Foundation of the Minimal Model Program 2014/4/16 Version 0.01

Total Page:16

File Type:pdf, Size:1020Kb

Foundation of the Minimal Model Program 2014/4/16 Version 0.01 Foundation of the minimal model program 2014/4/16 version 0.01 Osamu Fujino Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606-8502, Japan E-mail address: [email protected] 2010 Mathematics Subject Classification. Primary 14E30, 14F17; Secondary 14J05, 14E15 Abstract. We discuss various vanishing theorems. Then we es- tablish the fundamental theorems, that is, various Kodaira type vanishing theorems, the cone and contraction theorem, and so on, for quasi-log schemes. Preface This book is a completely revised version of the author's unpub- lished manuscript: • Osamu Fujino, Introduction to the minimal model program for log canonical pairs, preprint 2008. We note that the above unpublished manuscript is an expanded version of the composition of • Osamu Fujino, Vanishing and injectivity theorems for LMMP, preprint 2007 and • Osamu Fujino, Notes on the log minimal model program, preprint 2007. We also note that this book is not an introductory text book of the minimal model program. One of the main purposes of this book is to establish the funda- mental theorems, that is, various Kodaira type vanishing theorems, the cone and contraction theorem, and so on, for quasi-log schemes. The notion of quasi-log schemes was introduced by Florin Ambro in his epoch-making paper: • Florin Ambro, Quasi-log varieties, Tr. Mat. Inst. Steklova 240 (2003), 220{239. The theory of quasi-log schemes is extremely powerful. Unfortu- nately, it has not been popular yet because Ambro's paper has several difficulties. Moreover, the author's paper: • Osame Fujino, Fundamental theorems for the log minimal model program, Publ. Res. Inst. Math. Sci. 47 (2011), no. 3, 727{ 789 recovered the main result of Ambro's paper, that is, the cone and con- traction theorem for normal pairs, without using the theory of quasi-log schemes. Note that the author's approach in the above paper is suffi- cient for the fundamental theorems of the minimal model program for log canonical pairs. iii iv PREFACE Recently, the author proved that every quasi-projective semi log canonical pair has a natural quasi-log structure which is compatible with the original semi log canonical structure in • Osamu Fujino, Fundamental theorems for semi log canonical pairs, Algebraic Geometry 1 (2014), no. 2, 194{228. This result shows that the theory of quasi-log schemes is indispens- able for the study of semi log canonical pairs. Now the importance of the theory of quasi-log schemes is increasing. In this book, we will establish the foundation of quasi-log schemes. One of the author's main contributions in the above papers is to introduce the theory of mixed Hodge structures on cohomology groups with compact support to the minimal model program systematically. By pursuing this approach, we can naturally obtain a correct general- ization of the Fujita{Kawamata semipositivity theorem in • Osamu Fujino, Taro Fujisawa, Variations of mixed Hodge struc- ture and semipositivity theorems, to appear in Publ. Res. Inst. Math. Sci. This new powerful semipositivity theorem leads to the proof of the projectivity of the coarse moduli spaces of stable varieties in • Osamu Fujino, Semipositivity theorems for moduli problems, preprint 2012. Note that a stable variety is a projective semi log canonical variety with ample canonical divisor. Anyway, the theory of quasi-log schemes seems to be indispensable for the study of higher-dimensional algebraic varieties and its impor- tance is increasing now. On page 57 in • J´anosKoll´ar,Shigefumi Mori, Birational geometry of alge- braic varieties, Cambridge University Press, 1998, which is a standard text book on the minimal model program, the authors wrote: Log canonical: This is the largest class where discrep- ancy still makes sense. It contains many cases that are rather complicated from the cohomological point of view. Therefore it is very hard to work with. On page 209, they also wrote: The theory of these so-called semi-log canonical (slc for short) pairs is not very much different from the lc case but it needs some foundational work. PREFACE v By the author's series of papers including this book, we greatly improve the situation around log canonical pairs and semi log canonical pairs from the cohomological point of view. Acknowledgments. The author would like to thank Professors Shigefumi Mori, Yoichi Miyaoka, Noboru Nakayama, Daisuke Mat- sushita, and Hiraku Kawanoue, who were the members of the seminars when he was a graduate student at RIMS, Kyoto. In the seminars at RIMS in 1997, he learned the foundation of the minimal model program by reading a draft of [KoMo]. He thanks Professors Takao Fujita, Noboru Nakayama, Hiromichi