The Pangenome Diversity, Dynamics and Evolution of Genomes the Pangenome Hervé Tettelin • Duccio Medini Editors

Total Page:16

File Type:pdf, Size:1020Kb

The Pangenome Diversity, Dynamics and Evolution of Genomes the Pangenome Hervé Tettelin • Duccio Medini Editors Hervé Tettelin Duccio Medini Editors The Pangenome Diversity, Dynamics and Evolution of Genomes The Pangenome Hervé Tettelin • Duccio Medini Editors The Pangenome Diversity, Dynamics and Evolution of Genomes Editors Hervé Tettelin Duccio Medini Department of Microbiology and GSK Vaccines R&D Immunology, Institute for Genome Siena, Italy Sciences University of Maryland School of Medicine Baltimore, Maryland, USA ISBN 978-3-030-38280-3 ISBN 978-3-030-38281-0 (eBook) https://doi.org/10.1007/978-3-030-38281-0 This book is an open access publication. © The Editor(s) (if applicable) and The Author(s) 2020. Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence and indicate if changes were made. The images or other third party material in this book are included in the book’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Switzerland AG. The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland Preface Serendipitous discoveries are fascinating events of science inducing, at times, paradigm shifts that give rise to new disciplines tout-court. This is what happened with pangenomics: a novel discipline at the intersection of biology, computer science and applied mathematics, whose discovery, development to state of the art and future perspectives are tentatively collected in this book for the first time, 15 years after its inception. In simple terms, the pangenome concept is the realization that the genetic repertoire of a biological species, i.e. the pool of genetic material present across the organisms of the species, always exceeds each of the individual genomes and can be, in several cases, “unbounded”:anopen pangenome. This notion was conceived in 2005 as an unexpected, data-driven outcome of the comparative analyses of a few bacterial genomes. This early example of big data in biology—in which a mathematical model, developed to address a practical question in vaccinology, transformed established concepts—opened biology to the unbounded. Since then, the advent of next-generation sequencing and computational technol- ogies has afforded the generation of pangenomes from thousands of isolates and non-cultured samples of many microbial species, first, and then of eukaryotes encompassing all the kingdoms of life, confirming and extending the original hypothesis beyond the most ambitious expectations. The first part of the book, Genomic diversity and the pangenome concept, opens with a historical account of the original discovery, the observed analogy between genomic sequences and text corpora that allowed the application of mathematical linguistics to the analysis of genomic diversity and the emergence of the pangenome concept in bacteria. In the second chapter, the reader will find an extensive introduction of the biological species concept with its challenges, the processes associated with the birth and development of a new species and the implications for its pangenome limits. v vi Preface The following chapter provides a perspective on genome plasticity, pangenome size and functional diversity from the unique point of view of the bacterium itself, followed in the last chapter of the section by a systematic review of the increasingly sophisticated and performant bioinformatic pipelines that have been made available to the scientific community, transforming pangenomics into a commodity tool for the twenty-first century biologist. The second part, Evolutionary biology of pangenomes, aims at making sense of pangenomics through the explanatory perspective of evolution. As Theodosius Dobzhansky attested half a century ago,1 nothing in biology makes sense except in the light of evolution. Pangenomes are no exception, as the genetic diversity observed in a species is the direct result of the evolutionary interplay between its member organisms and their environment. The effort is facilitated by the significant advances made in the last decade by mathematical modelling, systems theory and computational simulations, in an attempt to clarify the functional mechanisms underpinning diversity generation at the population level, especially in prokaryotes. The first chapter of this section2 moves from the dynamic forces that shape pangenome variations, particularly horizontal gene transfer, to discuss the implica- tions for population structures and their ecological significance. The second chapter analyses the microevolution of bacterial populations by introducing a neutral phylogenetic framework open to the assessment of natural selection and discusses how to reconstruct the microevolutionary history of an entire pangenome. The relationship between pangenomes and selection is further explored in the following chapter, which proposes a stimulating view of pangenomics based on the economic theory of public goods, resulting in the hypothesis that pangenomes are constructed and maintained by niche adaptation. The section