Candidatus Nitrosocaldus Cavascurensis, an Ammonia

Total Page:16

File Type:pdf, Size:1020Kb

Candidatus Nitrosocaldus Cavascurensis, an Ammonia Candidatus Nitrosocaldus cavascurensis, an Ammonia Oxidizing, Extremely Thermophilic Archaeon with a Highly Mobile Genome Sophie Abby, Michael Melcher, Melina Kerou, Mart Krupovic, Michaela Stieglmeier, Claudia Rossel, Kevin Pfeifer, Christa Schleper To cite this version: Sophie Abby, Michael Melcher, Melina Kerou, Mart Krupovic, Michaela Stieglmeier, et al.. Can- didatus Nitrosocaldus cavascurensis, an Ammonia Oxidizing, Extremely Thermophilic Archaeon with a Highly Mobile Genome. Frontiers in Microbiology, Frontiers Media, 2018, 9, pp.28. 10.3389/fmicb.2018.00028. hal-01702026 HAL Id: hal-01702026 https://hal.archives-ouvertes.fr/hal-01702026 Submitted on 6 Feb 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. fmicb-09-00028 January 29, 2018 Time: 12:16 # 1 ORIGINAL RESEARCH published: 26 January 2018 doi: 10.3389/fmicb.2018.00028 Candidatus Nitrosocaldus cavascurensis, an Ammonia Oxidizing, Extremely Thermophilic Archaeon with a Highly Mobile Genome Sophie S. Abby1,2†, Michael Melcher1†, Melina Kerou1, Mart Krupovic3, Michaela Stieglmeier1, Claudia Rossel1, Kevin Pfeifer1 and Christa Schleper1* 1 Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria, 2 Laboratoire Techniques de l’Ingénierie Médicale et de la Complexité – Informatique, Mathématiques et Applications, Centre National de la Recherche Scientifique, Université Grenoble Alpes, Grenoble, France, 3 Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, Paris, France Ammonia oxidizing archaea (AOA) of the phylum Thaumarchaeota are widespread in moderate environments but their occurrence and activity has also been demonstrated Edited by: in hot springs. Here we present the first enrichment of a thermophilic representative Martin G. Klotz, Washington State University Tri-Cities, with a sequenced genome, which facilitates the search for adaptive strategies and United States for traits that shape the evolution of Thaumarchaeota. Candidatus Nitrosocaldus Reviewed by: cavascurensis has been enriched from a hot spring in Ischia, Italy. It grows optimally Ivan A. Berg, at 68◦C under chemolithoautotrophic conditions on ammonia or urea converting Universität Münster, Germany Willm Martens-Habbena, ammonia stoichiometrically into nitrite with a generation time of approximately 23 h. University of Florida, United States Phylogenetic analyses based on ribosomal proteins place the organism as a sister Lisa Y. Stein, University of Alberta, Canada group to all known mesophilic AOA. The 1.58 Mb genome of Ca. N. cavascurensis *Correspondence: harbors an amoAXCB gene cluster encoding ammonia monooxygenase and genes Christa Schleper for a 3-hydroxypropionate/4-hydroxybutyrate pathway for autotrophic carbon fixation, [email protected] but also genes that indicate potential alternative energy metabolisms. Although a bona † These authors have contributed fide gene for nitrite reductase is missing, the organism is sensitive to NO-scavenging, equally to this work. underlining the potential importance of this compound for AOA metabolism. Ca. N. Specialty section: cavascurensis is distinct from all other AOA in its gene repertoire for replication, cell This article was submitted to division and repair. Its genome has an impressive array of mobile genetic elements Evolutionary and Genomic Microbiology, and other recently acquired gene sets, including conjugative systems, a provirus, a section of the journal transposons and cell appendages. Some of these elements indicate recent exchange Frontiers in Microbiology with the environment, whereas