Takagi, Florin Ambro, Hiroshi Sato, Takeshi Abe, Masayuki Kawakita, Yoshinori Gongyo, Yoshinori Namikawa, and Hiromu Tanaka for discussions, comments, and ques- tions. He also would like to thank Professor J´anosKoll´arfor giving him many comments on the preliminary version of this book and showing him many examples. Finally, the author thanks Professors Shigefumi Mori, Shigeyuki Kondo, Takeshi Abe, and Yukari Ito for warm encour- agement during the preparation of this book. The author was partially supported by the Grant-in-Aid for Young Scientists (A) ]20684001 and ]24684002 from JSPS. April 16, 2014 Osamu Fujino Contents Preface iii Guide for the reader xi Chapter 1. Introduction 1 1.1. Mori's cone and contraction theorem 1 1.2. What is a quasi-log scheme? 3 1.3. Motivation 5 1.4. Background 10 1.5. Comparison with the unpublished manuscript 11 1.6. Related papers 12 1.7. Notation and convention 13 Chapter 2. Preliminaries 15 2.1. Divisors, Q-divisors, and R-divisors 15 2.2. Kleiman{Mori cone 22 2.3. Singularities of pairs 24 2.4. Iitaka dimension, movable and pseudo-effective divisors 36 Chapter 3. Classical vanishing theorems and some applications 41 3.1. Kodaira vanishing theorem 42 3.2. Kawamata{Viehweg vanishing theorem 48 3.3. Viehweg vanishing theorem 55 3.4. Nadel vanishing theorem 60 3.5. Miyaoka vanishing theorem 61 3.6. Koll´arinjectivity theorem 63 3.7. Enoki injectivity theorem 64 3.8. Fujita vanishing theorem 68 3.9. Applications of Fujita vanishing theorem 76 3.10. Tanaka vanishing theorems 79 3.11. Ambro vanishing theorem 80 3.12. Kov´acs'scharacterization of rational singularities 82 3.13. Basic properties of dlt pairs 84 3.14. Elkik{Fujita vanishing theorem 91 3.15. Method of two spectral sequences 95 vii viii CONTENTS 3.16. Toward new vanishing theorems 98 Chapter 4. Minimal model program 103 4.1. Fundamental theorems for klt pairs 103 4.2. X-method 105 4.3. MMP for Q-factorial dlt pairs 107 4.4. BCHM and some related results 112 4.5. Fundamental theorems for normal pairs 120 4.6. Lengths of extremal rays 126 4.7. Shokurov polytope 130 4.8. MMP for lc pairs 137 4.9. Non-Q-factorial MMP 145 4.10. MMP for log surfaces 148 4.11. On semi log canonical pairs 153 Chapter 5. Injectivity and vanishing theorems 157 5.1. Main results 157 5.2. Simple normal crossing pairs 160 5.3. Du Bois complexes and Du Bois pairs 165 5.4. Hodge theoretic injectivity theorems 169 5.5. Relative Hodge theoretic injectivity theorem 174 5.6. Injectivity, vanishing, and torsion-free theorems 176 5.7. Vanishing theorems of Reid{Fukuda type 182 5.8. From SNC pairs to NC pairs 188 5.9. Examples 193 Chapter 6. Fundamental theorems for quasi-log schemes 201 6.1. Overview 201 6.2. On quasi-log schemes 203 6.3. Basic properties of quasi-log schemes 206 6.4. On quasi-log structures of normal pairs 215 6.5. Basepoint-free theorem for quasi-log schemes 217 6.6. Rationality theorem for quasi-log schemes 221 6.7. Cone theorem for quasi-log schemes 226 6.8. On quasi-log Fano schemes 232 6.9. Basepoint-free theorem of Reid{Fukuda type 233 Chapter 7. Some supplementary topics 239 7.1. Alexeev's criterion for S3 condition 239 7.2. Cone singularities 247 7.3. Francia's flip revisited 251 7.4. A sample computation of a log flip 253 7.5. A non-Q-factorial flip 256 CONTENTS ix Bibliography 259 Index 271 Guide for the reader In Chapter 1, we start with Mori's cone theorem for smooth pro- jective varieties and his contraction theorem for smooth threefolds. It is one of the starting points of the minimal model program. So the minimal model program is sometimes called Mori's program. We also explain some examples of quasi-log schemes, the motivation of our van- ishing theorems, the background of this book, the author's related pa- pers, and so on, for the reader's convenience. Chapter 2 collects several definitions and preliminary results. Almost all the topics in this chap- ter are well known to the experts and are indispensable for the study of the minimal model program. We recommend the reader to be familiar with them. In Chapter 3, we discuss various Kodaira type vanishing theorems and several applications. Although this chapter contains sev- eral new results and arguments, almost all the results are standard and are known to the experts. Chapter 4 is a survey on the minimal model program. We discuss the basic results of the minimal model program, the recent results by Birkar{Cascini{Hacon{McKernan, and various results on log canonical pairs, log surfaces, semi log canonical pairs by the author, and so on, without proof. Chapter 5 is devoted to the injectivity, vanishing, and torsion-free theorems for reducible vari- eties. They are generalizations of Koll´ar'scorresponding results from the mixed Hodge theoretic viewpoint and play crucial roles in the the- ory of quasi-log schemes.