closes with a zoom into the alarming public health crisis of antimicrobial resistance, where the authors consider how the pangenome affects the response to antibiotics, the development of resistance and the role of the selective pressures induced by antibiotics and discuss how the pangenome paradigm can foster the development of effective therapies. The third part, Pangenomics: an open, evolving discipline, takes the reader on a journey through applications of pangenome approaches beyond just genes and sequences for prokaryotes and into the realm of eukaryotes. Indeed, as the pangenome concept evolves and genomes from multiple isolates/individuals within virtually all living species become available, it is important to study and challenge the concept beyond the primary genomic sequence and beyond the bacterial world. While most of the pangenome studies published to date focus on genes as the unit, 1Theodosius Dobzhansky, The American Biology Teacher, Vol. 35 No. 3, March, 1973; (pp. 125–129) DOI: https://doi.org/10.2307/4444260 2Contributed by the brave scholar who once told the late Prof. Stanley Falkow “this is simply because, Stan, you don’t understand population biology” [Conference on “Microbial population genomics: sequence, function and diversity”, Novartis Vaccines Research Center, Siena (Italy), 17–19 January, 2007]. Preface vii any sequence (e.g. promoter, intron, intergenic region and mobile element) could be used as the unit to account for the many levels of variation and regulation governing a population, including entire communities occupying a particular niche. The first chapter of section three provides a vision of how pangenome analyses can be applied to the study of multiple species within a community or microbiome and how outcomes will lead to the characterization of pan-metagenomes across niches or environments. The second chapter describes procedures to infer the biological impact of pangenomic diversity, translating it into functional pathways and their rendition as phenotypes, or panphenomes. The third chapter brings the additional layer of epigenetic regulation into the picture, describing modification processes, methods to detect them and their relationship with the pangenome. Finally, the application of pangenome studies to other kingdoms of life beyond bacteria is a natural extension of the concept. Chapter four provides a detailed overview of eukaryotic genome projects, their genome dynamics and associated pangenome analyses, while the fifth and last chapter of this book compares and contrasts computational strategies that can be implemented towards the characteri- zation of eukaryotic pangenomes. We hope that this book, thanks to the extraordinary quality of the contributions from each of the authors involved, will provide a broad readership of life scientists with a useful tool for getting acquainted with—or delving deeper into—the pangenome concept and its theoretical foundations, for getting up to speed with the latest technologies and applications of pangenomics, or simply to explore one of the most exciting novelties of twenty-first century biology. Should pangenomics continue to develop at the current pace, this volume would soon be outdated by the forthcoming developments, killed
Recommended publications
  • Download (739Kb)
    VIEWS & REVIEWS Arterial ischemic stroke in HIV Defining and classifying etiology for research studies Laura A. Benjamin, ABSTRACT MRCP, PhD HIV infection, and potentially its treatment, increases the risk of an arterial ischemic stroke. Mul- Alan Bryer, FCN (SA), tiple etiologies and lack of clear case definitions inhibit progress in this field. Several etiologies, PhD many treatable, are relevant to HIV-related stroke. To fully understand the mechanisms and the Sebastian Lucas, FRCP, terminology used, a robust classification algorithm to help ascribe the various etiologies is FRCPath needed. This consensus paper considers the strengths and limitations of current case definitions Alan Stanley, FCN (SA) in the context of HIV infection. The case definitions for the major etiologies in HIV-related strokes Theresa J. Allain, FRCP, were refined (e.g., varicella zoster vasculopathy and antiphospholipid syndrome) and in some in- PhD stances new case definitions were described (e.g., HIV-associated vasculopathy). These case def- Elizabeth Joekes, FRCR initions provided a framework for an algorithm to help assign a final diagnosis, and help classify Hedley Emsley, FRCP, the subtypes of HIV etiology in ischemic stroke. Neurol Neuroimmunol Neuroinflamm 2016;3:e254; PhD doi: 10.1212/NXI.0000000000000254 Ian Turnbull, FRCR Colin Downey, MIBMS GLOSSARY Cheng-Hock Toh, FRCP, ACL 5 anticardiolipin antibodies; anti-b2GP1 5 anti–b2-glycoprotein I; APS 5 antiphospholipid syndrome; HSV 5 herpes PhD simplex virus; IgG 5 immunoglobulin G; LA 5 lupus anticoagulant; RPR 5 rapid plasma reagin; SVD 5 small vessel disease; 5 5 5 Kevin Brown, FRCPath, TB tuberculosis; TOAST Trial of Org 10172 in Acute Stroke Treatment; TTP thrombotic thrombocytopenic purpura; VDRL 5 Venereal Disease Research Laboratory; VZV 5 varicella zoster virus.
