Joaquin Abian 1* 1 Consejo Superior de Investigaciones Científicas/UAB Proteomics Laboratory, Instituto de Investigaciones Biomedicas de Barcelona–Consejo Superior de Investigaciones Científicas, Institut d’investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain, 2 Departamento Sanidad Animal, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain Brachyspira hyodysenteriae and Brachyspira pilosicoli are well-known intestinal pathogens in pigs. B. hyodysenteriae is the causative agent of swine dysentery, a disease with an important impact on pig production while B. pilosicoli is responsible of a milder diarrheal disease in these animals, porcine intestinal spirochetosis. Recent sequencing projects have provided information for the genome of these species facilitating the search of vaccine candidates using reverse vaccinology approaches. However, practically no experimental evidence exists of the actual gene products being expressed and of those proteins exposed on the cell surface or released to the cell media. Using a Edited by: cell-shaving strategy and a shotgun proteomic approach we carried out a large-scale Alexandre Morrot, Federal University of Rio de Janeiro, characterization of the exposed proteins on the bacterial surface in these species as well Brazil as of peptides and proteins in the extracellular medium. The study included three strains Reviewed by: of B. hyodysenteriae and two strains of B. pilosicoli and involved 148 LC-MS/MS runs on Ana Varela Coelho, Instituto de Tecnologia Química e a high resolution Orbitrap instrument.
    [Show full text]
  • Molecular Evolution of the Oxygen-Binding Hemerythrin Domain
    RESEARCH ARTICLE Molecular Evolution of the Oxygen-Binding Hemerythrin Domain Claudia Alvarez-Carreño1, Arturo Becerra1, Antonio Lazcano1,2* 1 Facultad de Ciencias, Universidad Nacional Autónoma de México, Apdo. Postal 70–407, Cd. Universitaria, 04510, Mexico City, Mexico, 2 Miembro de El Colegio Nacional, Ciudad de México, México * [email protected] a11111 Abstract Background The evolution of oxygenic photosynthesis during Precambrian times entailed the diversifica- tion of strategies minimizing reactive oxygen species-associated damage. Four families of OPEN ACCESS oxygen-carrier proteins (hemoglobin, hemerythrin and the two non-homologous families of Citation: Alvarez-Carreño C, Becerra A, Lazcano A arthropodan and molluscan hemocyanins) are known to have evolved independently the (2016) Molecular Evolution of the Oxygen-Binding Hemerythrin Domain. PLoS ONE 11(6): e0157904. capacity to bind oxygen reversibly, providing cells with strategies to cope with the evolution- doi:10.1371/journal.pone.0157904 ary pressure of oxygen accumulation. Oxygen-binding hemerythrin was first studied in Editor: Nikolas Nikolaidis, California State University marine invertebrates but further research has made it clear that it is present in the three Fullerton, UNITED STATES domains of life, strongly suggesting that its origin predated the emergence of eukaryotes. Received: April 5, 2016 Accepted: June 7, 2016 Results Published: June 23, 2016 Oxygen-binding hemerythrins are a monophyletic sub-group of the hemerythrin/HHE (histi- dine, histidine, glutamic acid) cation-binding domain. Oxygen-binding hemerythrin homo- Copyright: © 2016 Alvarez-Carreño et al. This is an open access article distributed under the terms of the logs were unambiguously identified in 367/2236 bacterial, 21/150 archaeal and 4/135 Creative Commons Attribution License, which permits eukaryotic genomes.
    [Show full text]
  • Brachyspira (Serpulina) Pilosicoli and Intestinal Spirochetosis: How DIAGNOSTIC NOTES Much Do We Know? Swine Health Prod
    Stevenson GW. Brachyspira (Serpulina) pilosicoli and intestinal spirochetosis: How DIAGNOSTIC NOTES much do we know? Swine Health Prod. 1999;7(6):287–291. Brachyspira (Serpulina) pilosicoli and intestinal spirochetosis: How much do we know? Gregory W. Stevenson, DVM, PhD, Diplomate ACVP here are at least five distinct species of Brachyspira nus name based on historic precedent. The genus Brachyspira was es- (Serpulina) known to infect the large intestine of swine.1–3 tablished when Brachyspira aalborgi was first described,7 which oc- Two species are pathogenic: curred prior to the establishment of the genus Serpulina.5 Unfortu- nately, Serpulina intermedia and murdochii were not included in the • Brachyspira hyodysenteriae (formerly Serpulina or Treponema comparative study. For now, they remain in the genus Serpulina. hyodysenteriae), which causes swine dysentery; and • Brachyspira pilosicoli (formerly Serpulina pilosicoli or Brachyspira pilosicoli Anguillina coli), which causes intestinal spirochetosis. Brachyspira pilosicoli can be presumptively differentiated from other Three additional species are nonpathogenic: Brachyspira (Serpulina) spp. by culture (weak β-hemolysis) and biochemical testing. Brachyspira pilosicoli is indole negative and hip- • Brachyspira innocens, formerly Serpulina or Treponema purate-hydrolysis positive, and lack β-glucosidase activity in the API- innocens ZYM profile.11,12 Definitive identification of B. pilosicoli requires PCR • Serpulina intermedia testing.12,13–15 The medium that is most commonly used to culture B. • Serpulina murdochii hyodysenteriae in diagnostic laboratories, BJ medium,16 is slightly in- Selected characteristics of each species are summarized in Table 1. hibitory when used to isolate B. pilosicoli, due to the moderate sensi- tivity of B. pilosicoli to two of the included antibiotics, rifampicin, and At a light microscopic level, all five of these organisms are morphologi- spiramycin.17 Culture of B.
    [Show full text]
  • Phage As Agents of Lateral Gene Transfer Carlos Canchaya, Ghislain Fournous, Sandra Chibani-Chennoufi, Marie-Lise Dillmann and Harald Bru¨ Ssowã
    417 Phage as agents of lateral gene transfer Carlos Canchaya, Ghislain Fournous, Sandra Chibani-Chennoufi, Marie-Lise Dillmann and Harald Bru¨ ssowà When establishing lysogeny, temperate phages integrate their Lateral gene transfer genome as a prophage into the bacterial chromosome. With about 100 sequenced genomes of bacteria in the Prophages thus constitute in many bacteria a substantial part public database and many more to come, genomics has of laterally acquired DNA. Some prophages contribute changed our understanding of microbiology. In fact, the lysogenic conversion genes that are of selective advantage to genomes of bacteria are remarkably fluid. A substantial the bacterial host. Occasionally, phages are also involved part of the bacterial DNA is not transferred from the in the lateral transfer of other mobile DNA elements or parental cell to its descendent (‘vertical’ transfer), but is bacterial DNA. Recent advances in the field of genomics acquired horizontally by transformation, conjugation or have revealed a major impact by phages on bacterial transduction (‘lateral’ transfer) [1]. The replacement of chromosome evolution. a tree-like by a web-like representation of the phyloge- netic relationship between bacteria is a visual expression Addresses of this change in perception of microbial evolution. An Nestle´ Research Centre, CH-1000 Lausanne 26, Vers-chez-les-Blanc, important element of mobile DNA is bacteriophages. Switzerland à Infection of a bacterial cell with a temperate phage e-mail: [email protected] (Figure 1a,b) can have two outcomes: multiplication of the phage with concomitant lysis of the bacterial host Current Opinion in Microbiology 2003, 6:417–424 (Figure 1c) or lysogenization, (i.e.
    [Show full text]