Recommended publications
  • Introduction
    SEMINAR WS 16/17 BERKOVICH SPACES, BIRATIONAL GEOMETRY AND MOTIVIC ZETA FUNCTIONS Talk II on Birational geometry and MMP Efstathia Katsigianni 10.11.2016 Introduction The goal of this talk is to present the notions that have to do with the Minimal model Program and will be used in the course of the seminar, as well as the main theorems of this area. For this we rely entirely on the references listed in the end. Given a projective variety X defined over an algebraically closed field k, one could try to find another projective variety birationally isomorphic to X which is the simplest possible. We define on the set CX of all (isomorphism classes of) projective varieties birationally isomorphic to X a relation as fol- lows: if X0, X1 are in CX , we write X0 < X1, whenever there is a birational morphism X0 ! X1. This defines an ordering on CX and we look for minimal elements in CX or for the smallest element of it. For example, each irreducible curve is birational to a unique smooth pro- jective curve, thus the investigation of smooth projective curves is equivalent to the study of all curves up to birational equivalence. When X is a smooth surface, it has a smooth minimal model obtained by contracting all exceptional curves on it. If X is not uniruled, this minimal model has nef canonical divisor and is the smallest element in cX. When X is uniruled, this minimal model is not unique. Smooth projective varieties with nef canonical bundles are minimal in the above sense: Proposition.
    [Show full text]
  • MMP) Is One of the Cornerstones in the Clas- Sification Theory of Complex Projective Varieties
    MINIMAL MODELS FOR KÄHLER THREEFOLDS ANDREAS HÖRING AND THOMAS PETERNELL Abstract. Let X be a compact Kähler threefold that is not uniruled. We prove that X has a minimal model. 1. Introduction The minimal model program (MMP) is one of the cornerstones in the clas- sification theory of complex projective varieties. It is fully developed only in dimension 3, despite tremendous recent progress in higher dimensions, in particular by [BCHM10]. In the analytic Kähler situation the basic methods from the MMP, such as the base point free theorem, fail. Nevertheless it seems reasonable to expect that the main results should be true also in this more general context. The goal of this paper is to establish the minimal model program for Kähler threefolds X whose canonical bundle KX is pseudoeffective. To be more specific, we prove the following result: 1.1. Theorem. Let X be a normal Q-factorial compact Kähler threefold with at most terminal singularities. Suppose that KX is pseudoeffective or, equivalently, that X is not uniruled. Then X has a minimal model, i.e. there exists a MMP X 99K X′ such that KX′ is nef. In our context a complex space is said to be Q-factorial if every Weil ⊗m ∗∗ divisor is Q-Cartier and a multiple (KX ) of the canonical sheaf KX is locally free. If X is a projective threefold, Theorem 1.1 was estab- lished by the seminal work of Kawamata, Kollár, Mori, Reid and Shokurov [Mor79, Mor82, Rei83, Kaw84a, Kaw84b, Kol84, Sho85, Mor88, KM92]. Based on the deformation theory of rational curves on smooth threefolds [Kol91b, Kol96], Campana and the second-named author started to inves- tigate the existence of Mori contractions [CP97, Pet98, Pet01].