others seem to have been domesticated and might Received: 28 December 2017 Accepted: 08 January 2018 convey crucial metabolic traits. Published: 26 January 2018 Keywords: ammonia oxidation, archaea, Thaumarchaeota, nitrification, mobile genetic elements, thermophilic Citation: adaptations, amoA gene, DNA repair enzymes Abby SS, Melcher M, Kerou M, Krupovic M, Stieglmeier M, Rossel C, Pfeifer K and Schleper C INTRODUCTION (2018) Candidatus Nitrosocaldus cavascurensis, an Ammonia Ammonia oxidizing archaea (AOA) now collectively classified as Nitrososphaeria within the Oxidizing, Extremely Thermophilic Archaeon with a Highly Mobile phylum Thaumarchaeota (Brochier-Armanet et al., 2008; Spang et al., 2010; Stieglmeier et al., Genome. Front. Microbiol. 9:28. 2014; Kerou et al., 2016a) represent the sole archaeal group that is globally distributed in oxic doi: 10.3389/fmicb.2018.00028 environments efficiently competing with aerobic bacteria. Because of their large numbers in the Frontiers in Microbiology| www.frontiersin.org 1 January 2018| Volume 9| Article 28 fmicb-09-00028 January 29, 2018 Time: 12:16 # 2 Abby et al. Thermophilic Thaumarchaeon Cultivation and Genome ocean plankton, in marine sediments, in lakes and in soils, A remarkable diversity of archaea with different metabolisms AOA are considered one of the most abundant groups of has been described from terrestrial and marine hot springs prokaryotes on this planet (Schleper et al., 2005; Prosser and and hyperthermophilic organisms tend to be found at the base Nicol, 2008; Erguder et al., 2009; Schleper and Nicol, 2010; of almost all lineages of archaea. Therefore, it has often been Pester et al., 2011; Hatzenpichler, 2012; Stahl and de la Torre, proposed that the ancestor of all archaea and the ancestors 2012; Offre et al., 2013). All currently cultivated AOA strains of mesophilic lineages of archaea were hyperthermophilic or gain energy exclusively through the oxidation of ammonia to at least thermophiles (Barns et al., 1996; Lopez-Garcia et al., nitrite, i.e., they perform the first step in nitrification. They 2004; Gribaldo and Brochier-Armanet, 2006; Brochier-Armanet grow chemolithoautotrophically from inorganic carbon supply. et al., 2012; Eme et al., 2013). This has been supported by Some strains show growth only in the presence of small organic sequence analyses which suggested a parallel adaptation from acids (Tourna et al., 2011; Qin et al., 2014) which seem to hot to moderate temperatures in several lineages of archaea catalyze degradation of reactive oxygen species (ROS) from (Groussin and Gouy, 2011; Williams et al., 2017). Indeed, the the medium (Kim et al., 2016). Different from their bacterial thermophilic strain Ca. Nitrosocaldus yellowstonensis emerged ammonia oxidizing counterparts, AOA are often adapted to in 16S rRNA phylogeny as a sister group of all known mesophilic rather low levels of ammonia for growth, which seems to AOA (de la Torre et al., 2008) indicating that AOA also evolved favor their activities in oligotrophic environments, such as the in hot environments. marine pelagic ocean and marine sediments, but also in acidic However, until now, no genome of an obligate thermophilic environments, where the concentration of ammonia decreases AOA was available to analyze in depth the phylogenetic in favor of ammonium (Nicol et al., 2008). However, AOA placement of thermophilic AOA and to investigate adaptive occur also in large numbers in terrestrial environments, including features of these ammonia oxidizers that have a pivotal position fertilized soils and some waste water treatment plants, and several in understanding the evolution of