Expansion of Thaumarchaeota Habitat Range Is Correlated with Horizontal Transfer of Atpase Operons
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Genome of Nanoarchaeum Equitans: Insights Into Early Archaeal Evolution and Derived Parasitism
The genome of Nanoarchaeum equitans: Insights into early archaeal evolution and derived parasitism Elizabeth Waters†‡, Michael J. Hohn§, Ivan Ahel¶, David E. Graham††, Mark D. Adams‡‡, Mary Barnstead‡‡, Karen Y. Beeson‡‡, Lisa Bibbs†, Randall Bolanos‡‡, Martin Keller†, Keith Kretz†, Xiaoying Lin‡‡, Eric Mathur†, Jingwei Ni‡‡, Mircea Podar†, Toby Richardson†, Granger G. Sutton‡‡, Melvin Simon†, Dieter So¨ ll¶§§¶¶, Karl O. Stetter†§¶¶, Jay M. Short†, and Michiel Noordewier†¶¶ †Diversa Corporation, 4955 Directors Place, San Diego, CA 92121; ‡Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182; §Lehrstuhl fu¨r Mikrobiologie und Archaeenzentrum, Universita¨t Regensburg, Universita¨tsstrasse 31, D-93053 Regensburg, Germany; ‡‡Celera Genomics Rockville, 45 West Gude Drive, Rockville, MD 20850; Departments of ¶Molecular Biophysics and Biochemistry and §§Chemistry, Yale University, New Haven, CT 06520-8114; and ʈDepartment of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 Communicated by Carl R. Woese, University of Illinois at Urbana–Champaign, Urbana, IL, August 21, 2003 (received for review July 22, 2003) The hyperthermophile Nanoarchaeum equitans is an obligate sym- (6–8). Genomic DNA was either digested with restriction en- biont growing in coculture with the crenarchaeon Ignicoccus. zymes or sheared to provide clonable fragments. Two plasmid Ribosomal protein and rRNA-based phylogenies place its branching libraries were made by subcloning randomly sheared fragments point early in the archaeal lineage, representing the new archaeal of this DNA into a high-copy number vector (Ϸ2.8 kbp library) kingdom Nanoarchaeota. The N. equitans genome (490,885 base or low-copy number vector (Ϸ6.3 kbp library). DNA sequence pairs) encodes the machinery for information processing and was obtained from both ends of plasmid inserts to create repair, but lacks genes for lipid, cofactor, amino acid, or nucleotide ‘‘mate-pairs,’’ pairs of reads from single clones that should be biosyntheses. -
A Dicarboxylate/4-Hydroxybutyrate Autotrophic Carbon Assimilation Cycle in the Hyperthermophilic Archaeum Ignicoccus Hospitalis
A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilic Archaeum Ignicoccus hospitalis Harald Huber*†, Martin Gallenberger*, Ulrike Jahn*, Eva Eylert‡, Ivan A. Berg§, Daniel Kockelkorn§, Wolfgang Eisenreich‡, and Georg Fuchs§ *Lehrstuhl fu¨r Mikrobiologie und Archaeenzentrum, Universita¨t Regensburg, Universitaetsstrasse 31, D-93053 Regensburg, Germany; ‡Lehrstuhl fu¨r Biochemie, Department Chemie, Technische Universita¨t Mu¨ nchen, Lichtenbergstrasse 4, D-85748 Garching, Germany; and §Lehrstuhl fu¨r Mikrobiologie, Universita¨t Freiburg, Scha¨nzlestrasse 1, D-79104 Freiburg, Germany Edited by Dieter So¨ll, Yale University, New Haven, CT, and approved April 1, 2008 (received for review February 1, 2008) Ignicoccus hospitalis is an anaerobic, autotrophic, hyperthermophilic starting from acetyl-CoA (4). On the basis of these data, pyruvate Archaeum that serves as a host for the symbiotic/parasitic Archaeum synthase and phosphoenolpyruvate (PEP) carboxylase were pos- Nanoarchaeum equitans. It uses a yet unsolved autotrophic CO2 tulated as CO2 fixing enzymes, with PEP carboxylase serving as the fixation pathway that starts from acetyl-CoA (CoA), which is reduc- only enzyme used for oxaloacetate synthesis. In addition, the tively carboxylated to pyruvate. Pyruvate is converted to phosphoe- operation of an incomplete ‘‘horseshoe-type’’ citric acid cycle, in nol-pyruvate (PEP), from which glucogenesis as well as oxaloacetate which 2-oxoglutarate oxidation does not take place, was demon- formation branch off. Here, we present the complete metabolic cycle strated. Enzyme and labeling data indicated a conventional glu- by which the primary CO2 acceptor molecule acetyl-CoA is regener- coneogenesis, but with some enzymes unrelated to those of the ated. Oxaloacetate is reduced to succinyl-CoA by an incomplete classical pathway. -
Microbial Community Dynamics During Composting Process of Animal Manure Analyzed by Molecular Biological Methods
