Generic Vanishing Theorem” and Its Applications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fundamental Algebraic Geometry
http://dx.doi.org/10.1090/surv/123 hematical Surveys and onographs olume 123 Fundamental Algebraic Geometry Grothendieck's FGA Explained Barbara Fantechi Lothar Gottsche Luc lllusie Steven L. Kleiman Nitin Nitsure AngeloVistoli American Mathematical Society U^VDED^ EDITORIAL COMMITTEE Jerry L. Bona Peter S. Landweber Michael G. Eastwood Michael P. Loss J. T. Stafford, Chair 2000 Mathematics Subject Classification. Primary 14-01, 14C20, 13D10, 14D15, 14K30, 18F10, 18D30. For additional information and updates on this book, visit www.ams.org/bookpages/surv-123 Library of Congress Cataloging-in-Publication Data Fundamental algebraic geometry : Grothendieck's FGA explained / Barbara Fantechi p. cm. — (Mathematical surveys and monographs, ISSN 0076-5376 ; v. 123) Includes bibliographical references and index. ISBN 0-8218-3541-6 (pbk. : acid-free paper) ISBN 0-8218-4245-5 (soft cover : acid-free paper) 1. Geometry, Algebraic. 2. Grothendieck groups. 3. Grothendieck categories. I Barbara, 1966- II. Mathematical surveys and monographs ; no. 123. QA564.F86 2005 516.3'5—dc22 2005053614 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. -
Brauer Groups of Abelian Schemes
ANNALES SCIENTIFIQUES DE L’É.N.S. RAYMOND T. HOOBLER Brauer groups of abelian schemes Annales scientifiques de l’É.N.S. 4e série, tome 5, no 1 (1972), p. 45-70 <http://www.numdam.org/item?id=ASENS_1972_4_5_1_45_0> © Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1972, tous droits réservés. L’accès aux archives de la revue « Annales scientifiques de l’É.N.S. » (http://www. elsevier.com/locate/ansens) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systé- matique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi- chier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. scienL EC. Norm. Sup., 4® serie, t. 5, 1972, p. 45 ^ 70. BRAUER GROUPS OF ABELIAN SCHEMES BY RAYMOND T. HOOBLER 0 Let A be an abelian variety over a field /c. Mumford has given a very beautiful construction of the dual abelian variety in the spirit of Grothen- dieck style algebraic geometry by using the theorem of the square, its corollaries, and cohomology theory. Since the /c-points of Pic^n is H1 (A, G^), it is natural to ask how much of this work carries over to higher cohomology groups where the computations must be made in the etale topology to render them non-trivial. Since H2 (A, Gm) is essentially a torsion group, the representability of the corresponding functor does not have as much geometric interest as for H1 (A, G^). -
Algebraic Curves and Surfaces
Notes for Curves and Surfaces Instructor: Robert Freidman Henry Liu April 25, 2017 Abstract These are my live-texed notes for the Spring 2017 offering of MATH GR8293 Algebraic Curves & Surfaces . Let me know when you find errors or typos. I'm sure there are plenty. 1 Curves on a surface 1 1.1 Topological invariants . 1 1.2 Holomorphic invariants . 2 1.3 Divisors . 3 1.4 Algebraic intersection theory . 4 1.5 Arithmetic genus . 6 1.6 Riemann{Roch formula . 7 1.7 Hodge index theorem . 7 1.8 Ample and nef divisors . 8 1.9 Ample cone and its closure . 11 1.10 Closure of the ample cone . 13 1.11 Div and Num as functors . 15 2 Birational geometry 17 2.1 Blowing up and down . 17 2.2 Numerical invariants of X~ ...................................... 18 2.3 Embedded resolutions for curves on a surface . 19 2.4 Minimal models of surfaces . 23 2.5 More general contractions . 24 2.6 Rational singularities . 26 2.7 Fundamental cycles . 28 2.8 Surface singularities . 31 2.9 Gorenstein condition for normal surface singularities . 33 3 Examples of surfaces 36 3.1 Rational ruled surfaces . 36 3.2 More general ruled surfaces . 39 3.3 Numerical invariants . 41 3.4 The invariant e(V ).......................................... 42 3.5 Ample and nef cones . 44 3.6 del Pezzo surfaces . 44 3.7 Lines on a cubic and del Pezzos . 47 3.8 Characterization of del Pezzo surfaces . 50 3.9 K3 surfaces . 51 3.10 Period map . 54 a 3.11 Elliptic surfaces . -
