Establishment of a Global Network for the in Situ Conservation of Crop Wild Relatives: Status and Needs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stripe Rust Resistance and Dough Quality of New Wheat - Dasypyrum Villosum Translocation Lines T1DL•1V#3S and T1DS•1V#3L and the Location of HMW-GS Genes
Stripe rust resistance and dough quality of new wheat - Dasypyrum villosum translocation lines T1DL•1V#3S and T1DS•1V#3L and the location of HMW-GS genes W.C. Zhao1,2, X. Gao1,2, J. Dong1,2, Z.J. Zhao1, Q.G. Chen1,2, L.G. Chen1,2, Y.G. Shi1,2 and X.Y. Li1,2 1Laboratory of Crop Quality, Department of Seed Science, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province, China 2Laboratory of Crop Quality, Department of Seed Science, Wheat Engineering Research Center of Shaanxi Province, Yangling, Shaanxi Province, China Corresponding authors: X. Gao / X.Y. Li E-mail: [email protected] / [email protected] Genet. Mol. Res. 14 (3): 8077-8083 (2015) Received November 17, 2014 Accepted April 24, 2015 Published July 17, 2015 DOI http://dx.doi.org/10.4238/2015.July.17.16 ABSTRACT. The transfer of agronomically useful genes from wild wheat species into cultivated wheat is one of the most effective approaches to improvement of wheat varieties. To evaluate the transfer of genes from Dasypyrum villosum into Triticum aestivum, wheat quality and disease resistance was evaluated in two new translocation lines, T1DL•1V#3S and T1DS•1V#3L. We examined the levels of stripe rust resistance and dough quality in the two lines, and identified and located the stripe rust resistant genes and high molecular weight glutenin subunit (HMW-GS) genes Glu-V1 of D. villosum. Compared to the Chinese Spring (CS) variety, T1DL•1V#3S plants showed moderate resistance to moderate susceptibility to the stripe rust races CYR33 and Su11-4. -
1 1 DNA Barcodes Reveal Deeply Neglected Diversity and Numerous
Page 1 of 57 1 DNA barcodes reveal deeply neglected diversity and numerous invasions of micromoths in 2 Madagascar 3 4 5 Carlos Lopez-Vaamonde1,2, Lucas Sire2, Bruno Rasmussen2, Rodolphe Rougerie3, 6 Christian Wieser4, Allaoui Ahamadi Allaoui 5, Joël Minet3, Jeremy R. deWaard6, Thibaud 7 Decaëns7, David C. Lees8 8 9 1 INRA, UR633, Zoologie Forestière, F- 45075 Orléans, France. 10 2 Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS Université de Tours, UFR 11 Sciences et Techniques, Tours, France. 12 3Institut de Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, 13 CNRS, Sorbonne Université, EPHE, 57 rue Cuvier, CP 50, 75005 Paris, France. 14 4 Landesmuseum für Kärnten, Abteilung Zoologie, Museumgasse 2, 9020 Klagenfurt, Austria 15 5 Department of Entomology, University of Antananarivo, Antananarivo 101, Madagascar 16 6 Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road E., Guelph, ON 17 N1G2W1, Canada 18 7Centre d'Ecologie Fonctionnelle et Evolutive (CEFE UMR 5175, CNRS–Université de Genome Downloaded from www.nrcresearchpress.com by UNIV GUELPH on 10/03/18 19 Montpellier–Université Paul-Valéry Montpellier–EPHE), 1919 Route de Mende, F-34293 20 Montpellier, France. 21 8Department of Life Sciences, Natural History Museum, Cromwell Road, SW7 5BD, UK. 22 23 24 Email for correspondence: [email protected] For personal use only. This Just-IN manuscript is the accepted prior to copy editing and page composition. It may differ from final official version of record. 1 Page 2 of 57 25 26 Abstract 27 Madagascar is a prime evolutionary hotspot globally, but its unique biodiversity is under threat, 28 essentially from anthropogenic disturbance. -
DNA Barcodes Reveal Deeply Neglected Diversity and Numerous Invasions of Micromoths in Madagascar