Microbial Community Dynamics during Composting Process of Animal Manure Analyzed by Molecular Biological Methods 著者 Yamamoto Nozomi, Asano Ryoki, Otawa Kenichi, Oishi Ryu, Yoshii Hiroki, Tada Chika, Nakai Yutaka journal or Journal of Integrated Field Science publication title volume 11 page range 27-34 year 2014-03 URL http://hdl.handle.net/10097/57385 lIFS, 11 : 27 - 34 (2014) Symposium Mini Paper (Oral Session) Microbial Community Dynamics during Composting Process of Animal Manure Analyzed by Molecular Biological Methods Nozomi Yamamoto!, RyokiAsano2, Kenichi Otawa3, Ryu Oishi3, Hiroki YoshiP, Chika Tada3 and Yutaka NakaP IGraduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Japan, 2Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, Japan, 3Graduate School of Agricultural Science, Tohoku University, Japan Keywords: 16S rRNA gene, animal manure, archaea, bacteria, cloning, compost Abstract we revealed the pattern of changes in the prokaryotic Composting is a biological process involving sta communities involved in the compo sting process. bilization of animal manure and transformation into organic fertilizer. Microorganisms such as bacteria Introduction and archaea participate in the compo sting process. Cattle manure accounts for a large part of the total Because bacteria form huge communities in compost, animal waste generated in Japan (MAFF, 2013) and they are thought to play an important role as decom can cause environmental problems such as soil con posers of organic substances. However, only few tamination, air pollution, or offensive odor emission studies are tracking bacterial communities throughout without appropriate treatment (Bernal et aI., 2008). the composting process. The role of archaeal com Composting is the most effective technique for min munities in compo sting has not been also elucidated. -
University of Oklahoma Graduate College Development of High
UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE DEVELOPMENT OF HIGH-THROUGHPUT EXPERIMENTAL AND COMPUTATIONAL TECHNOLOGIES FOR ANALYZING MICROBIAL FUNCTIONS AND INTERACTIONS IN ENVIRONMENTAL METAGENOMES A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By ZHOU SHI Norman, Oklahoma 2017 DEVELOPMENT OF HIGH-THROUGHPUT EXPERIMENTAL AND COMPUTATIONAL TECHNOLOGIES FOR ANALYZING MICROBIAL FUNCTIONS AND INTERACTIONS IN ENVIRONMENTAL METAGENOMES A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Lee Krumholz, Chair ______________________________ Dr. Meijun Zhu ______________________________ Dr. Sridhar Radhakrishnan ______________________________ Dr. Yiqi Luo ______________________________ Dr. Jizhong Zhou © Copyright by ZHOU SHI 2017 All Rights Reserved. Dedication I dedicate this dissertation to my wife, Mengting Yuan, whom I met and married during the time period of this work and whose love, faith and support is the greatest gift that I can ever imagine in my life; to my son, Andrew Shi, who is always curious, energetic and wonderful, and is my lasting source of enlightenment and true happiness; to my parents, Yiping Shi and Aiping Zeng, whose selfless love and care transcended the distance and time, and carried me whenever I need; to my aunt, Cindy Shi, whose unwavering support and encouragement instilled in me the spirit of striving for excellence; to my friend, Su Xu, who boarded on the same plane with me to the U.S. seven years ago and then has witnessed all parts of this work as my best friend, and Dian Zou, who passed away in an accident during the time period of this work and is a friend I will forever miss. -
Table S4. Phylogenetic Distribution of Bacterial and Archaea Genomes in Groups A, B, C, D, and X
Table S4. Phylogenetic distribution of bacterial and archaea genomes in groups A, B, C, D, and X. Group A a: Total number of genomes in the taxon b: Number of group A genomes in the taxon c: Percentage of group A genomes in the taxon a b c cellular organisms 5007 2974 59.4 |__ Bacteria 4769 2935 61.5 | |__ Proteobacteria 1854 1570 84.7 | | |__ Gammaproteobacteria 711 631 88.7 | | | |__ Enterobacterales 112 97 86.6 | | | | |__ Enterobacteriaceae 41 32 78.0 | | | | | |__ unclassified Enterobacteriaceae 13 7 53.8 | | | | |__ Erwiniaceae 30 28 93.3 | | | | | |__ Erwinia 10 10 100.0 | | | | | |__ Buchnera 8 8 100.0 | | | | | | |__ Buchnera aphidicola 8 8 100.0 | | | | | |__ Pantoea 8 8 100.0 | | | | |__ Yersiniaceae 14 14 100.0 | | | | | |__ Serratia 8 8 100.0 | | | | |__ Morganellaceae 13 10 76.9 | | | | |__ Pectobacteriaceae 8 8 