Abelian Varieties
Abelian Varieties J.S. Milne Version 2.0 March 16, 2008 These notes are an introduction to the theory of abelian varieties, including the arithmetic of abelian varieties and Faltings’s proof of certain finiteness theorems. The orginal version of the notes was distributed during the teaching of an advanced graduate course. Alas, the notes are still in very rough form. BibTeX information @misc{milneAV, author={Milne, James S.}, title={Abelian Varieties (v2.00)}, year={2008}, note={Available at www.jmilne.org/math/}, pages={166+vi} } v1.10 (July 27, 1998). First version on the web, 110 pages. v2.00 (March 17, 2008). Corrected, revised, and expanded; 172 pages. Available at www.jmilne.org/math/ Please send comments and corrections to me at the address on my web page. The photograph shows the Tasman Glacier, New Zealand. Copyright c 1998, 2008 J.S. Milne. Single paper copies for noncommercial personal use may be made without explicit permis- sion from the copyright holder. Contents Introduction 1 I Abelian Varieties: Geometry 7 1 Definitions; Basic Properties. 7 2 Abelian Varieties over the Complex Numbers. 10 3 Rational Maps Into Abelian Varieties . 15 4 Review of cohomology . 20 5 The Theorem of the Cube. 21 6 Abelian Varieties are Projective . 27 7 Isogenies . 32 8 The Dual Abelian Variety. 34 9 The Dual Exact Sequence. 41 10 Endomorphisms . 42 11 Polarizations and Invertible Sheaves . 53 12 The Etale Cohomology of an Abelian Variety . 54 13 Weil Pairings . 57 14 The Rosati Involution . 61 15 Geometric Finiteness Theorems . 63 16 Families of Abelian Varieties . -
MINIMAL MODEL THEORY of NUMERICAL KODAIRA DIMENSION ZERO Contents 1. Introduction 1 2. Preliminaries 3 3. Log Minimal Model Prog
MINIMAL MODEL THEORY OF NUMERICAL KODAIRA DIMENSION ZERO YOSHINORI GONGYO Abstract. We prove the existence of good minimal models of numerical Kodaira dimension 0. Contents 1. Introduction 1 2. Preliminaries 3 3. Log minimal model program with scaling 7 4. Zariski decomposition in the sense of Nakayama 9 5. Existence of minimal model in the case where º = 0 10 6. Abundance theorem in the case where º = 0 12 References 14 1. Introduction Throughout this paper, we work over C, the complex number ¯eld. We will make use of the standard notation and de¯nitions as in [KM] and [KMM]. The minimal model conjecture for smooth varieties is the following: Conjecture 1.1 (Minimal model conjecture). Let X be a smooth pro- jective variety. Then there exists a minimal model or a Mori ¯ber space of X. This conjecture is true in dimension 3 and 4 by Kawamata, Koll¶ar, Mori, Shokurov and Reid (cf. [KMM], [KM] and [Sho2]). In the case where KX is numerically equivalent to some e®ective divisor in dimen- sion 5, this conjecture is proved by Birkar (cf. [Bi1]). When X is of general type or KX is not pseudo-e®ective, Birkar, Cascini, Hacon Date: 2010/9/21, version 4.03. 2000 Mathematics Subject Classi¯cation. 14E30. Key words and phrases. minimal model, the abundance conjecture, numerical Kodaira dimension. 1 2 YOSHINORI GONGYO and McKernan prove Conjecture 1.1 for arbitrary dimension ([BCHM]). Moreover if X has maximal Albanese dimension, Conjecture 1.1 is true by [F2]. In this paper, among other things, we show Conjecture 1.1 in the case where º(KX ) = 0 (for the de¯nition of º, see De¯nition 2.6): Theorem 1.2. -