Thaumarchaeota. studies indicate alternative energy metabolisms (Mussmann et al., In this work we present the physiology and first genome of 2011; Alves et al., 2013). Although ammonia oxidation in an extremely thermophilic AOA of the Nitrosocaldus lineage that archaea has not been biochemically resolved, the presence of we cultivated from a hot spring in Southern Italy. We analyze genes for an ammonia monooxygenase in all AOA with remote its phylogeny based on ribosomal proteins and reconstruct similarity to methane and ammonia monooxygenases of bacteria metabolic and genomic features and adaptations. implies involvement of this complex in the process (Konneke et al., 2005; Treusch et al., 2005; Nicol and Schleper, 2006). Hydroxylamine has been suggested to be the first product of MATERIALS AND METHODS ammonia oxidation (Vajrala et al., 2013), but further conversion to nitrite is performed in an unknown process, as no homolog Sampling and Enrichment of the bacterial hydroxylamine dehydrogenase has been found About 500 mL of mud were sampled from a terrestrial hot in the genomes of AOA. However, nitric oxide (NO) has been spring on the Italian island Ischia at “Terme di Cavascura” and ◦ suggested to be involved in the process, because NO production stored at 4 C until it arrived at the laboratory in Vienna (after ◦ and re-consumption have been observed (Martens-Habbena about one week, October 2013). A temperature of 77 C and et al., 2015; Kozlowski et al., 2016b) and the NO scavenger pH 7–8 were measured in situ using a portable thermometer PTIO was shown to inhibit AOA at very low concentrations (HANNA HI935005) and pH stripes. Initial enrichments (20 mL (Yan et al., 2012; Shen et al., 2013; Martens-Habbena et al., final volume) were set up in 120 mL serum
Recommended publications
  • Nitrososphaera Viennensis, an Ammonia Oxidizing Archaeon from Soil
    Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil Maria Tournaa,1,2, Michaela Stieglmeiera,1, Anja Spanga, Martin Könnekeb,3, Arno Schintlmeisterc, Tim Uricha, Marion Engeld, Michael Schloterd, Michael Wagnerc,e, Andreas Richterc,f, and Christa Schlepera,4 aDepartment of Genetics in Ecology, University of Vienna, A-1090 Vienna, Austria; bInstitute for Chemistry and Biology of the Marine Environment, University of Oldenburg, D-26129 Oldenburg, Germany; cCore Facility for Advanced Isotope Research, University of Vienna, A-1090 Vienna, Austria; dHelmholtz Zentrum München, 85764 Neuherberg, Germany; eDepartment of Microbial Ecology, University of Vienna, A-1090 Vienna, Austria; and fDepartment Chemical Ecology and Ecosystem Research, University of Vienna, A-1090 Vienna, Austria Edited by Edward F. DeLong, Massachusetts Institute of Technology, Cambridge, MA, and approved March 31, 2011 (received for review September 9, 2010) Genes of archaea encoding homologues of ammonia monooxyge- AOA in nitrification. Upon amendment of fertilizer, growth of nases have been found on a widespread basis and in large amounts ammonia oxidizing bacteria (AOB) was reported to correlate in almost all terrestrial and marine environments, indicating that with nitrification activity, whereas archaea did not seem to re- ammonia oxidizing archaea (AOA) might play a major role in spond (20, 23, 24). In other soils, growth and nitrification of ar- nitrification on Earth. However, only one pure isolate of this group chaea was demonstrated (25–27). However, the active AOA group from a marine environment has so far been obtained, demonstrat- was either not investigated (25) or does not reside in significant ing archaeal ammonia oxidation coupled with autotrophic growth numbers in most soil environments (26, 27).
