Shrubland Ecosystem Genetics and Biodiversity: Proceedings; 2000 June 13–15; Provo, Subspecific Variation Is Common
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Beetle Fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and Distribution
INSECTA MUNDI, Vol. 20, No. 3-4, September-December, 2006 165 The beetle fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and distribution Stewart B. Peck Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada stewart_peck@carleton. ca Abstract. The beetle fauna of the island of Dominica is summarized. It is presently known to contain 269 genera, and 361 species (in 42 families), of which 347 are named at a species level. Of these, 62 species are endemic to the island. The other naturally occurring species number 262, and another 23 species are of such wide distribution that they have probably been accidentally introduced and distributed, at least in part, by human activities. Undoubtedly, the actual numbers of species on Dominica are many times higher than now reported. This highlights the poor level of knowledge of the beetles of Dominica and the Lesser Antilles in general. Of the species known to occur elsewhere, the largest numbers are shared with neighboring Guadeloupe (201), and then with South America (126), Puerto Rico (113), Cuba (107), and Mexico-Central America (108). The Antillean island chain probably represents the main avenue of natural overwater dispersal via intermediate stepping-stone islands. The distributional patterns of the species shared with Dominica and elsewhere in the Caribbean suggest stages in a dynamic taxon cycle of species origin, range expansion, distribution contraction, and re-speciation. Introduction windward (eastern) side (with an average of 250 mm of rain annually). Rainfall is heavy and varies season- The islands of the West Indies are increasingly ally, with the dry season from mid-January to mid- recognized as a hotspot for species biodiversity June and the rainy season from mid-June to mid- (Myers et al. -
Chrysomelidae, Coleoptera)
THE DONACIINAE, CRIOCERINAE, CLYTRINAE, - ~ CHLAMISINAE, EUMOLPINAE, AND CHRYSOMELINAE OF OKLAHOMA (CHRYSOMELIDAE, COLEOPTERA) by JAMES HENRY SHADDY \\ Bachelor of Science Oklahoma State University Stillwater, Oklahoma Submitted to the faculty of the Graduate School of the Oklahoma State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August, 1964 I OKLAHOMA lfAT&: UNNE.RSITf . LIBRARY JAN 8 lSGS THE DONACIINAE, CRIOCERINAE, CLYTRINAE, CHLAMISINAE, EUMOLPINAE, AND CHRYSOMELINAE OF OKLAHOMA (CHRYSOMELIDAE, COLEOPTERA) Thesis Approved: 570350 ii TABLE OF CONTENTS Page INTRODUCTION ..... 1 REVIEW OF THE LITERATURE 3 SYSTEMATICS ... 4 LITERATURE CITED 45 ILLUSTRATIONS 47 INDEX • • • . 49 iii INTRODUCTION The leaf beetles form a conspicuous segment of the coleopterous fauna of Oklahoma. Because no taxonomic paper on the Chrysomelidae existed for the state, the present work with the subfamilies Donaciinae, Criocerinae, Clytrinae, Chlamisinae, Eumolpinae, and Chrysomelinae of the eleven subfamilies found in Oklahoma was inaugurated. The chrysomelids are a large family of small or medium-sized beetles. They are generally host specific and sometimes cause extensive damage to field crops and horticultural plants. However, the Donaciinae, Clytrinae, and Chlamisinae are of little economic interest. The economically important species belong to the Criocerinae, Eumolpinae, and·Chrysomelinae. The larvae and adults of these feed on the foliage of plants, except the larvae of Eumolpinae which are primarily rootfeeders. Included in this work are 29 genera contain- ing 59 species of which 54 species are known to occur in the state and five. species are likely to occur here. I wish to thank my major advisor, Dr. William A. Drew, for his encouragement, guidance and assistance, and the other committee members, Drs. -