    [Show full text]
  • MINIMAL MODEL THEORY of NUMERICAL KODAIRA DIMENSION ZERO Contents 1. Introduction 1 2. Preliminaries 3 3. Log Minimal Model Prog
    MINIMAL MODEL THEORY OF NUMERICAL KODAIRA DIMENSION ZERO YOSHINORI GONGYO Abstract. We prove the existence of good minimal models of numerical Kodaira dimension 0. Contents 1. Introduction 1 2. Preliminaries 3 3. Log minimal model program with scaling 7 4. Zariski decomposition in the sense of Nakayama 9 5. Existence of minimal model in the case where º = 0 10 6. Abundance theorem in the case where º = 0 12 References 14 1. Introduction Throughout this paper, we work over C, the complex number ¯eld. We will make use of the standard notation and de¯nitions as in [KM] and [KMM]. The minimal model conjecture for smooth varieties is the following: Conjecture 1.1 (Minimal model conjecture). Let X be a smooth pro- jective variety. Then there exists a minimal model or a Mori ¯ber space of X. This conjecture is true in dimension 3 and 4 by Kawamata, Koll¶ar, Mori, Shokurov and Reid (cf. [KMM], [KM] and [Sho2]). In the case where KX is numerically equivalent to some e®ective divisor in dimen- sion 5, this conjecture is proved by Birkar (cf. [Bi1]). When X is of general type or KX is not pseudo-e®ective, Birkar, Cascini, Hacon Date: 2010/9/21, version 4.03. 2000 Mathematics Subject Classi¯cation. 14E30. Key words and phrases. minimal model, the abundance conjecture, numerical Kodaira dimension. 1 2 YOSHINORI GONGYO and McKernan prove Conjecture 1.1 for arbitrary dimension ([BCHM]). Moreover if X has maximal Albanese dimension, Conjecture 1.1 is true by [F2]. In this paper, among other things, we show Conjecture 1.1 in the case where º(KX ) = 0 (for the de¯nition of º, see De¯nition 2.6): Theorem 1.2.
    [Show full text]
  • The Minimal Model Program for B-Log Canonical Divisors and Applications
    THE MINIMAL MODEL PROGRAM FOR B-LOG CANONICAL DIVISORS AND APPLICATIONS DANIEL CHAN, KENNETH CHAN, LOUIS DE THANHOFFER DE VOLCSEY,¨ COLIN INGALLS, KELLY JABBUSCH, SANDOR´ J KOVACS,´ RAJESH KULKARNI, BORIS LERNER, BASIL NANAYAKKARA, SHINNOSUKE OKAWA, AND MICHEL VAN DEN BERGH Abstract. We discuss the minimal model program for b-log varieties, which is a pair of a variety and a b-divisor, as a natural generalization of the minimal model program for ordinary log varieties. We show that the main theorems of the log MMP work in the setting of the b-log MMP. If we assume that the log MMP terminates, then so does the b- log MMP. Furthermore, the b-log MMP includes both the log MMP and the equivariant MMP as special cases. There are various interesting b-log varieties arising from different objects, including the Brauer pairs, or “non-commutative algebraic varieties which are finite over their centres”. The case of toric Brauer pairs is discussed in further detail. Contents 1. Introduction 1 2. Minimal model theory with boundary b-divisors 4 2.A. Recap on b-divisors 4 2.B. b-discrepancy 8 3. The Minimal Model Program for b-log varieties 11 3.A. Fundamental theorems for b-log varieties 13 4. Toroidal b-log varieties 15 4.A. Snc stratifications 15 4.B. Toric b-log varieties 17 4.C. Toroidal b-log varieties 19 5. Toric Brauer Classes 21 References 24 1. Introduction arXiv:1707.00834v2 [math.AG] 5 Jul 2017 Let k be an algebraically closed field of characteristic zero. Let K be a field, finitely generated over k.