    [Show full text]
  • A Dicarboxylate/4-Hydroxybutyrate Autotrophic Carbon Assimilation Cycle in the Hyperthermophilic Archaeum Ignicoccus Hospitalis
    A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilic Archaeum Ignicoccus hospitalis Harald Huber*†, Martin Gallenberger*, Ulrike Jahn*, Eva Eylert‡, Ivan A. Berg§, Daniel Kockelkorn§, Wolfgang Eisenreich‡, and Georg Fuchs§ *Lehrstuhl fu¨r Mikrobiologie und Archaeenzentrum, Universita¨t Regensburg, Universitaetsstrasse 31, D-93053 Regensburg, Germany; ‡Lehrstuhl fu¨r Biochemie, Department Chemie, Technische Universita¨t Mu¨ nchen, Lichtenbergstrasse 4, D-85748 Garching, Germany; and §Lehrstuhl fu¨r Mikrobiologie, Universita¨t Freiburg, Scha¨nzlestrasse 1, D-79104 Freiburg, Germany Edited by Dieter So¨ll, Yale University, New Haven, CT, and approved April 1, 2008 (received for review February 1, 2008) Ignicoccus hospitalis is an anaerobic, autotrophic, hyperthermophilic starting from acetyl-CoA (4). On the basis of these data, pyruvate Archaeum that serves as a host for the symbiotic/parasitic Archaeum synthase and phosphoenolpyruvate (PEP) carboxylase were pos- Nanoarchaeum equitans. It uses a yet unsolved autotrophic CO2 tulated as CO2 fixing enzymes, with PEP carboxylase serving as the fixation pathway that starts from acetyl-CoA (CoA), which is reduc- only enzyme used for oxaloacetate synthesis. In addition, the tively carboxylated to pyruvate. Pyruvate is converted to phosphoe- operation of an incomplete ‘‘horseshoe-type’’ citric acid cycle, in nol-pyruvate (PEP), from which glucogenesis as well as oxaloacetate which 2-oxoglutarate oxidation does not take place, was demon- formation branch off. Here, we present the complete metabolic cycle strated. Enzyme and labeling data indicated a conventional glu- by which the primary CO2 acceptor molecule acetyl-CoA is regener- coneogenesis, but with some enzymes unrelated to those of the ated. Oxaloacetate is reduced to succinyl-CoA by an incomplete classical pathway.
    [Show full text]
  • Microbial Community Dynamics During Composting Process of Animal Manure Analyzed by Molecular Biological Methods
    Microbial Community Dynamics during Composting Process of Animal Manure Analyzed by Molecular Biological Methods 著者 Yamamoto Nozomi, Asano Ryoki, Otawa Kenichi, Oishi Ryu, Yoshii Hiroki, Tada Chika, Nakai Yutaka journal or Journal of Integrated Field Science publication title volume 11 page range 27-34 year 2014-03 URL http://hdl.handle.net/10097/57385 lIFS, 11 : 27 - 34 (2014) Symposium Mini Paper (Oral Session) Microbial Community Dynamics during Composting Process of Animal Manure Analyzed by Molecular Biological Methods Nozomi Yamamoto!, RyokiAsano2, Kenichi Otawa3, Ryu Oishi3, Hiroki YoshiP, Chika Tada3 and Yutaka NakaP IGraduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Japan, 2Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, Japan, 3Graduate School of Agricultural Science, Tohoku University, Japan Keywords: 16S rRNA gene, animal manure, archaea, bacteria, cloning, compost Abstract we revealed the pattern of changes in the prokaryotic Composting is a biological process involving sta­ communities involved in the compo sting process. bilization of animal manure and transformation into organic fertilizer. Microorganisms such as bacteria Introduction and archaea participate in the compo sting process. Cattle manure accounts for a large part of the total Because bacteria form huge communities in compost, animal waste generated in Japan (MAFF, 2013) and they are thought to play an important role as decom­ can cause environmental problems such as soil con­ posers of organic substances. However, only few tamination, air pollution, or offensive odor emission studies are tracking bacterial communities throughout without appropriate treatment (Bernal et aI., 2008). the composting process. The role of archaeal com­ Composting is the most effective technique for min­ munities in compo sting has not been also elucidated.
    [Show full text]
  • Two Domains of Life, Not Three?
    Asgard Archaea Two domains of life, not three? A picture of visual interpretation of the Wagner’s opera Das Rheingold, a part of Richard Wagner’s Der Ring des Nibelungen Loki's Castle is a field of five active hydrothermal vents in the mid-Atlantic Ocean, located at 73 degrees north on the Mid-Atlantic Ridge between Greenland and Norway at a depth of 2,352 metres The vents were discovered in 2008 by a multinational scientific expedition of the university of Bergen, and are the most northerly black smokers to date. The five active chimneys of Loki's Castle are venting water as hot as 300 °C and sit on a vast mound of sulfide minerals. The vent field was given the name Loki's Castle as its shape reminded its discoverers of a fantasy castle. The reference is to the ancient Norse god of trickery, Loki. The top three feet (1 m) of a vent chimney almost 40 feet (12 m) tall at Loki's Castle in mid-July 2008. Visible at left is the arm of a remotely operated vehicle, reaching in to take fluid samples. Loki’s Castle Wents Loki's Castle - a field of five active hydrothermal vents in the mid-Atlantic Ocean - at 73 degrees north on the Mid-Atlantic Ridge - at a depth of 2,352 meters In Norse mythology, Loki is a cunning trickster who has the ability to change his shape and sex. Loki is represented as the companion of the great gods Odin and Thor. Preliminary observations have shown the warm area around the Loki's Castle vents to be alive with diverse and apparently unique microorganisms, unlike vent communities observed elsewhere.