    [Show full text]
  • The New Science of Metagenomics: Revealing the Secrets of Our Microbial Planet Is Available from the National Academies Press, 500 Fifth Street, NW, Washington, D.C
    THE NATIONALA REPORTIN BRIEF C The New Science of Metagenomics Revealing the Secrets of Our Microbial Planet ADEMIES Although we can’t see them, microbes are essential for every part of human life— indeed all life on Earth. The emerging field of metagenomics provides a new way of viewing the microbial world that will not only transform modern microbiology, but also may revolu- tionize understanding of the entire living world. very part of the biosphere is impacted Eby the seemingly endless ability of microorganisms to transform the world around them. It is microorganisms, or microbes, that convert the key elements of life—carbon, nitrogen, oxygen, and sulfur—into forms accessible to other living things. They also make necessary nutrients, minerals, and vitamins available to plants and animals. The billions of microbes living in the human gut help humans digest food, break down toxins, and fight off disease-causing pathogens. Microbes also clean up pollutants in the environment, such as oil and Bacteria in human saliva. Trillions of chemical spills. All of these activities are carried bacteria make up the normal microbial com- out not by individual microbes but by complex munity found in and on the human body. microbial communities—intricate, balanced, and The new science of metagenomics can help integrated entities that have a remarkable ability to us understand the role of microbial commu- adapt swiftly to environmental change. nities in human health and the environment. Historically, microbiology has focused on (Image courtesy of Michael Abbey) single species in pure laboratory culture, and thus understanding of microbial communities has lagged behind understanding of their individual mem- bers.
    [Show full text]
  • Research Article Genomic Analysis of Bacillus Megaterium NCT-2 Reveals Its Genetic Basis for the Bioremediation of Secondary Salinization Soil
    Hindawi International Journal of Genomics Volume 2020, Article ID 4109186, 11 pages https://doi.org/10.1155/2020/4109186 Research Article Genomic Analysis of Bacillus megaterium NCT-2 Reveals Its Genetic Basis for the Bioremediation of Secondary Salinization Soil Bin Wang ,1 Dan Zhang,1 Shaohua Chu ,1 Yuee Zhi,1 Xiaorui Liu ,2 and Pei Zhou 1 1School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China 2The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China Correspondence should be addressed to Xiaorui Liu; [email protected] and Pei Zhou; [email protected] Received 11 November 2019; Revised 1 February 2020; Accepted 8 February 2020; Published 29 February 2020 Guest Editor: Ravi Kant Copyright © 2020 Bin Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Bacillus megaterium NCT-2 is a nitrate-uptake bacterial, which shows high bioremediation capacity in secondary salinization soil, including nitrate-reducing capacity, phosphate solubilization, and salinity adaptation. To gain insights into the bioremediation capacity at the genetic level, the complete genome sequence was obtained by using a multiplatform strategy involving HiSeq and PacBio sequencing. The NCT-2 genome consists of a circular chromosome of 5.19 Mbp and ten indigenous plasmids, totaling 5.88 Mbp with an average GC content of 37.87%. The chromosome encodes 5,606 genes, 142 tRNAs, and 53 rRNAs. Genes involved in the features of the bioremediation in secondary salinization soil and plant growth promotion were identified in the genome, such as nitrogen metabolism, phosphate uptake, the synthesis of organic acids and phosphatase for phosphate- solubilizing ability, and Trp-dependent IAA synthetic system.
    [Show full text]
  • Metagenomics Approaches for the Detection and Surveillance of Emerging and Recurrent Plant Pathogens
    microorganisms Review Metagenomics Approaches for the Detection and Surveillance of Emerging and Recurrent Plant Pathogens Edoardo Piombo 1,2 , Ahmed Abdelfattah 3,4 , Samir Droby 5, Michael Wisniewski 6,7, Davide Spadaro 1,8,* and Leonardo Schena 9 1 Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, 10095 Grugliasco, Italy; [email protected] 2 Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, P.O. Box 7026, 75007 Uppsala, Sweden 3 Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria; [email protected] 4 Department of Ecology, Environment and Plant Sciences, University of Stockholm, Svante Arrhenius väg 20A, 11418 Stockholm, Sweden 5 Department of Postharvest Science, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZion 7505101, Israel; [email protected] 6 U.S. Department of Agriculture—Agricultural Research Service (USDA-ARS), Kearneysville, WV 25430, USA; [email protected] 7 Department of Biological Sciences, Virginia Technical University, Blacksburg, VA 24061, USA 8 AGROINNOVA—Centre of Competence for the Innovation in the Agroenvironmental Sector, University of Torino, 10095 Grugliasco, Italy 9 Department of Agriculture, Università Mediterranea, 89122 Reggio Calabria, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-0116708942 Abstract: Globalization has a dramatic effect on the trade and movement of seeds, fruits and vegeta- bles, with a corresponding increase in economic losses caused by the introduction of transboundary Citation: Piombo, E.; Abdelfattah, A.; plant pathogens. Current diagnostic techniques provide a useful and precise tool to enact surveillance Droby, S.; Wisniewski, M.; Spadaro, protocols regarding specific organisms, but this approach is strictly targeted, while metabarcoding D.; Schena, L.