    [Show full text]
  • Effective Bounds for the Number of MMP-Series of a Smooth Threefold
    EFFECTIVE BOUNDS FOR THE NUMBER OF MMP-SERIES OF A SMOOTH THREEFOLD DILETTA MARTINELLI Abstract. We prove that the number of MMP-series of a smooth projective threefold of positive Kodaira dimension and of Picard number equal to three is at most two. 1. Introduction Establishing the existence of minimal models is one of the first steps towards the birational classification of smooth projective varieties. More- over, starting from dimension three, minimal models are known to be non-unique, leading to some natural questions such as: does a variety admit a finite number of minimal models? And if yes, can we fix some parameters to bound this number? We have to be specific in defining what we mean with minimal mod- els and how we count their number. A marked minimal model of a variety X is a pair (Y,φ), where φ: X 99K Y is a birational map and Y is a minimal model. The number of marked minimal models, up to isomorphism, for a variety of general type is finite [BCHM10, KM87]. When X is not of general type, this is no longer true, [Rei83, Example 6.8]. It is, however, conjectured that the number of minimal models up to isomorphism is always finite and the conjecture is known in the case of threefolds of positive Kodaira dimension [Kaw97]. In [MST16] it is proved that it is possible to bound the number of marked minimal models of a smooth variety of general type in terms of the canonical volume. Moreover, in dimension three Cascini and Tasin [CT18] bounded the volume using the Betti numbers.
    [Show full text]
  • AN INTRODUCTION to MORI THEORY: the CASE of SURFACES Contents Introduction 1 Part 1. Preliminaries 2 1.1. Basic Notation 3 1.2
    AN INTRODUCTION TO MORI THEORY: THE CASE OF SURFACES MARCO ANDREATTA Contents Introduction 1 Part 1. Preliminaries 2 1.1. Basic notation 3 1.2. Morphisms associated to line bundles; ample line bundles 4 1.3. Riemann - Roch and Hodge Index theorems 5 Part 2. Mori theory for surfaces 6 2.1. Mori-Kleiman cone 6 2.2. Examples 9 2.3. The rationality lemma and the cone theorem 11 2.4. Castelnuovo contraction theorem 16 2.5. Base point freeness, BPF 16 2.6. Minimal model program for surfaces 20 Part 3. Birational theory for surfaces 22 3.1. Castelnuovo rationality criterium 22 3.2. Factorization of birational morphisms 23 3.3. Singularities and log singularities. 25 3.4. Castelnuovo-Noether theorem and some definitions in the Sarkisov program 26 References 32 Introduction One of the main results of last decades algebraic geometry was the foun- dation of Mori theory or Minimal Model Program, for short MMP, and its proof in dimension three. Minimal Model Theory shed a new light on what 1991 Mathematics Subject Classification. Primary 14E30, 14J40 ; Secondary 14J30, 32H02. Key words and phrases. Fano Mori spaces, contractions, base point freeness, sub- adjunction, extremal ray. 1 2 MARCO ANDREATTA is nowadays called higher dimensional geometry. In mathematics high num- bers are really a matter of circumstances and here we mean greater than or equal to 3. The impact of MMP has been felt in almost all areas of algebraic geometry. In particular the philosophy and some of the main new objects like extremal rays, Fano-Mori contractions or spaces and log varieties started to play around and give fruitful answer to different problems.
    [Show full text]
  • Algebraic Surfaces and Hyperbolic Geometry
    Current Developments in Algebraic Geometry MSRI Publications Volume 59, 2011 Algebraic surfaces and hyperbolic geometry BURT TOTARO We describe the Kawamata–Morrison cone conjecture on the structure of Calabi–Yau varieties and more generally klt Calabi–Yau pairs. The conjecture is true in dimension 2. We also show that the automorphism group of a K3 surface need not be commensurable with an arithmetic group, which answers a question by Mazur. 1. Introduction Many properties of a projective algebraic variety can be encoded by convex cones, such as the ample cone and the cone of curves. This is especially useful when these cones have only finitely many edges, as happens for Fano varieties. For a broader class of varieties which includes Calabi–Yau varieties and many rationally connected varieties, the Kawamata–Morrison cone conjecture predicts the structure of these cones. I like to think of this conjecture as what comes after the abundance conjecture. Roughly speaking, the cone theorem of Mori, Kawamata, Shokurov, Kollár, and Reid describes the structure of the curves on a projective variety X on which the canonical bundle K X has negative degree; the abundance conjecture would give strong information about the curves on which K X has degree zero; and the cone conjecture fully describes the structure of the curves on which K X has degree zero. We give a gentle summary of the proof of the cone conjecture for algebraic surfaces, with plenty of examples [Totaro 2010]. For algebraic surfaces, these cones are naturally described using hyperbolic geometry, and the proof can also be formulated in those terms.