    [Show full text]
  • Gene Duplication Drives Genome Expansion in a Major Lineage of Thaumarchaeota
    ARTICLE https://doi.org/10.1038/s41467-020-19132-x OPEN Gene duplication drives genome expansion in a major lineage of Thaumarchaeota Paul O. Sheridan 1,2, Sebastien Raguideau3, Christopher Quince3,4,5, Jennifer Holden6, Lihong Zhang 7, ✉ Thames Consortium*, Tom A. Williams 2 & Cécile Gubry-Rangin 1 Ammonia-oxidising archaea of the phylum Thaumarchaeota are important organisms in the nitrogen cycle, but the mechanisms driving their radiation into diverse ecosystems remain 1234567890():,; underexplored. Here, existing thaumarchaeotal genomes are complemented with 12 genomes belonging to the previously under-sampled Nitrososphaerales to investigate the impact of lateral gene transfer (LGT), gene duplication and loss across thaumarchaeotal evolution. We reveal a major role for gene duplication in driving genome expansion subsequent to early LGT. In particular, two large LGT events are identified into Nitrososphaerales and the fate of these gene families is highly lineage-specific, being lost in some descendant lineages, but undergoing extensive duplication in others, suggesting niche-specific roles. Notably, some genes involved in carbohydrate transport or coenzyme metabolism were duplicated, likely facilitating niche specialisation in soils and sediments. Overall, our results suggest that LGT followed by gene duplication drives Nitrososphaerales evolution, highlighting a previously under-appreciated mechanism of genome expansion in archaea. 1 School of Biological Sciences, University of Aberdeen, Aberdeen, UK. 2 School of Biological Sciences, University of Bristol, Bristol, UK. 3 Warwick Medical School, University of Warwick, Coventry, UK. 4 Organisms and Ecosystems, Earlham Institute, Norwich, UK. 5 Gut Microbes and Health, Quadram Institute, Norwich, UK. 6 School of Life Sciences, University of Warwick, Coventry, UK. 7 European Centre for Environment and Human Health, Medical School, ✉ University of Exeter, Exeter, UK.
    [Show full text]
  • Table S4. Phylogenetic Distribution of Bacterial and Archaea Genomes in Groups A, B, C, D, and X
    Table S4. Phylogenetic distribution of bacterial and archaea genomes in groups A, B, C, D, and X. Group A a: Total number of genomes in the taxon b: Number of group A genomes in the taxon c: Percentage of group A genomes in the taxon a b c cellular organisms 5007 2974 59.4 |__ Bacteria 4769 2935 61.5 | |__ Proteobacteria 1854 1570 84.7 | | |__ Gammaproteobacteria 711 631 88.7 | | | |__ Enterobacterales 112 97 86.6 | | | | |__ Enterobacteriaceae 41 32 78.0 | | | | | |__ unclassified Enterobacteriaceae 13 7 53.8 | | | | |__ Erwiniaceae 30 28 93.3 | | | | | |__ Erwinia 10 10 100.0 | | | | | |__ Buchnera 8 8 100.0 | | | | | | |__ Buchnera aphidicola 8 8 100.0 | | | | | |__ Pantoea 8 8 100.0 | | | | |__ Yersiniaceae 14 14 100.0 | | | | | |__ Serratia 8 8 100.0 | | | | |__ Morganellaceae 13 10 76.9 | | | | |__ Pectobacteriaceae 8 8 100.0 | | | |__ Alteromonadales 94 94 100.0 | | | | |__ Alteromonadaceae 34 34 100.0 | | | | | |__ Marinobacter 12 12 100.0 | | | | |__ Shewanellaceae 17 17 100.0 | | | | | |__ Shewanella 17 17 100.0 | | | | |__ Pseudoalteromonadaceae 16 16 100.0 | | | | | |__ Pseudoalteromonas 15 15 100.0 | | | | |__ Idiomarinaceae 9 9 100.0 | | | | | |__ Idiomarina 9 9 100.0 | | | | |__ Colwelliaceae 6 6 100.0 | | | |__ Pseudomonadales 81 81 100.0 | | | | |__ Moraxellaceae 41 41 100.0 | | | | | |__ Acinetobacter 25 25 100.0 | | | | | |__ Psychrobacter 8 8 100.0 | | | | | |__ Moraxella 6 6 100.0 | | | | |__ Pseudomonadaceae 40 40 100.0 | | | | | |__ Pseudomonas 38 38 100.0 | | | |__ Oceanospirillales 73 72 98.6 | | | | |__ Oceanospirillaceae