Genome DNA barcodes reveal deeply neglected diversity and numerous invasions of micromoths in Madagascar Journal: Genome Manuscript ID gen-2018-0065.R2 Manuscript Type: Article Date Submitted by the 17-Jul-2018 Author: Complete List of Authors: Lopez-Vaamonde, Carlos; Institut National de la Recherche Agronomique (INRA), ; Institut de Recherche sur la Biologie de l’Insecte (IRBI), Sire, Lucas; Institut de Recherche sur la Biologie de l’Insecte Rasmussen,Draft Bruno; Institut de Recherche sur la Biologie de l’Insecte Rougerie, Rodolphe; Institut Systématique, Evolution, Biodiversité (ISYEB), Wieser, Christian; Landesmuseum für Kärnten Ahamadi, Allaoui; University of Antananarivo, Department Entomology Minet, Joël; Institut de Systematique Evolution Biodiversite deWaard, Jeremy; Biodiversity Institute of Ontario, University of Guelph, Decaëns, Thibaud; Centre d'Ecologie Fonctionnelle et Evolutive (CEFE UMR 5175, CNRS–Université de Montpellier–Université Paul-Valéry Montpellier–EPHE), , CEFE UMR 5175 CNRS Lees, David; Natural History Museum London Keyword: Africa, invasive alien species, Lepidoptera, Malaise trap, plant pests Is the invited manuscript for consideration in a Special 7th International Barcode of Life Issue? : https://mc06.manuscriptcentral.com/genome-pubs Page 1 of 57 Genome 1 DNA barcodes reveal deeply neglected diversity and numerous invasions of micromoths in 2 Madagascar 3 4 5 Carlos Lopez-Vaamonde1,2, Lucas Sire2, Bruno Rasmussen2, Rodolphe Rougerie3, 6 Christian Wieser4, Allaoui Ahamadi Allaoui 5, Joël Minet3, Jeremy R. deWaard6, Thibaud 7 Decaëns7, David C. Lees8 8 9 1 INRA, UR633, Zoologie Forestière, F- 45075 Orléans, France. 10 2 Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS Université de Tours, UFR 11 Sciences et Techniques, Tours, France. -
Physical Mapping of Pm57, a Powdery Mildew Resistance Gene Derived from Aegilops Searsii
International Journal of Molecular Sciences Article Physical Mapping of Pm57, a Powdery Mildew Resistance Gene Derived from Aegilops searsii 1, 1, 1 1 1 1 Zhenjie Dong y, Xiubin Tian y, Chao Ma , Qing Xia , Beilin Wang , Qifan Chen , Sunish K. Sehgal 2 , Bernd Friebe 3, Huanhuan Li 1,* and Wenxuan Liu 1,* 1 National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China; [email protected] (Z.D.); [email protected] (X.T.); [email protected] (C.M.); [email protected] (Q.X.); [email protected] (B.W.); [email protected] (Q.C.) 2 Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA; [email protected] 3 Wheat Genetic and Genomic Resources Center, Department of Plant Pathology, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS 66506-5502, USA; [email protected] * Correspondence: [email protected] (H.L.); [email protected] (W.L.) These authors contributed equally to this work. y Received: 30 October 2019; Accepted: 31 December 2019; Published: 3 January 2020 Abstract: Powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt) is one of many severe diseases that threaten bread wheat (Triticum aestivum L.) yield and quality worldwide. The discovery and deployment of powdery mildew resistance genes (Pm) can prevent this disease epidemic in wheat. In a previous study, we transferred the powdery mildew resistance gene Pm57 from Aegilops searsii into common wheat and cytogenetically mapped the gene in a chromosome region with the fraction length (FL) 0.75–0.87, which represents 12% segment of the long arm of chromosome 2Ss#1. -
A World Flora Online by 2020: a Discussion Document on Plans for the Achievement of Target 1 of the Global Strategy for Plant Conservation by 2020
CBD Distr. GENERAL UNEP/CBD/SBSTTA/16/INF/38 23 April 2012 ENGLISH ONLY SUBSIDIARY BODY ON SCIENTIFIC, TECHNICAL AND TECHNOLOGICAL ADVICE Sixteenth meeting Montreal, 30 April-5 May 2012 Item 8 of the provisional agenda* GLOBAL STRATEGY FOR PLANT CONSERVATION: WORLD FLORA ONLINE BY 2020 Note by the Executive Secretary 1. In decision X/17 the Conference of the Parties adopted the consolidated update of the Global Strategy for Plant Conservation (GSPC) 2011-2020, with sixteen updated global targets for plant conservation, including Target 1 of developing, by 2020, an online Flora of all known plants. 2. This document provides a report for information to the participants of sixteenth meeting of the Subsidiary Body on Scientific, Technical and Technological Advice on steps taken to develop a ―World Flora online‖, its relevance for the implementation of the Convention and for the achievement of the other targets of the GSPC. 3. The document, prepared jointly by the Missouri Botanical Garden, the New York Botanical Garden, the Royal Botanic Garden Edinburgh, and the Royal Botanic Gardens, Kew, is presented in the form and language in which it was received by the Secretariat. * UNEP/CBD/SBSTTA/16/1. I order to minimize the environmental impacts of the Secretariat’s processes, and to contribute to the Secretary-General’s initiative for a C-Neutral UN, this document is printed in limited numbers. Delegates are kindly requested to bring their copies to meetings and not to request additional copies. UNEP/CBD/SBSTTA/16/INF/38 Page 2 A World Flora Online by 2020: a discussion document on plans for the achievement of Target 1 of the Global Strategy for Plant Conservation by 2020 Presented to the Sixteenth meeting of the Subsidiary Body on Scientific, Technical and Technological Advice of the Convention on Biological Diversity, Montreal, 30 April – 5 May 2012. -