More on Gauge Theory and Geometric Langlands
More On Gauge Theory And Geometric Langlands Edward Witten School of Natural Sciences, Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540 USA Abstract: The geometric Langlands correspondence was described some years ago in terms of S-duality of = 4 super Yang-Mills theory. Some additional matters relevant N to this story are described here. The main goal is to explain directly why an A-brane of a certain simple kind can be an eigenbrane for the action of ’t Hooft operators. To set the stage, we review some facts about Higgs bundles and the Hitchin fibration. We consider only the simplest examples, in which many technical questions can be avoided. arXiv:1506.04293v3 [hep-th] 28 Jul 2017 Contents 1 Introduction 1 2 Compactification And Hitchin’s Moduli Space 2 2.1 Preliminaries 2 2.2 Hitchin’s Equations 4 2.3 MH and the Cotangent Bundle 7 2.4 The Hitchin Fibration 7 2.5 Complete Integrability 8 2.6 The Spectral Curve 10 2.6.1 Basics 10 2.6.2 Abelianization 13 2.6.3 Which Line Bundles Appear? 14 2.6.4 Relation To K-Theory 16 2.6.5 The Unitary Group 17 2.6.6 The Group P SU(N) 18 2.6.7 Spectral Covers For Other Gauge Groups 20 2.7 The Distinguished Section 20 2.7.1 The Case Of SU(N) 20 2.7.2 Section Of The Hitchin Fibration For Any G 22 3 Dual Tori And Hitchin Fibrations 22 3.1 Examples 23 3.2 The Case Of Unitary Groups 25 3.3 Topological Viewpoint 27 3.3.1 Characterization of FSU(N) 29 3.4 The Symplectic Form 30 3.4.1 Comparison To Gauge Theory 33 4 ’t Hooft Operators And Hecke Modifications 34 4.1 Eigenbranes 34 4.2 The Electric -
Moduli of K3 Surfaces and Irreducible Symplectic Manifolds
Moduli of K3 Surfaces and Irreducible Symplectic Manifolds V. Gritsenko, K. Hulek and G.K. Sankaran Abstract The name “K3 surfaces” was coined by A. Weil in 1957 when he formu- lated a research programme for these surfaces and their moduli. Since then, irreducible holomorphic symplectic manifolds have been intro- duced as a higher dimensional analogue of K3 surfaces. In this paper we present a review of this theory starting from the definition of K3 surfaces and going as far as the global Torelli theorem for irreducible holomorphic symplectic manifolds as recently proved by M. Verbitsky. For many years the last open question of Weil’s programme was that of the geometric type of the moduli spaces of polarised K3 surfaces. We explain how this problem has been solved. Our method uses algebraic geometry, modular forms and Borcherds automorphic products. We collect and discuss the relevant facts from the theory of modular forms with respect to the orthogonal group O(2,n). We also give a detailed description of quasi pull-back of automorphic Borcherds products. This part contains previously unpublished results. Contents 1 Introduction 2 2 Periods of K3 surfaces and the Torelli theorem 4 3 Irreducible symplectic manifolds 15 4 Projective models 24 arXiv:1012.4155v2 [math.AG] 26 May 2011 5 Compactifications 26 6 Modular forms and Kodaira dimension 39 7 Orthogonal groups and reflections 46 8 The quasi pull-back of modular forms 51 9 Arithmetic of root systems 59 1 1 Introduction The history of K3 surfaces goes back to classical algebraic geometry. In modern complex algebraic geometry a K3 surface is a compact complex surface S whose canonical bundle is trivial, i.e. -
Intersection Theory