    [Show full text]
  • Abundance and Microbial Diversity from Surface to Deep Water Layers Over the Rio 2 Grande Rise, South Atlantic 3 4 Juliana Correa Neiva Ferreira*, Natascha M
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.22.441028; this version posted April 23, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Abundance and Microbial Diversity from Surface to Deep Water Layers Over the Rio 2 Grande Rise, South Atlantic 3 4 Juliana Correa Neiva Ferreira*, Natascha M. Bergo*, Pedro M. Tura, Mateus Gustavo Chuqui, 5 Frederico P. Brandini, Luigi Jovane, Vivian H. Pellizari 6 7 Affiliations 8 Instituto Oceanográfico, Universidade de São Paulo, São Paulo, Brazil 9 10 Corresponding author 11 Correspondence to Dra Natascha Menezes Bergo, [email protected] 12 *These authors contributed equally to this work 13 14 ORCID number 15 0000-0002-5367-0257 - Juliana Correa Neiva Ferreira 16 0000-0002-8236-9412 - Natascha Menezes Bergo 17 0000-0003-2880-7028 - Pedro M. Tura 18 0000-0002-4167-0030 - Mateus Gustavo Chuqui 19 0000-0002-3177-4274 - Frederico Pereira Brandini 20 0000-0003-4348-4714 - Luigi Jovane 21 0000-0003-2757-6352 - Vivian Helena Pellizari 22 23 Highlights 24 • Rio Grande Rise pelagic microbiome 25 • Picoplankton carbon biomass partitioning through pelagic zones 26 • Unique SAR11 Clade I oligotype in the shallowest Tropical Water 27 • Higher number of shared oligotypes between deepest water masses 28 • Nitrogen, carbon and sulfur may be important contributors for the pelagic microbiome 29 30 Abstract 31 Marine microbes control the flux of matter and energy essential for life in the oceans.
    [Show full text]
  • Section 4. Guidance Document on Horizontal Gene Transfer Between Bacteria
    306 - PART 2. DOCUMENTS ON MICRO-ORGANISMS Section 4. Guidance document on horizontal gene transfer between bacteria 1. Introduction Horizontal gene transfer (HGT) 1 refers to the stable transfer of genetic material from one organism to another without reproduction. The significance of horizontal gene transfer was first recognised when evidence was found for ‘infectious heredity’ of multiple antibiotic resistance to pathogens (Watanabe, 1963). The assumed importance of HGT has changed several times (Doolittle et al., 2003) but there is general agreement now that HGT is a major, if not the dominant, force in bacterial evolution. Massive gene exchanges in completely sequenced genomes were discovered by deviant composition, anomalous phylogenetic distribution, great similarity of genes from distantly related species, and incongruent phylogenetic trees (Ochman et al., 2000; Koonin et al., 2001; Jain et al., 2002; Doolittle et al., 2003; Kurland et al., 2003; Philippe and Douady, 2003). There is also much evidence now for HGT by mobile genetic elements (MGEs) being an ongoing process that plays a primary role in the ecological adaptation of prokaryotes. Well documented is the example of the dissemination of antibiotic resistance genes by HGT that allowed bacterial populations to rapidly adapt to a strong selective pressure by agronomically and medically used antibiotics (Tschäpe, 1994; Witte, 1998; Mazel and Davies, 1999). MGEs shape bacterial genomes, promote intra-species variability and distribute genes between distantly related bacterial genera. Horizontal gene transfer (HGT) between bacteria is driven by three major processes: transformation (the uptake of free DNA), transduction (gene transfer mediated by bacteriophages) and conjugation (gene transfer by means of plasmids or conjugative and integrated elements).