100.0 | | | |__ Alteromonadales 94 94 100.0 | | | | |__ Alteromonadaceae 34 34 100.0 | | | | | |__ Marinobacter 12 12 100.0 | | | | |__ Shewanellaceae 17 17 100.0 | | | | | |__ Shewanella 17 17 100.0 | | | | |__ Pseudoalteromonadaceae 16 16 100.0 | | | | | |__ Pseudoalteromonas 15 15 100.0 | | | | |__ Idiomarinaceae 9 9 100.0 | | | | | |__ Idiomarina 9 9 100.0 | | | | |__ Colwelliaceae 6 6 100.0 | | | |__ Pseudomonadales 81 81 100.0 | | | | |__ Moraxellaceae 41 41 100.0 | | | | | |__ Acinetobacter 25 25 100.0 | | | | | |__ Psychrobacter 8 8 100.0 | | | | | |__ Moraxella 6 6 100.0 | | | | |__ Pseudomonadaceae 40 40 100.0 | | | | | |__ Pseudomonas 38 38 100.0 | | | |__ Oceanospirillales 73 72 98.6 | | | | |__ Oceanospirillaceae -
Cultivating the Macroalgal Holobiont: Effects of Integrated Multi-Trophic Aquaculture on the Microbiome of Ulva Rigida (Chlorophyta)
fmars-07-00052 February 10, 2020 Time: 15:0 # 1 ORIGINAL RESEARCH published: 12 February 2020 doi: 10.3389/fmars.2020.00052 Cultivating the Macroalgal Holobiont: Effects of Integrated Multi-Trophic Aquaculture on the Microbiome of Ulva rigida (Chlorophyta) Gianmaria Califano1, Michiel Kwantes1, Maria Helena Abreu2, Rodrigo Costa3,4,5 and Thomas Wichard1,6* 1 Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany, 2 ALGAplus Lda, Ílhavo, Portugal, 3 Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal, 4 Centre of Marine Sciences, University of Algarve, Faro, Portugal, 5 Lawrence Berkeley National Laboratory, U.S. Department of Energy Joint Genome Institute, University of California, Berkeley, Berkeley, CA, United States, 6 Jena School for Microbial Communication, Jena, Germany Ulva is a ubiquitous macroalgal genus of commercial interest. Integrated Multi-Trophic Aquaculture (IMTA) systems promise large-scale production of macroalgae due to Edited by: their high productivity and environmental sustainability. Complex host–microbiome Bernardo Antonio Perez Da Gama, interactions play a decisive role in macroalgal development, especially in Ulva spp. Universidade Federal Fluminense, due to algal growth- and morphogenesis-promoting factors released by associated Brazil bacteria. However, our current understanding of the microbial community assembly and Reviewed by: Alejandro H. Buschmann, structure in cultivated macroalgae is scant. We aimed to determine (i) to what extent University of Los Lagos, Chile IMTA settings influence the microbiome associated with U. rigida and its rearing water, (ii) Henrique Fragoso Santos, to explore the dynamics of beneficial microbes to algal growth and development under Universidade Federal Fluminense, Brazil IMTA settings, and (iii) to improve current knowledge of host–microbiome interactions. -
Abundance and Microbial Diversity from Surface to Deep Water Layers Over the Rio 2 Grande Rise, South Atlantic 3 4 Juliana Correa Neiva Ferreira*, Natascha M
bioRxiv preprint doi: https://doi.org/10.1101/2021.04.22.441028; this version posted April 23, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Abundance and Microbial Diversity from Surface to Deep Water Layers Over the Rio 2 Grande Rise, South Atlantic 3 4 Juliana Correa Neiva Ferreira*, Natascha M. Bergo*, Pedro M. Tura, Mateus Gustavo Chuqui, 5 Frederico P. Brandini, Luigi Jovane, Vivian H. Pellizari 6 7 Affiliations 8 Instituto Oceanográfico, Universidade de São Paulo, São Paulo, Brazil 9 10 Corresponding author 11 Correspondence to Dra Natascha Menezes Bergo, [email protected] 12 *These authors contributed equally to this work 13 14 ORCID number 15 0000-0002-5367-0257 - Juliana Correa Neiva Ferreira 16 0000-0002-8236-9412 - Natascha Menezes Bergo 17 0000-0003-2880-7028 - Pedro M. Tura 18 0000-0002-4167-0030 - Mateus Gustavo Chuqui 19 0000-0002-3177-4274 - Frederico Pereira Brandini 20 0000-0003-4348-4714 - Luigi Jovane 21 0000-0003-2757-6352 - Vivian Helena Pellizari 22 23 Highlights 24 • Rio Grande Rise pelagic microbiome 25 • Picoplankton carbon biomass partitioning through pelagic zones 26 • Unique SAR11 Clade I oligotype in the shallowest Tropical Water 27 • Higher number of shared oligotypes between deepest water masses 28 • Nitrogen, carbon and sulfur may be important contributors for the pelagic microbiome 29 30 Abstract 31 Marine microbes control the flux of matter and energy essential for life in the oceans. -
Insights Into Archaeal Evolution and Symbiosis from the Genomes of a Nanoarchaeon and Its Inferred Crenarchaeal Host from Obsidian Pool, Yellowstone National Park