Proceedings of the United States National Museum
: BEETLE LARVAE OF THE SUBFAMILY GALERUCINAE B}^ Adam G. Boving Senior Entoniolotjist, Bureau of Etitomology, United States Department of Agricvltwe INTRODUCTION The present pajxn- is the result of a continued investigation of the Chrysomelid hirvae in the United States National Museum, Wash- ington, D. C. Of the subfamily Galerucinae ^ belonging to this family the larvae are preserved in the Museum of the following species Monocesta coryli Say. Trirhabda canadensis Kirby. TrU'habda hrevicollis LeConte. Trirhabda nitidicollis LeConte. Trirhabda tomentosa Linnaeus. Trirhabda attenuata Say. Oalerucella nymphaeae Liiniaeus. Oalerucella lineola Fabrleius (from Euroiie). Galerucclla sagittarUu' Gylleuhal. Oalerucella luteola Miiller. Galerucclla sp. (from Nanking, China). Galcrucella vibvrni Paykull (from Europe). Oalerucella decora Say. Oalerucella notata Fabricius. Oalerucella cribrata LeConte. Monoxia puncticolUs Say. Monoxia consputa LeConte. Lochmaca capreae Linnaeus (from Europe). Qaleruca tanacett Linnaeus (from Europe). Oaleruca laticollis Sahlberg (from Europe). Oalcruca, pomonae Scopoli. Sermylassa halensls Linnaeus. Agelastica alnl Linnaeus.^ 1 The generic and specific names of tlie North American larvae are as listed in C W. Leng's " Catalogue of Coleoptera of America north of Mexico, 1920," with corrections and additions as given in the "supplement" to the catalogue published by C. W. Leng and A. J. Mutchler, 1927. The European species, not introduced into North America, are named according to the " Catalogus Coleopterorum Europae, second edition, 1906," by L. V. Heyden, E. Rcitter, and .7. Weise. 2 It will be noticed that in the enumeration above no species of Dinhrlica and Pliyllo- brotica are mentioned. The larvae of those genera were considered by tlie present author as Halticinae larvae [Boving, Adam G. -
University Morifilms International 300N.Zeeb Road Ann Arbor, Ml 48106 8305402
INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1.The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame. 3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of “sectioning” the material has been followed. It is customary to begin filming at the upper left hand comer of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again-beginning below the first row and continuing on until complete. -
Exposure of Solidago Altissima Plants to Volatile Emissions of an Insect Antagonist (Eurosta Solidaginis) Deters Subsequent Herbivory
Exposure of Solidago altissima plants to volatile emissions of an insect antagonist (Eurosta solidaginis) deters subsequent herbivory Anjel M. Helms, Consuelo M. De Moraes, John F. Tooker, and Mark C. Mescher1 Center for Chemical Ecology, Department of Entomology, The Pennsylvania State University, University Park, PA 16802 Edited by James H. Tumlinson, The Pennsylvania State University, University Park, PA, and approved November 19, 2012 (received for review October 25, 2012) Recent work indicates that plants respond to environmental odors. olfactory cues has been documented after exposure to herbivore- For example, some parasitic plants grow toward volatile cues from induced volatiles emitted either by neighboring plants (9, 10) or by their host plants, and other plants have been shown to exhibit other parts of the same plant (11, 14). The latter finding has given enhanced defense capability after exposure to volatile emissions rise to speculation that such mechanisms might have initially from herbivore-damaged neighbors. Despite such intriguing dis- evolved to overcome constraints on the within-plant transmission coveries, we currently know relatively little about the occurrence of wound signals imposed by the discontinuous architecture of and significance of plant responses to olfactory cues in natural plant vascular systems, with eavesdropping by neighboring plants systems. Here we explore the possibility that some plants may arising secondarily (11). respond to the odors of insect antagonists. We report that tall Defense priming also has been reported in response to (non- goldenrod (Solidago altissima) plants exposed to the putative sex olfactory) cues directly associated with the presence of herbivores, attractant of a closely associated herbivore, the gall-inducing fly including insect footsteps on leaves and broken trichomes (15, 16). -