    [Show full text]
  • Genomics and Its Impact on Science and Society: the Human Genome Project and Beyond
    DOE/SC-0083 Genomics and Its Impact on Science and Society The Human Genome Project and Beyond U.S. Department of Energy Genome Research Programs: genomics.energy.gov A Primer ells are the fundamental working units of every living system. All the instructions Cneeded to direct their activities are contained within the chemical DNA (deoxyribonucleic acid). DNA from all organisms is made up of the same chemical and physical components. The DNA sequence is the particular side-by-side arrangement of bases along the DNA strand (e.g., ATTCCGGA). This order spells out the exact instruc- tions required to create a particular organism with protein complex its own unique traits. The genome is an organism’s complete set of DNA. Genomes vary widely in size: The smallest known genome for a free-living organism (a bac- terium) contains about 600,000 DNA base pairs, while human and mouse genomes have some From Genes to Proteins 3 billion (see p. 3). Except for mature red blood cells, all human cells contain a complete genome. Although genes get a lot of attention, the proteins DNA in each human cell is packaged into 46 chro- perform most life functions and even comprise the mosomes arranged into 23 pairs. Each chromosome is majority of cellular structures. Proteins are large, complex a physically separate molecule of DNA that ranges in molecules made up of chains of small chemical com- length from about 50 million to 250 million base pairs. pounds called amino acids. Chemical properties that A few types of major chromosomal abnormalities, distinguish the 20 different amino acids cause the including missing or extra copies or gross breaks and protein chains to fold up into specific three-dimensional rejoinings (translocations), can be detected by micro- structures that define their particular functions in the cell.
    [Show full text]
  • University of Oklahoma
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D.
    [Show full text]
  • Herpesviruses
    J Clin Pathol: first published as 10.1136/jcp.32.9.859 on 1 September 1979. Downloaded from Journal of Clinical Pathology, 1979, 32, 859-881 Herpesviruses MORAG C. TIMBURY' AND ELIZABETH EDMOND2 From the 'Department of Bacteriology, Royal Infirmary, Glasgow and the 2Regional Virus Laboratory, City Hospital, Greenbank Drive, Edinburgh, UK Herpesviruses are ubiquitous in both human and tion (Plummer et al., 1970) or microneutralisation animal populations (Plummer, 1967). The four tests (Pauls and Dowdle, 1967) are often used for human herpesviruses are herpes simplex (HSV), this, but differentiating the two types of virus today varicella-zoster (VZ), cytomegalovirus (CMV), and can probably be done more easily by biochemical Epstein-Barr (EBV) viruses, and all exhibit the prop- methods. Thus the DNA of the viruses can be dis- erty, rare among human pathogenic viruses, of tinguished by restriction enzyme analysis (Skare et remaining latent within the body after primary infec- al., 1975). Similarly, many of the virus polypeptides tion. Latent virus persists for many years-probably produced in infected cells by the two types of virus throughout life-and in some patients reactivates to can be distinguished by polyacrylamide gel electro- cause secondary or recurrent infections. Human phoresis (Courtney and Powell, 1975). herpesviruses can almost be regarded as part of the commensal flora, and certainly HSV is present in LABORATORY DIAGNOSIS the saliva of healthy people from time to time HSV-1 infections are most rapidly diagnosed by (Douglas and Couch, 1970). The viruses exhibit a isolation of the virus in cell cultures such as BHK21 remarkably successful parasitism since the upset to or RK1 3 cells (Grist et al., 1979).