Genetic Dissection of Azuki Bean Weevil (Callosobruchus Chinensis L.) Resistance in Moth Bean (Vigna Aconitifolia [Jaqc.] Maréchal)
G C A T T A C G G C A T genes Article Genetic Dissection of Azuki Bean Weevil (Callosobruchus chinensis L.) Resistance in Moth Bean (Vigna aconitifolia [Jaqc.] Maréchal) Prakit Somta 1,2,3,* , Achara Jomsangawong 4, Chutintorn Yundaeng 1, Xingxing Yuan 1, Jingbin Chen 1 , Norihiko Tomooka 5 and Xin Chen 1,* 1 Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; [email protected] (C.Y.); [email protected] (X.Y.); [email protected] (J.C.) 2 Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand 3 Center for Agricultural Biotechnology (AG-BIO/PEDRO-CHE), Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand 4 Program in Plant Breeding, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand; [email protected] 5 Genetic Resources Center, Gene Bank, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan; [email protected] * Correspondence: [email protected] (P.S.); [email protected] (X.C.) Received: 3 September 2018; Accepted: 12 November 2018; Published: 15 November 2018 Abstract: The azuki bean weevil (Callosobruchus chinensis L.) is an insect pest responsible for serious postharvest seed loss in leguminous crops. In this study, we performed quantitative trait locus (QTL) mapping of seed resistance to C. chinensis in moth bean (Vigna aconitifolia [Jaqc.] Maréchal). An F2 population of 188 plants developed by crossing resistant accession ‘TN67’ (wild type from India; male parent) and susceptible accession ‘IPCMO056’ (cultivated type from India; female parent) was used for mapping. -
Appendix Color Plates of Solanales Species
Appendix Color Plates of Solanales Species The first half of the color plates (Plates 1–8) shows a selection of phytochemically prominent solanaceous species, the second half (Plates 9–16) a selection of convol- vulaceous counterparts. The scientific name of the species in bold (for authorities see text and tables) may be followed (in brackets) by a frequently used though invalid synonym and/or a common name if existent. The next information refers to the habitus, origin/natural distribution, and – if applicable – cultivation. If more than one photograph is shown for a certain species there will be explanations for each of them. Finally, section numbers of the phytochemical Chapters 3–8 are given, where the respective species are discussed. The individually combined occurrence of sec- ondary metabolites from different structural classes characterizes every species. However, it has to be remembered that a small number of citations does not neces- sarily indicate a poorer secondary metabolism in a respective species compared with others; this may just be due to less studies being carried out. Solanaceae Plate 1a Anthocercis littorea (yellow tailflower): erect or rarely sprawling shrub (to 3 m); W- and SW-Australia; Sects. 3.1 / 3.4 Plate 1b, c Atropa belladonna (deadly nightshade): erect herbaceous perennial plant (to 1.5 m); Europe to central Asia (naturalized: N-USA; cultivated as a medicinal plant); b fruiting twig; c flowers, unripe (green) and ripe (black) berries; Sects. 3.1 / 3.3.2 / 3.4 / 3.5 / 6.5.2 / 7.5.1 / 7.7.2 / 7.7.4.3 Plate 1d Brugmansia versicolor (angel’s trumpet): shrub or small tree (to 5 m); tropical parts of Ecuador west of the Andes (cultivated as an ornamental in tropical and subtropical regions); Sect. -
PLANTLIFE.Ps, Page 1-21 @ Normalize