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Microbiology Publications and Other Works Microbiology 4-22-2013 Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park Mircea Podar University of Tennessee - Knoxville, [email protected] Kira S. Makarova National Institutes of Health David E. Graham University of Tennessee - Knoxville, [email protected] Yuri I. Wolf National Institutes of Health Eugene V. Koonin National Institutes of Health See next page for additional authors Follow this and additional works at: https://trace.tennessee.edu/utk_micrpubs Part of the Microbiology Commons Recommended Citation Biology Direct 2013, 8:9 doi:10.1186/1745-6150-8-9 This Article is brought to you for free and open access by the Microbiology at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Microbiology Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Authors Mircea Podar, Kira S. Makarova, David E. Graham, Yuri I. Wolf, Eugene V. Koonin, and Anna-Louise Reysenbach This article is available at TRACE: Tennessee Research and Creative Exchange: https://trace.tennessee.edu/ utk_micrpubs/44 Podar et al. Biology Direct 2013, 8:9 http://www.biology-direct.com/content/8/1/9 RESEARCH Open Access Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park Mircea Podar1,2*, Kira S Makarova3, David E Graham1,2, Yuri I Wolf3, Eugene V Koonin3 and Anna-Louise Reysenbach4 Abstract Background: A single cultured marine organism, Nanoarchaeum equitans, represents the Nanoarchaeota branch of symbiotic Archaea, with a highly reduced genome and unusual features such as multiple split genes. -
Archaea and the Origin of Eukaryotes
REVIEWS Archaea and the origin of eukaryotes Laura Eme, Anja Spang, Jonathan Lombard, Courtney W. Stairs and Thijs J. G. Ettema Abstract | Woese and Fox’s 1977 paper on the discovery of the Archaea triggered a revolution in the field of evolutionary biology by showing that life was divided into not only prokaryotes and eukaryotes. Rather, they revealed that prokaryotes comprise two distinct types of organisms, the Bacteria and the Archaea. In subsequent years, molecular phylogenetic analyses indicated that eukaryotes and the Archaea represent sister groups in the tree of life. During the genomic era, it became evident that eukaryotic cells possess a mixture of archaeal and bacterial features in addition to eukaryotic-specific features. Although it has been generally accepted for some time that mitochondria descend from endosymbiotic alphaproteobacteria, the precise evolutionary relationship between eukaryotes and archaea has continued to be a subject of debate. In this Review, we outline a brief history of the changing shape of the tree of life and examine how the recent discovery of a myriad of diverse archaeal lineages has changed our understanding of the evolutionary relationships between the three domains of life and the origin of eukaryotes. Furthermore, we revisit central questions regarding the process of eukaryogenesis and discuss what can currently be inferred about the evolutionary transition from the first to the last eukaryotic common ancestor. Sister groups Two descendants that split The pioneering work by Carl Woese and colleagues In this Review, we discuss how culture- independent from the same node; the revealed that all cellular life could be divided into three genomics has transformed our understanding of descendants are each other’s major evolutionary lines (also called domains): the archaeal diversity and how this has influenced our closest relative. -
Archaeal Communities Along the Water Columns of the South China Sea
1 Characterization of particle-associated and free-living bacterial and 2 archaeal communities along the water columns of the South China Sea 3 4 Jiangtao Lia, Lingyuan Gua, Shijie Baib, Jie Wang c, Lei Sua, Bingbing Weia, Li Zhangd and Jiasong Fange,f,g * 5 6 aState Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China; 7 b Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China; 8 cCollege of Marine Science, Shanghai Ocean University, Shanghai 201306, China; 9 dSchool of Earth Sciences, China University of Geosciences, Wuhan, China; 10 eThe Shanghai Engineering Research Center of Hadal Science and Technology, Shanghai Ocean University, 11 Shanghai 201306, China; 12 fLaboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and 