    [Show full text]
  • Vaccines, Emerging Viruses, and How to Avoid Disaster Rino Rappuoli
    Rappuoli BMC Biology 2014, 12:100 http://www.biomedcentral.com/1741-7007/12/100 INTERVIEW Open Access Vaccines, emerging viruses, and how to avoid disaster Rino Rappuoli Abstract Rino Rappuoli is a graduate of Siena University, where he also earned his PhD before moving to the Sclavo Research Center, the Italian vaccine institute, also in Siena. He then spent two years in the USA, mostly at Harvard with John Murphy and Alwin Pappenheimer working on a new diphtheria vaccine based on a non-toxic mutant of diphtheria toxin which has since become the basis for conjugate vaccines against haemophilus, meningococcus, and pneumococcal infections, before returning to the Sclavo Research Center where he developed an acellular vaccine based on a mutant pertussis toxin. With many achievements Rino Rappuoli in vaccine development to his credit, he is now Global Head of Vaccines Research and Development for Novartis Vaccines in Siena, and has most recently breaking out. Ebola virus is by far the most lethal that we pioneered reverse vaccinology, in which the genome have now, but all of the others are very dangerous. of the pathogen is screened for candidate antigenic and immunogenic vaccine components. We spoke to him about the potential for outbreaks of the kind we I know that there are ’flu vaccines, but are there are now seeing with Ebolavirus in West Africa, and licensed vaccines for any of the others? what can be done to prevent them. The answer is no - there are no vaccines for SARS, which emerged in 2003, there is no licensed vaccine for MERS, there is no licensed vaccine for Chikungunya, Ebolavirus disease has been much in the news there is no licensed vaccine for Ebola - so for most of recently because of the horrendous outbreak in these diseases there are no vaccines, because they are – West Africa but how many other rare, sporadic too rare to justify the economic investment.
    [Show full text]
  • Identification of Pasteurella Species and Morphologically Similar Organisms
    UK Standards for Microbiology Investigations Identification of Pasteurella species and Morphologically Similar Organisms Issued by the Standards Unit, Microbiology Services, PHE Bacteriology – Identification | ID 13 | Issue no: 3 | Issue date: 04.02.15 | Page: 1 of 28 © Crown copyright 2015 Identification of Pasteurella species and Morphologically Similar Organisms Acknowledgments UK Standards for Microbiology Investigations (SMIs) are developed under the auspices of Public Health England (PHE) working in partnership with the National Health Service (NHS), Public Health Wales and with the professional organisations whose logos are displayed below and listed on the website https://www.gov.uk/uk- standards-for-microbiology-investigations-smi-quality-and-consistency-in-clinical- laboratories. SMIs are developed, reviewed and revised by various working groups which are overseen by a steering committee (see https://www.gov.uk/government/groups/standards-for-microbiology-investigations- steering-committee). The contributions of many individuals in clinical, specialist and reference laboratories who have provided information and comments during the development of this document are acknowledged. We are grateful to the Medical Editors for editing the medical content. For further information please contact us at: Standards Unit Microbiology Services Public Health England 61 Colindale Avenue London NW9 5EQ E-mail: [email protected] Website: https://www.gov.uk/uk-standards-for-microbiology-investigations-smi-quality- and-consistency-in-clinical-laboratories UK Standards for Microbiology Investigations are produced in association with: Logos correct at time of publishing. Bacteriology – Identification | ID 13 | Issue no: 3 | Issue date: 04.02.15 | Page: 2 of 28 UK Standards for Microbiology Investigations | Issued by the Standards Unit, Public Health England Identification of Pasteurella species and Morphologically Similar Organisms Contents ACKNOWLEDGMENTS .........................................................................................................
    [Show full text]
  • Thesis Final
    THESIS/DISSERTATION APPROVED BY 4-24-2020 Barbara J. O’Kane Date Barbara J. O’Kane, MS, Ph.D, Chair Margaret Jergenson Margret A. Jergenson, DDS Neil Norton Neil S. Norton, BA, Ph.D. Gail M. Jensen, Ph.D., Dean i COMPARISON OF PERIODONTIUM AMONG SUBJECTS TREATED WITH CLEAR ALIGNERS AND CONVENTIONAL ORTHODONTICS By: Mark S. Jones A THESIS Presented to the Faculty of The Graduate College at Creighton University In Partial Fulfillment of Requirements For the Degree of Master of Science in the Department of Oral Biology Under the Supervision of Dr. Marcelo Mattos Advising from: Dr. Margaret Jergenson, Dr. Neil S. Norton, and Dr. Barbara O’Kane Omaha, Nebraska 2020 i iii Abstract INTRODUCTION: With the wider therapeutic use of clear aligners the need to investigate the periodontal health status and microbiome of clear aligners’ patients in comparison with users of fixed orthodontic has arisen and is the objective of this thesis. METHODS: A clinical periodontal evaluation was performed, followed by professional oral hygiene treatment on a patient under clear aligner treatment, another under fixed orthodontics and two controls that never received any orthodontic therapy. One week after, supragingival plaque, swabs from the orthodontic devices, and saliva samples were collected from each volunteer for further 16s sequencing and microbiome analysis. RESULTS: All participants have overall good oral hygiene. However, our results showed increases in supragingival plaque, higher number of probing depths greater than 3mm, higher number of bleeding sites on probing, and a higher amount of gingival recession in the subject treated with fixed orthodontics. A lower bacterial count was observed colonizing the clear aligners, with less diversity than the other samples analyzed.