Insect Egg Size and Shape Evolve with Ecology but Not Developmental Rate Samuel H
ARTICLE https://doi.org/10.1038/s41586-019-1302-4 Insect egg size and shape evolve with ecology but not developmental rate Samuel H. Church1,4*, Seth Donoughe1,3,4, Bruno A. S. de Medeiros1 & Cassandra G. Extavour1,2* Over the course of evolution, organism size has diversified markedly. Changes in size are thought to have occurred because of developmental, morphological and/or ecological pressures. To perform phylogenetic tests of the potential effects of these pressures, here we generated a dataset of more than ten thousand descriptions of insect eggs, and combined these with genetic and life-history datasets. We show that, across eight orders of magnitude of variation in egg volume, the relationship between size and shape itself evolves, such that previously predicted global patterns of scaling do not adequately explain the diversity in egg shapes. We show that egg size is not correlated with developmental rate and that, for many insects, egg size is not correlated with adult body size. Instead, we find that the evolution of parasitoidism and aquatic oviposition help to explain the diversification in the size and shape of insect eggs. Our study suggests that where eggs are laid, rather than universal allometric constants, underlies the evolution of insect egg size and shape. Size is a fundamental factor in many biological processes. The size of an 526 families and every currently described extant hexapod order24 organism may affect interactions both with other organisms and with (Fig. 1a and Supplementary Fig. 1). We combined this dataset with the environment1,2, it scales with features of morphology and physi- backbone hexapod phylogenies25,26 that we enriched to include taxa ology3, and larger animals often have higher fitness4. -
Butterflies of North America
Insects of Western North America 7. Survey of Selected Arthropod Taxa of Fort Sill, Comanche County, Oklahoma. 4. Hexapoda: Selected Coleoptera and Diptera with cumulative list of Arthropoda and additional taxa Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University, Fort Collins, CO 80523-1177 2 Insects of Western North America. 7. Survey of Selected Arthropod Taxa of Fort Sill, Comanche County, Oklahoma. 4. Hexapoda: Selected Coleoptera and Diptera with cumulative list of Arthropoda and additional taxa by Boris C. Kondratieff, Luke Myers, and Whitney S. Cranshaw C.P. Gillette Museum of Arthropod Diversity Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, Colorado 80523 August 22, 2011 Contributions of the C.P. Gillette Museum of Arthropod Diversity. Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523-1177 3 Cover Photo Credits: Whitney S. Cranshaw. Females of the blow fly Cochliomyia macellaria (Fab.) laying eggs on an animal carcass on Fort Sill, Oklahoma. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado, 80523-1177. Copyrighted 2011 4 Contents EXECUTIVE SUMMARY .............................................................................................................7 SUMMARY AND MANAGEMENT CONSIDERATIONS -
Beetles of Eoa Genus Species