13 Technology, Qingdao 266237, China; 14 gDepartment of Natural Sciences, Hawaii Pacific University, Kaneohe, HI 96744, USA. 15 16 *Corresponding author: [email protected] 1 17 Abstract 18 There is a growing recognition of the role of particle-attached (PA) and free-living (FL) microorganisms in 19 marine carbon cycle. However, current understanding of PA and FL microbial communities is largely on 20 those in the upper photic zone, and relatively fewer studies have focused on microbial communities of the 21 deep ocean. Moreover, archaeal populations receive even less attention. In this study, we determined 22 bacterial and archaeal community structures of both the PA and FL assemblages at different depths, from the 23 surface to the bathypelagic zone along two water column profiles in the South China Sea. Our results suggest 24 that environmental parameters including depth, seawater age, salinity, POC, DOC, DO and silicate play a 25 role in structuring these microbial communities. -
Downloaded from Mage and Compared
bioRxiv preprint doi: https://doi.org/10.1101/527234; this version posted January 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Characterization of a thaumarchaeal symbiont that drives incomplete nitrification in the tropical sponge Ianthella basta Florian U. Moeller1, Nicole S. Webster2,3, Craig W. Herbold1, Faris Behnam1, Daryl Domman1, 5 Mads Albertsen4, Maria Mooshammer1, Stephanie Markert5,8, Dmitrij Turaev6, Dörte Becher7, Thomas Rattei6, Thomas Schweder5,8, Andreas Richter9, Margarete Watzka9, Per Halkjaer Nielsen4, and Michael Wagner1,* 1Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of Vienna, 10 Austria. 2Australian Institute of Marine Science, Townsville, Queensland, Australia. 3 Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of 15 Queensland, St Lucia, QLD, Australia 4Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark. 20 5Institute of Marine Biotechnology e.V., Greifswald, Germany 6Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science, University of Vienna, Austria. 25 7Institute of Microbiology, Microbial Proteomics, University of Greifswald, Greifswald, Germany 8Institute of Pharmacy, Pharmaceutical Biotechnology, University of Greifswald, Greifswald, Germany 9Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, 30 University of Vienna, Austria. *Corresponding author: Michael Wagner, Department of Microbiology and Ecosystem Science, Althanstrasse 14, University of Vienna, 1090 Vienna, Austria. Email: wagner@microbial- ecology.net 1 bioRxiv preprint doi: https://doi.org/10.1101/527234; this version posted January 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. -
1 Characterization of Sulfur Metabolizing Microbes in a Cold Saline Microbial Mat of the Canadian High Arctic Raven Comery Mast
Characterization of sulfur metabolizing microbes in a cold saline microbial mat of the Canadian High Arctic Raven Comery Master of Science Department of Natural Resource Sciences Unit: Microbiology McGill University, Montreal July 2015 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Master in Science © Raven Comery 2015 1 Abstract/Résumé The Gypsum Hill (GH) spring system is located on Axel Heiberg Island of the High Arctic, perennially discharging cold hypersaline water rich in sulfur compounds. Microbial mats are found adjacent to channels of the GH springs. This thesis is the first detailed analysis of the Gypsum Hill spring microbial mats and their microbial diversity. Physicochemical analyses of the water saturating the GH spring microbial mat show that in summer it is cold (9°C), hypersaline (5.6%), and contains sulfide (0-10 ppm) and thiosulfate (>50 ppm). Pyrosequencing analyses were carried out on both 16S rRNA transcripts (i.e. cDNA) and genes (i.e. DNA) to investigate the mat’s community composition, diversity, and putatively active members. In order to investigate the sulfate reducing community in detail, the sulfite reductase gene and its transcript were also sequenced. Finally, enrichment cultures for sulfate/sulfur reducing bacteria were set up and monitored for sulfide production at cold temperatures. Overall, sulfur metabolism was found to be an important component of the GH microbial mat system, particularly the active fraction, as 49% of DNA and 77% of cDNA from bacterial 16S rRNA gene libraries were classified as taxa capable of the reduction or oxidation of sulfur compounds.