    [Show full text]
  • Novel Insights Into the Thaumarchaeota in the Deepest Oceans: Their Metabolism and Potential Adaptation Mechanisms
    Zhong et al. Microbiome (2020) 8:78 https://doi.org/10.1186/s40168-020-00849-2 RESEARCH Open Access Novel insights into the Thaumarchaeota in the deepest oceans: their metabolism and potential adaptation mechanisms Haohui Zhong1,2, Laura Lehtovirta-Morley3, Jiwen Liu1,2, Yanfen Zheng1, Heyu Lin1, Delei Song1, Jonathan D. Todd3, Jiwei Tian4 and Xiao-Hua Zhang1,2,5* Abstract Background: Marine Group I (MGI) Thaumarchaeota, which play key roles in the global biogeochemical cycling of nitrogen and carbon (ammonia oxidizers), thrive in the aphotic deep sea with massive populations. Recent studies have revealed that MGI Thaumarchaeota were present in the deepest part of oceans—the hadal zone (depth > 6000 m, consisting almost entirely of trenches), with the predominant phylotype being distinct from that in the “shallower” deep sea. However, little is known about the metabolism and distribution of these ammonia oxidizers in the hadal water. Results: In this study, metagenomic data were obtained from 0–10,500 m deep seawater samples from the Mariana Trench. The distribution patterns of Thaumarchaeota derived from metagenomics and 16S rRNA gene sequencing were in line with that reported in previous studies: abundance of Thaumarchaeota peaked in bathypelagic zone (depth 1000–4000 m) and the predominant clade shifted in the hadal zone. Several metagenome-assembled thaumarchaeotal genomes were recovered, including a near-complete one representing the dominant hadal phylotype of MGI. Using comparative genomics, we predict that unexpected genes involved in bioenergetics, including two distinct ATP synthase genes (predicted to be coupled with H+ and Na+ respectively), and genes horizontally transferred from other extremophiles, such as those encoding putative di-myo-inositol-phosphate (DIP) synthases, might significantly contribute to the success of this hadal clade under the extreme condition.
    [Show full text]
  • Functionalized Membrane Domains: an Ancestral Feature of Archaea? Maxime Tourte, Philippe Schaeffer, Vincent Grossi, Phil Oger
    Functionalized Membrane Domains: An Ancestral Feature of Archaea? Maxime Tourte, Philippe Schaeffer, Vincent Grossi, Phil Oger To cite this version: Maxime Tourte, Philippe Schaeffer, Vincent Grossi, Phil Oger. Functionalized Membrane Domains: An Ancestral Feature of Archaea?. Frontiers in Microbiology, Frontiers Media, 2020, 11, pp.526. 10.3389/fmicb.2020.00526. hal-02553764 HAL Id: hal-02553764 https://hal.archives-ouvertes.fr/hal-02553764 Submitted on 20 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. fmicb-11-00526 March 30, 2020 Time: 21:44 # 1 ORIGINAL RESEARCH published: 31 March 2020 doi: 10.3389/fmicb.2020.00526 Functionalized Membrane Domains: An Ancestral Feature of Archaea? Maxime Tourte1†, Philippe Schaeffer2†, Vincent Grossi3† and Phil M. Oger1*† 1 Université de Lyon, INSA Lyon, CNRS, MAP UMR 5240, Villeurbanne, France, 2 Université de Strasbourg-CNRS, UMR 7177, Laboratoire de Biogéochimie Moléculaire, Strasbourg, France, 3 Université de Lyon, ENS Lyon, CNRS, Laboratoire de Géologie de Lyon, UMR 5276, Villeurbanne, France Bacteria and Eukarya organize their plasma membrane spatially into domains of distinct functions. Due to the uniqueness of their lipids, membrane functionalization in Archaea remains a debated area.