IMPORTANT ARABLE PLANT AREAS Identifying priority sites for arable plant conservation in the United Kingdom Important Arable Plant Areas BOB GIBBONS/NATURAL IMAGE BOB GIBBONS/NATURAL This fine show of Corn Marigold and Common Poppy in Dorset appeared for just one season, through lack of effective herbicide treatment. Report written by: Andrew Byfield and Phil Wilson Contents This report is a summarised version of a full paper authored by Phil Wilson (Wilson, in prep.). Summary 1 Acknowledgements A large number of people have contributed to this report, in the form of site and survey information, and in 1. Introduction 3 commenting on the Important Arable Plant Areas concept and criteria presented here. In particular we should like to thank Liz McDonnell (English Nature-RDS),Andy Jones (Countryside Council for Wales), 2.The rise and fall of arable plants 4 David Pearman (Botanical Society of the British Isles), Mark Stevenson (Defra), Simon Smart (FWAG Wiltshire), Michael Woodhouse (FWAG), Ron Porley (English Nature), Jill Sutcliffe (English Nature), Chris 3. Conserving arable plants: 8 Sydes (Scottish Natural Heritage) and Kevin Walker (Centre for Ecology & Hydrology); and Joanna Bromley, a way forward Jenny Duckworth, Nicola Hutchinson, Beth Newman, Dominic Price and Joe Sutton in the resources and UK conservation teams at Plantlife International. 4. Criteria for the selection of 10 The BSBI and Centre for Ecology and Hydrology Biological Records Centre is thanked for making available Important Arable Plant Areas the 10-km square coincidence map of rare arable plants reproduced as Map 1. 5. Initial findings 14 This report was commissioned as part of Plantlife International’s species recovery programme Back from the Brink, with generous financial support from English Nature and the Esmée Fairbairn Charitable Foundation. -
A List of Oxfordshire Rare Plants in Alphabetical Order
Oxfordshire Rare Plant Register, all species studied, in alphabetical order, 28 April 2015 National Status Oxfordshire status (not complete) Latin name English name (not vice-county) Least Concern Adiantum capillus-veneris Maidenhair Fern RPR Endangered Adonis annua Pheasant’s-eye RPR Waiting List Aethusa cynapium ssp. agrestis Fool's Parsley Not studied Waiting List Agrostemma githago Corn Cockle Introd since 1992 Least Concern Agrostis canina Velvet Bent RPR Least Concern Agrostis curtisii Bristle Bent RPR Least Concern Agrostis vinealis Brown Bent RPR Least Concern Aira caryophyllea Silver Hair-grass RPR Least Concern Aira praecox Early Hair-grass RPR Least Concern Alchemilla filicaulis Hairy Lady’s-mantle RPR Least Concern Alchemilla xanthochlora Pale Lady's-mantle Last in 1988 Least Concern Alisma lanceolatum Narrow-leaved Water-plantain RPR Least Concern Alopecurus aequalis Orange Foxtail RPR Vulnerable Anacamptis morio Green-winged Orchid RPR Data Deficient Anagallis foemina Blue Pimpernel RPR Least Concern Anagallis tenella Bog Pimpernel RPR Introduced since 1500 Anisantha madritensis Compact Brome Introduced Endangered Anthemis arvensis Corn Chamomile RPR Vulnerable Anthemis cotula Stinking Chamomile Not studied Least Concern Anthriscus caucalis Bur Chervil RPR Introduced since 1500 Apera interrupta Dense Silky-bent RPR Least Concern Apera spica-venti Loose Silky-bent RPR Least Concern Aphanes australis Slender Parsley-piert RPR Least Concern Apium graveolens Wild Celery RPR Vulnerable Apium inundatum Lesser Marshwort RPR Europe Protected Apium repens Creeping Marshwort RPR Least Concern Aquilegia vulgaris Columbine Not Scarce Near Threatened Arabis hirsuta Hairy Rock-cress RPR Introduced since 1500 Aristolochia clematitis Birthwort RPR Iconic Extinct in the Wild Arnoseris minima Lamb's Succory Last in 1971 Least Concern Artemisia absinthium Wormwood RPR Least Concern Arum italicum ssp. -
Callosobruchus Spp.) in Vigna Crops: a Review
NU Science Journal 2007; 4(1): 01 - 17 Genetics and Breeding of Resistance to Bruchids (Callosobruchus spp.) in Vigna Crops: A Review Peerasak Srinives1*, Prakit Somta1 and Chanida Somta2 1Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Parham, 73140 Thailand 2Asian Regional Center, AVRDC-The World Vegetable Center, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140 Thailand *Corresponding author. E-mail: [email protected] ABSTRACT Vigna crops include mungbean (V. radiata), blackgram (V. mungo), azuki bean (V. angularis) and cowpea (V. unguiculata) are agriculturally and economically important crops in tropical and subtropical Asia and/or Africa. Bruchid beetles, Callosobruchus chinensis (L.) and C. maculatus (F.) are the most serious