    [Show full text]
  • Arxiv:1905.05576V3 [Math.AG] 14 Apr 2020 Oti Okadterfrefrvlal Comments
    ON THE EXISTENCE OF MINIMAL MODELS FOR LOG CANONICAL PAIRS VLADIMIR LAZIC´ AND NIKOLAOS TSAKANIKAS Abstract. We show that minimal models of log canonical pairs exist, assuming the existence of minimal models of smooth varieties. Contents 1. Introduction 1 2. Preliminaries 4 3. On weak Zariski decompositions 16 4. Proofs of the main results 22 References 24 1. Introduction The goal of this paper is to reduce the problem of the existence of minimal models for log canonical pairs to the problem of the existence of minimal models for smooth varieties. The following is our main result. Theorem A. The existence of minimal models for smooth varieties of di- mension n implies the existence of minimal models for log canonical pairs of dimension n. Note that minimal models in the above theorem are relative minimal mo- dels, that is, minimal models of quasi-projective varieties or pairs which are arXiv:1905.05576v3 [math.AG] 14 Apr 2020 projective and whose canonical class is pseudoeffective over another normal quasi-projective variety. In this paper, minimal models are meant in the usual sense and not in the sense of Birkar-Shokurov; for the differences, see §2.2. We were supported by the DFG-Emmy-Noether-Nachwuchsgruppe “Gute Strukturen in der h¨oherdimensionalen birationalen Geometrie”. We would like to thank O. Fujino for pointing out a gap in a previous proof of Theorem 2.22 and for useful comments, S. Filipazzi, Y. Gongyo, J. Han, W. Liu, F. Meng and J. Moraga for useful discussions related to this work and the referee for valuable comments.
    [Show full text]
  • Arxiv:2105.04352V1 [Math.AG] 10 May 2021
    A NON-ARCHIMEDEAN ANALOGUE OF CAMPANA’S NOTION OF SPECIALNESS JACKSON S. MORROW AND GIOVANNI ROSSO ABSTRACT. Let K be an algebraically closed, complete, non-Archimedean valued field of charac- teristic zero, and let X be a K-analytic space (in the sense of Huber). In this work, we pursue a non-Archimedean characterization of Campana’s notion of specialness. We say X is K-analytically special if there exists a connected, finite type algebraic group G/K, a dense open subset U ⊂ Gan with codim(Gan \ U) > 2, and an analytic morphism U → X which is Zariski dense. With this definition, we prove several results which illustrate that this definition correctly captures Campana’s notion of specialness in the non-Archimedean setting. These results inspire us to make non-Archimedean counterparts to conjectures of Campana. As preparation for our proofs, we prove auxiliary results concerning the indeterminacy locus of a meromorphic mapping between K-analytic spaces, the notion of pseudo-K-analytically Brody hyperbolic, and extensions of meromorphic maps from smooth, irreducible K-analytic spaces to the analytification of a semi-abelian variety. 1. Introduction The study of rational points on varieties over number fields is one of the fundamental questions in arithmetic geometry. For curves, we have a good understanding of the behaviour of the rational points, and this behaviour is governed by the genus of the curve. If the curve has genus g 6 1, then the rational points on the curve become infinite after a finite extension of the base number field; in this case, we say the curve is arithmetically special.