APPENDIX A Intersection Theory In this appendix we will outline the generalization of intersection theory and the Riemann-Roch theorem to nonsingular projective varieties of any dimension. To motivate the discussion, let us look at the case of curves and surfaces, and then see what needs to be generalized. For a divisor D on a curve X, leaving out the contribution of Serre duality, we can write the Riemann-Roch theorem (IV, 1.3) as x(.!Z'(D)) = deg D + 1 - g, where xis the Euler characteristic (III, Ex. 5.1). On a surface, we can write the Riemann-Roch theorem (V, 1.6) as 1 x(!l'(D)) = 2 D.(D - K) + 1 + Pa· In each case, on the left-hand side we have something involving cohomol ogy groups of the sheaf !l'(D), while on the right-hand side we have some numerical data involving the divisor D, the canonical divisor K, and some invariants of the variety X. Of course the ultimate aim of a Riemann-Roch type theorem is to compute the dimension of the linear system IDI or of lnDI for large n (II, Ex. 7.6). This is achieved by combining a formula for x(!l'(D)) with some vanishing theorems for Hi(X,!l'(D)) fori > 0, such as the theorems of Serre (III, 5.2) or Kodaira (III, 7.15). We will now generalize these results so as to give an expression for x(!l'(D)) on a nonsingular projective variety X of any dimension. And while we are at it, with no extra effort we get a formula for x(t&"), where @" is any coherent locally free sheaf. -
Elliptic Spectra, the Witten Genus and the Theorem of the Cube
ELLIPTIC SPECTRA, THE WITTEN GENUS AND THE THEOREM OF THE CUBE M. ANDO, M. J. HOPKINS, AND N. P. STRICKLAND Contents 1. Introduction 2 1.1. Outline of the paper 6 2. More detailed results 7 2.1. The algebraic geometry of even periodic ring spectra 7 2.2. Constructions of elliptic spectra 9 2.3. The complex-orientable homology of BUh2ki for k ≤ 3 10 2.4. The complex-orientable homology of MUh2ki for k ≤ 3 14 2.5. The σ–orientation of an elliptic spectrum 18 2.6. The Tate curve 20 2.7. The elliptic spectrum KTate and its σ-orientation 23 2.8. Modularity 25 k 3. Calculation of C (Gb a, Gm) 26 3.1. The cases k = 0 and k = 1 26 3.2. The strategy for k = 2 and k = 3 26 3.3. The case k = 2 27 3.4. The case k = 3: statement of results 28 3.5. Additive cocycles 30 3.6. Multiplicative cocycles 32 2 b 3 b 3.7. The Weil pairing: cokernel of δ× :C (Ga, Gm) →C (Ga, Gm) 35 1 b 2 b 3.8. The map δ× :C (Ga, Gm) →C (Ga, Gm) 39 3.9. Rational multiplicative cocycles 40 4. Topological calculations 40 4.1. Ordinary cohomology 41 4.2. The isomorphism for BUh0i and BUh2i 41 4.3. The isomorphism for rational homology and all k 42 4.4. The ordinary homology of BSU 42 4.5. The ordinary homology of BUh6i 43 4.6. BSU and BUh6i for general E 46 Appendix A. -
Arxiv:2105.04352V1 [Math.AG] 10 May 2021
A NON-ARCHIMEDEAN ANALOGUE OF CAMPANA’S NOTION OF SPECIALNESS JACKSON S. MORROW AND GIOVANNI ROSSO ABSTRACT. Let K be an algebraically closed, complete, non-Archimedean valued field of charac- teristic zero, and let X be a K-analytic space (in the sense of Huber). In this work, we pursue a non-Archimedean characterization of Campana’s notion of specialness. We say X is K-analytically special if there exists a connected, finite type algebraic group G/K, a dense open subset U ⊂ Gan with codim(Gan \ U) > 2, and an analytic morphism U → X which is Zariski dense. With this definition, we prove several results which illustrate that this definition correctly captures Campana’s notion of specialness in the non-Archimedean setting. These results inspire us to make non-Archimedean counterparts to conjectures of Campana. As preparation for our proofs, we prove auxiliary results concerning the indeterminacy locus of a meromorphic mapping between K-analytic spaces, the notion of pseudo-K-analytically Brody hyperbolic, and extensions of meromorphic maps from smooth, irreducible K-analytic spaces to the analytification of a semi-abelian variety. 1. Introduction The study of rational points on varieties over number fields is one of the fundamental questions in arithmetic geometry. For curves, we have a good understanding of the behaviour of the rational points, and this behaviour is governed by the genus of the curve. If the curve has genus g 6 1, then the rational points on the curve become infinite after a finite extension of the base number field; in this case, we say the curve is arithmetically special. -