BEETLES OF EOA GENUS SPECIES Acamaeodera tubulus Acanthoscealis obsoletus Acanthoscelides sp. Agonum sp. Agrilus egenus Agrilus politus Alobates pennsylvanica Amara sp. Ampedus nigricans Analeptura lineola Anisostena nigrita Anomoea laticlavia Anthaxia inornata Anthicus sp. Anthocomus ulkei ? Anthonomus suturalis Aphodius stercorosus Apion decoloratum Apion patruele Apion rostrum Arrhenodes minutus Babia quadriguttata Baliosus nervosus Bembidion fugax Berosus ordinatus Bidessonotus inconspicuus Blapstinus moestus Blepherida rhois Brachiacantha felina Brachiacantha quadripunctata Brachypnoea puncticollis Brachys ovatus Bradycellus neglectus Calligrapha bidenticola Calopteron terminale Calosoma scrutator Cantharis bilineatus Cantharis dentiger Cantharis fraxini Cantharis impressus Cantharis rectus Cantharis scitulus Canthon Hudsonias Capraita sexmaculata Capraita subvittata Cassida rubiginosa Cerotoma trifurcata Cercyon praetextatus Ceutorhynchus sp. Chaetocnema irregularis Chaetocnema pulicaria Chaetocnema sp. Charidotella sexpunctata bicolor Charidotella sexpunctata Chauliognathus marginatus Chauliognathus pennsylvanicus Chelymorpha cassidea Chlaenius aestivuus Chrysobotheris harrisi Chrysochus auratus Chrysomela interrupta Chrysomela scripta Cicindela repanda Cicindela punctulata Cicindela duodecimguttata Cicindela splendida Cicindela sexguttata Coccinella septempunctata Coleomegilla maculata lengi Colliuris pennsylvanicus Coloemegilla maculata Copris tullius Crepidodera longula Crepidodera nana Crepidodera violacea Cryptocephalus binominus -
Evidence for Plant-Mediated Competition Between Defoliating and Gall-Forming Specialists Attacking Solidago Altissima Author(S): Ellery T
Evidence For Plant-mediated Competition Between Defoliating and Gall-forming Specialists Attacking Solidago altissima Author(s): Ellery T. CunanThomas H. Q. PowellArthur E. Weis Source: The American Midland Naturalist, 173(2):208-217. Published By: University of Notre Dame DOI: http://dx.doi.org/10.1674/amid-173-02-208-217.1 URL: http://www.bioone.org/doi/full/10.1674/ amid-173-02-208-217.1 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Am. Midl. Nat. (2015) 173:208–217 Evidence For Plant-mediated Competition Between Defoliating and Gall-forming Specialists Attacking Solidago altissima ELLERY T. CUNAN Koffler Scientific Reserve at Joker’s Hill, Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario Department of Biology, McMaster University, Hamilton, Ontario THOMAS H. Q. POWELL1 Department of Entomology and Nematology, University of Florida, Gainesville AND ARTHUR E. -
Survey Report on the Leaf Beetles (Insecta: Coleoptera: Chrysomelidae) of Cove Point LNG Property and Vicinity, Calvert County, Maryland
Survey Report on the Leaf Beetles (Insecta: Coleoptera: Chrysomelidae) of Cove Point LNG Property and Vicinity, Calvert County, Maryland Prepared by Joseph F. Cavey June 2004 Survey Report on the Leaf Beetles (Insecta: Coleoptera: Chrysomelidae) of Cove Point LNG Property and Vicinity, Calvert County, Maryland Joseph F. Cavey 6207 Guthrie Court Eldersburg, Maryland 21784 Submitted June 2004 Abstract A survey was funded by the Cove Point Natural Heritage Trust to document the leaf beetles (Insecta: Coleoptera: Chrysomelidae) of the Cove Point Liquefied Natural Gas (LNG) Limited Partnership Site in Calvert County, Maryland. The survey was conducted during periods of seasonal beetle activity from March 2002 to October 2003. The survey detected 92 leaf beetle species, including two species not formerly recorded for the State of Maryland and 55 additional species new to Calvert County. The detection of the rare flea beetle, Glyptina maritima Fall, represents only the third recorded collection of this species and the only recorded collection in the past 32 years. Dichanthelium (Panicum) dichromatum (L.) Gould is reported as the larval host plant of the leaf-mining hispine beetle Glyphuroplata pluto (Newman), representing the first such association for this beetle. Introduction This manuscript summarizes work completed in a two year survey effort begun in March 2002 to document the leaf beetles (Insecta: Coleoptera: Chrysomelidae) of the Cove Point Liquefied Natural Gas (LNG) Limited Partnership Site in Calvert County, Maryland, USA. Fieldwork for this study was conducted under contract with the Cove Point Natural Heritage Trust, dated February 28, 2002. One of the largest insect families, the Chrysomelidae, or leaf beetles, contains more than 37,000 species worldwide, including some 1,700 North American species (Jolivet 1988, Riley et al. -