    [Show full text]
  • The Mixed Lineage Nature of Nitrogen Transport and Assimilation in Marine Eukaryotic Phytoplankton: a Case Study of Micromonas Sarah M
    The Mixed Lineage Nature of Nitrogen Transport and Assimilation in Marine Eukaryotic Phytoplankton: A Case Study of Micromonas Sarah M. McDonald, Joshua N. Plant, and Alexandra Z. Worden* Monterey Bay Aquarium Research Institute, Moss Landing, California Present address: Center for Health Sciences, SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025-3493. *Corresponding author: E-mail: [email protected]. Associate editor: Charles Delwiche Abstract Research article The prasinophyte order Mamiellales contains several widespread marine picophytoplankton (2 lm diameter) taxa, including Micromonas and Ostreococcus. Complete genome sequences are available for two Micromonas isolates, CCMP1545 and RCC299. We performed in silico analyses of nitrogen transporters and related assimilation genes in CCMP1545 and RCC299 and compared these with other green lineage organisms as well as Chromalveolata, fungi, bacteria, and archaea. Phylogenetic reconstructions of ammonium transporter (AMT) genes revealed divergent types contained within each Mamiellales genome. Some were affiliated with plant and green algal AMT1 genes and others with bacterial AMT2 genes. Land plant AMT2 genes were phylogenetically closer to archaeal transporters than to Mamiellales AMT2 genes. The Mamiellales represent the first green algal genomes to harbor AMT2 genes, which are not found in Chlorella and Chlamydomonas or the chromalveolate algae analyzed but are present in oomycetes. Fewer nitrate transporter (NRT) than AMT genes were identified in the Mamiellales. NRT1 was found in all but CCMP1545 and showed highest similarity to Mamiellales and proteobacterial NRTs. NRT2 genes formed a bootstrap-supported clade basal to other green lineage organisms. Several nitrogen-related genes were colocated, forming a nitrogen gene cluster. Overall, RCC299 showed the most divergent suite of nitrogen transporters within the various Mamiellales genomes, and we developed TaqMan quantitative polymerase chain reaction primer–probes targeting a subset of these, as well as housekeeping genes, in RCC299.
    [Show full text]
  • Section 4. Guidance Document on Horizontal Gene Transfer Between Bacteria
    306 - PART 2. DOCUMENTS ON MICRO-ORGANISMS Section 4. Guidance document on horizontal gene transfer between bacteria 1. Introduction Horizontal gene transfer (HGT) 1 refers to the stable transfer of genetic material from one organism to another without reproduction. The significance of horizontal gene transfer was first recognised when evidence was found for ‘infectious heredity’ of multiple antibiotic resistance to pathogens (Watanabe, 1963). The assumed importance of HGT has changed several times (Doolittle et al., 2003) but there is general agreement now that HGT is a major, if not the dominant, force in bacterial evolution. Massive gene exchanges in completely sequenced genomes were discovered by deviant composition, anomalous phylogenetic distribution, great similarity of genes from distantly related species, and incongruent phylogenetic trees (Ochman et al., 2000; Koonin et al., 2001; Jain et al., 2002; Doolittle et al., 2003; Kurland et al., 2003; Philippe and Douady, 2003). There is also much evidence now for HGT by mobile genetic elements (MGEs) being an ongoing process that plays a primary role in the ecological adaptation of prokaryotes. Well documented is the example of the dissemination of antibiotic resistance genes by HGT that allowed bacterial populations to rapidly adapt to a strong selective pressure by agronomically and medically used antibiotics (Tschäpe, 1994; Witte, 1998; Mazel and Davies, 1999). MGEs shape bacterial genomes, promote intra-species variability and distribute genes between distantly related bacterial genera. Horizontal gene transfer (HGT) between bacteria is driven by three major processes: transformation (the uptake of free DNA), transduction (gene transfer mediated by bacteriophages) and conjugation (gene transfer by means of plasmids or conjugative and integrated elements).
    [Show full text]