    [Show full text]
  • Comammox—A Newly Discovered Nitrification Process in the Terrestrial Nitrogen Cycle
    J Soils Sediments (2017) 17:2709–2717 DOI 10.1007/s11368-017-1851-9 FRONTIERS IN SOILS AND SEDIMENTS • REVIEW ARTICLE Comammox—a newly discovered nitrification process in the terrestrial nitrogen cycle Hang-Wei Hu1,2 & Ji-Zheng He1 Received: 11 September 2017 /Accepted: 10 October 2017 /Published online: 18 October 2017 # Springer-Verlag GmbH Germany 2017 Abstract Results and discussion Comammox Nitrospira are environ- Purpose Nitrification, the microbial oxidation of ammonia to mentally widespread and numerically abundant in natural nitrate via nitrite, is a pivotal component of the biogeochemical and engineered habitats. Physiological data, including ammo- nitrogen cycle. Nitrification was conventionally assumed as a nia oxidation kinetics and metabolic versatility, and compara- two-step process in which ammonia oxidation was thought to be tive genomic analysis revealed that comammox organisms catalyzed by ammonia-oxidizing archaea (AOA) and bacteria might functionally outcompete other canonical nitrifiers under (AOB), as well as nitrite oxidation by nitrite-oxidizing bacteria highly oligotrophic conditions. These findings highlight the (NOB). This long-held assumption of labour division between necessity in future studies to re-evaluate the niche differentia- the two functional groups, however, was challenged by the re- tion between ammonia oxidizers and their relative contribu- cent unexpected discovery of complete ammonia oxidizers tion to nitrification in various terrestrial ecosystems by includ- within the Nitrospira genus that are capable of converting am- ing comammox Nitrospira in such comparisons. monia to nitrate in a single organism (comammox). This break- Conclusions The discovery of comammox and their broad through raised fundamental questions on the niche specializa- environmental distribution added a new dimension to our tion and differentiation of comammox organisms with other knowledge of the biochemistry and physiology of nitrification canonical nitrifying prokaryotes in terrestrial ecosystems.
    [Show full text]
  • Coursework Declaration and Feedback Form
    Coursework Declaration and Feedback Form The Student should complete and sign this part Student Student Number: Name: Programme of Study (e.g. MSc in Electronics and Electrical Engineering): Course Code: ENG5059P Course Name: MSc Project Name of Name of First Supervisor: Second Supervisor: Title of Project: Declaration of Originality and Submission Information I affirm that this submission is all my own work in accordance with the University of Glasgow Regulations and the School of Engineering E N G 5 0 5 9 P requirements Signed (Student) : Date of Submission : Feedback from Lecturer to Student – to be completed by Lecturer or Demonstrator Grade Awarded: Feedback (as appropriate to the coursework which was assessed): Lecturer/Demonstrator: Date returned to the Teaching Office: Whole Genome Analysis of Nitrifying Bacteria in Construction and the Built Environment Student Name: Kaung Sett Student ID: 2603933 Supervisor Name: Dr Umer Zeeshan Ijaz Co-supervisor Name: Dr Ciara Keating August 2021 A thesis submitted in partial FulFilment oF the requirements For the degree oF MASTER OF SCIENCE IN CIVIL ENGINEERING ACKNOWLEDGEMENT First and foremost, the author would like to acknowledge his supervisors, Dr. Umer Zeeshan Ijaz and Dr Ciara Keating, for giving him this opportunity and their invaluable technological ideas, thoroughly bioinformatics and environmental concepts for this project during its preparation, analysis and giving their supervision on his project. Next, the author desires to express his deepest gratitude to University of Glasgow for providing this opportunity to improve his knowledge and skills. Then, the author deeply appreciated to his parents for their continuous love, financial support, and encouragement throughout his entire life.
    [Show full text]