Chrysomela 36
CHRYSOMELA newsletter Dedicated to information about the Chrysomelidae Report No. 36 October 1998 Hanoi, VIETNAM: INSIDE THIS ISSUE 2-In Memoriam Institute of Ecology 2-Notes Up Front 3-Again, Bruchid Classification 4-Proposed Upper Classification Course 4-Green Algae & Chrysomelid Evolu- tion 5-Colombia Field Trip & Museum Tours 6-Fifth International Symposium on the Chrysomelids 6-ICE XXI Updates 7-The 1998 Mid-Atlantic States Field Trip 8-Far Eastern Entomology 10-The ICIPE WWW site 11-Literature on the Chrysomelidae 13-Book Notices 14-Literature (Available or Needed) Pierre and Siraj are hosted by our Vietnam collegues in Hanoi on his November ‘97 trip 14-Specimens(Available or Needed) to the Far East. from left: Siraj HASSAN (Phytopathologist), VU Quang Con (Director, 15-Member Directory, October ‘98 Inst. of Ecology), PHAM Van Lam (Entomologist), DANG Thi Dap (Deputy Director, Inst. of Ecology, Entomologist), and Pierre JOLIVET. (story, page 8) Research Activities and Interests Laurnet Amsellem (Bangkok, Pleurosticha; planning to revise subgen- outbreak of western corn rootworm, and Thailand) PhD student working in era Arctolina (Siberian and Arctic is interested in trying to develop an Thailand on the interactions between species), Ovosoma, Lithopteroides and identification guide or “key” that Rubus alceifolius and its associated Taeniosticha. Also finishing doctoral incorporates new world Diabrotica with pathogens: a rust and a chrysomelid... thesis, Biology of Palaearctic Donacii- the old world fauna. Anyone interested, The plant is actually a real weed in La nae (Chrysomelidae). please contact him (send an email note). Reunion Island, and in order to do Lech Borowiec (Wroclaw, Poland) Shawn M. -
Curriculum Vitae
1 Refereed publications (1978 - present): 1. Messina, F.J. 1978. Mirid fauna associated with old-field goldenrods (Solidago: Compositae) in Ithaca, N.Y. Journal of the New York Entomological Society 86: 137-143. 2. Messina, F.J. & R.B. Root. 1980. Association between leaf beetles and meadow goldenrods (Solidago spp.) in central New York. Annals of the Entomological Society of America 73: 641-646. 3. Messina, F.J. 1981. Aggregation behavior of Aplomyiopsis xylota (Diptera: Tachinidae). Journal of the New York Entomological Society 89: 197-201. 4. Messina, F.J. 1981. Plant protection as a consequence of an ant-membracid mutualism: interactions on goldenrod (Solidago sp.). Ecology 62: 1433-1440. 5. Messina, F.J. 1982. Timing of dispersal and ovarian development in goldenrod leaf beetles, Trirhabda virgata and T. borealis. Annals of the Entomological Society of America 75: 78-83. 6. Messina, F.J. 1982. Comparative biology of the goldenrod leaf beetles, Trirhabda virgata LeConte and T. borealis Blake (Coleoptera: Chrysomelidae). Coleopterists Bulletin 36: 255-269. 7. Messina, F.J. 1982. Food plant choices of two goldenrod beetles: relation to plant quality. Oecologia 55: 342-354. 8. Messina, F.J. 1983. Parasitism of two goldenrod beetles (Coleoptera: Chrysomelidae) by Aplomyiopsis xylota (Diptera: Tachinidae). Environmental Entomology 12:807-809. 9. Root, R.B. & F.J. Messina. 1983. Defensive adaptations and natural enemies of a case-bearing beetle, Exema canadensis (Coleoptera: Chrysomelidae). Psyche 90: 67-80. 10. Messina, F.J. 1983. Response of a goldenrod beetle to four seldom encountered goldenrod (Solidago) species. Journal of the New York Entomological Society 91: 269-272.