    [Show full text]
  • Birational Positivity in Dimension 4 Tome 64, No 1 (2014), P
    R AN IE N R A U L E O S F D T E U L T I ’ I T N S ANNALES DE L’INSTITUT FOURIER Behrouz TAJI Birational positivity in dimension 4 Tome 64, no 1 (2014), p. 203-216. <http://aif.cedram.org/item?id=AIF_2014__64_1_203_0> © Association des Annales de l’institut Fourier, 2014, tous droits réservés. L’accès aux articles de la revue « Annales de l’institut Fourier » (http://aif.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://aif.cedram.org/legal/). Toute re- production en tout ou partie de cet article sous quelque forme que ce soit pour tout usage autre que l’utilisation à fin strictement per- sonnelle du copiste est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/ Ann. Inst. Fourier, Grenoble 64, 1 (2014) 203-216 BIRATIONAL POSITIVITY IN DIMENSION 4 by Behrouz TAJI With an appendix by Frédéric CAMPANA Abstract. — In this paper we prove that for a nonsingular projective variety of dimension at most 4 and with non-negative Kodaira dimension, the Kodaira dimension of coherent subsheaves of Ωp is bounded from above by the Kodaira dimension of the variety. This implies the finiteness of the fundamental group for such an X provided that X has vanishing Kodaira dimension and non-trivial holomorphic Euler characteristic. Résumé. — Dans cet article, nous montrons que pour une variété projective lisse, X, de dimension au plus 4 et de dimension de Kodaira non négative, la dimen- sion de Kodaira des sous-faisceaux cohérents de Ωp est majorée par la dimension de Kodaira de X.
    [Show full text]
  • Higher Dimensional Algebraic Geometry (In Honour of Professor Yujiro Kawamata's Sixtieth Birthday)
    Higher Dimensional Algebraic Geometry (in honour of Professor Yujiro Kawamata's sixtieth birthday) Date : January 7-11, 2013 Venue : Auditorium, Graduate School of Mathematical Sciences, the University of Tokyo Title and Abstract : 1) Arnaud Beauville Title: The L¥"uroth problem Abstract: The L¥"uroth problem asks whether every field $K$ with $¥mathbb{C}¥subset K ¥subset ¥mathbb{C}(x_1,¥ldots ,x_n)$ is of the form $¥mathbb{C}(y_1,¥ldots ,y_p)$. In geometric terms, if an algebraic variety can be parametrized by rational functions, can one find a one-to-one such parametrization? After a brief historical survey, I will recall the counter-examples found in the 70's; then I will describe a quite simple (and new) counter-example. If time permits I will explain the relation with the study of finite simple groups of birational automorphisms of $¥mathbb{P}^3$. 2) Caucher Birkar Title: Singularities in Fano type fibrations. Abstract: I will discuss singularities that appear on the base of a Fano type fibration, and mention the conjectures relevant to this problem. I will try to explain my results in this direction assuming boundednessof the log general fibres of the fibration. 1 / 8 3) Fabrizio Catanese Title: (Some) Topological and transcendental methods in classification and moduli theory Abstract: The structure of the moduli spaces of surfaces and higher dimensional varieties is usually rather difficult to get hold of. Sometimes there are lucky situations, like the description of varieties whose universal cover is a polydisk or a symmetric bounded domain (joint work with Di Scala). Some other times the homotopy type of an algebraic variety may determine the structure of the moduli spaces, as for curves, Abelian varieties, Kodaira surfaces, varieties isogenous to a product, Beauville surfaces.
    [Show full text]
  • ON the EXISTENCE of FLIPS 1. Introduction the Main Result of This Paper Is: Theorem 1.1. Assume the Real MMP in Dimension
    ON THE EXISTENCE OF FLIPS CHRISTOPHER D. HACON AND JAMES MCKERNAN Abstract. Using the techniques of [17], [7], [13] and [15], we prove that flips exist in dimension n, if one assumes the termination of real flips in dimension n − 1. 1. Introduction The main result of this paper is: Theorem 1.1. Assume the real MMP in dimension n − 1. Then flips exist in dimension n. Here are two consequences of this result: Corollary 1.2. Assume termination of real flips in dimension n − 1 and termination of flips in dimension n. Then the MMP exists in dimension n. As Shokurov has proved, [14], the termination of real flips in di- mension three, we get a new proof of the following result of Shokurov [15]: Corollary 1.3. Flips exist in dimension four. Given a proper variety, it is natural to search for a good birational model. An obvious, albeit hard, first step is to pick a smooth projective model. Unfortunately there are far too many such models; indeed given any such, we can construct infinitely many more, simply by virtue of successively blowing up smooth subvarieties. To construct a unique model, or at least cut down the examples to a manageable number, we have to impose some sort of minimality on the birational model. The choice of such a model depends on the global geometry of X. One possibility is that we can find a model on which the canonical di- visor KX is nef, so that its intersection with any curve is non-negative. Date: December 31, 2005.
    [Show full text]