Signature Redacted Department of Physics May 3, 2018
Classification of base geometries in F-theory by Yinan Wang B. S., Peking University (2013) Submitted to the Department of Physics in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2018 Massachusetts Institute of Technology 2018. All rights reserved. A uth or ............................... Signature redacted Department of Physics May 3, 2018 Signature redacted Certified by.........................Signature red ated *ashington Taylor Professor Thesis Supervisor Signature redacted Accepted by ..................... MASSACHUSETTS INSTITUTE Scott A. Hughes Interim ssociate Department Head JUN 2 5 2018 LIBRARIES ARCHIVES 2 Classification of base geometries in F-theory by Yinan Wang Submitted to the Department of Physics on May 3, 2018, in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics Abstract F-theory is a powerful geometric framework to describe strongly coupled type JIB supcrstring theory. After we compactify F-theory on elliptically fibercd Calabi-Yau manifolds of various dimensions, we produce a large number of minimal supergravity models in six or four spacetime dimensions. In this thesis, I will describe a current classification program of these elliptic Calabi-Yau manifolds. Specifically, I will be focusing on the part of classifying complex base manifolds of these elliptic fibrations. Besides the usual algebraic geometric description of these base manifolds, F-theory provides a physical language to characterize them as well. One of the most important physical feature of the bases is called the "non-Higgsable gauge groups", which is the minimal gauge group in the low energy supergravity model for any elliptic fibration on a specific base. -
[Math.AG] 26 Jan 2003
NEF DIMENSION OF MINIMAL MODELS FLORIN AMBRO Abstract. We reduce the Abundance Conjecture in dimension 4 to the following numerical statement: if the canonical divisor K is nef and has maximal nef dimension, then K is big. From this point of view, we “classify” in dimension 2 nef divisors which have maximal nef dimension, but which are not big. 0. Introduction A minimal model is a complex projective variety X with at most ter- minal singularities, whose canonical divisor K is numerically effective (nef): K · C ≥ 0 for every curve C ⊂ X. Up to dimension three, min- imal models have a geometrical characterization (Kawamata [9, 12], Miyaoka [14, 15, 16]) : Abundance Conjecture . [11] Let X be a minimal model. Then the linear system |kK| is base point free, for some positive integer k. In dimension four, it is enough to show that X has positive Kodaira dimension if K is not numerically trivial (Kawamata [9], Mori [17]). A direct approach is to first construct the morphism associated to the expected base point free pluricanonical linear systems: 0 f : X → Proj(⊕k≥0H (X,kK)). Since K is nef, f is the unique morphism with connected fibers which contracts exactly the curves C ⊂ X with K · C = 0. Tsuji [22] and Bauer et al [2] have recently solved this existence problem birationally: arXiv:math/0301305v1 [math.AG] 26 Jan 2003 for any nef divisor D on X, there exists a rational dominant map f : X− → Y such that f is regular over the generic point of Y and a very general curve C is contracted by f if and only if D · C = 0.