insect pests of Vigna crops during storage. Use of resistant cultivars is the best way to manage the bruchids. Bruchid resistant cowpea and mungbean have been developed and comercially used, each with single resistance source. However, considering that enough time and evolutionary pressure may lead bruchids to overcome the resistance, new resistance sources are neccessary. Genetics and mechanism of the resistance should be clarified and understood to develop multiple resistance cultivars. Gene technology may be a choice to develop bruchid resistance in Vigna. In this paper we review sources, mechanism, genetics and breeding of resistance to C. chinensis and C. maculatus in Vigna crops with the emphasis on mungbean, blackgram, azuki bean and cowpea. Keywords: Bruchid resistance, Callosobruchus spp., Legumes, Vigna spp. INTRODUCTION The genus Vigna falls within the tribe Phaseoleae and family Fabaceae. Species in this taxon mainly distribute in pan-tropical Asia and Africa. Seven Vigna species are widely cultivated and known as food legume crops. -
Protected Areas and the Challenge of Conserving Crop Wild Relatives
PARKS 2012 Vol 18.1 PROTECTED AREAS AND THE CHALLENGE OF CONSERVING CROP WILD RELATIVES Danny Hunter1*, Nigel Maxted2, Vernon Heywood3, Shelagh Kell2 and Teresa Borelli1 * Corresponding author, [email protected] 1 Bioversity International, Rome, Italy 2 School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom 3 School of Biological Sciences, University of Reading, Reading RG6 6AS, United Kingdom ABSTRACT Crop wild relatives are a critical resource for sustaining future food security. It is widely recognized that many of the world’s protected areas contain CWR diversity. Despite this, it has not yet proved possible to undertake significant actions to conserve the CWR they contain. Many challenges and obstacles need to be addressed in order to improve this situation. Recent initiatives have started to address these challenges and uncovered some key lessons. Still, the need for action is urgent and the paper concludes by drawing attention to the need for a global approach to conserving priority and threatened CWR in the wild. INTRODUCTION worth noting that the same study found breeders’ use of CWR taxa was increasing year on year, even though it Crop wild relatives (CWR) - wild plant species closely was recognized that they were still far from being related to crops to which they may contribute beneficial systematically exploited. genes - constitute an enormous reservoir of genetic variation for crop improvement and are an important Some idea of the scale of benefits may be obtained from socio-economic resource. Genes from wild plants have published estimates referring to a selected number of provided crops with resistance to many pests and crops. -
Establishment of a Global Network for the in Situ Conservation of Crop Wild Relatives: Status and Needs
THEMATIC BACKGROUND STUDY Establishment of a Global Network for the In Situ Conservation of Crop Wild Relatives: Status and Needs Nigel Maxted and Shelagh Kell BACKGROUND STUDY PAPER NO. 39 October 2009 COMMISSION ON GENETIC RESOURCES FOR FOOD AND AGRICULTURE ESTABLISHMENT OF A GLOBAL NETWORK FOR THE IN SITU CONSERVATION OF CROP WILD RELATIVES: STATUS AND NEEDS by *By Nigel Maxted and Shelagh Kell The content of this document is entirely the responsibility of the authors, and does not .necessarily represent the views of the FAO, or its Members 2 * School of Biosciences, University of Birmingham. Disclaimer The content of this document is entirely the responsibility of the authors, and does not necessarily represent the views of the Food and Agriculture Organization of the United Nations (FAO), or its Members. The designations employed and the presentation of material do not imply the expression of any opinion whatsoever on the part of FAO concerning legal or development status of any country, territory, city or area or of its authorities or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed by FAO in preference to others of a similar nature that are not mentioned. CONTENTS SUMMARY 6 ACKNOWLEDGEMENTS 7 PART 1: INTRODUCTION 8 1.1 Background and scope 8 1.2 The global and local importance of crop wild relatives 10 1.3 Definition of a crop wild relative 12 1.4 Global numbers of crop