Algebraic Curves and Surfaces

Total Page:16

File Type:pdf, Size:1020Kb

Algebraic Curves and Surfaces Notes for Curves and Surfaces Instructor: Robert Freidman Henry Liu April 25, 2017 Abstract These are my live-texed notes for the Spring 2017 offering of MATH GR8293 Algebraic Curves & Surfaces . Let me know when you find errors or typos. I'm sure there are plenty. 1 Curves on a surface 1 1.1 Topological invariants . 1 1.2 Holomorphic invariants . 2 1.3 Divisors . 3 1.4 Algebraic intersection theory . 4 1.5 Arithmetic genus . 6 1.6 Riemann{Roch formula . 7 1.7 Hodge index theorem . 7 1.8 Ample and nef divisors . 8 1.9 Ample cone and its closure . 11 1.10 Closure of the ample cone . 13 1.11 Div and Num as functors . 15 2 Birational geometry 17 2.1 Blowing up and down . 17 2.2 Numerical invariants of X~ ...................................... 18 2.3 Embedded resolutions for curves on a surface . 19 2.4 Minimal models of surfaces . 23 2.5 More general contractions . 24 2.6 Rational singularities . 26 2.7 Fundamental cycles . 28 2.8 Surface singularities . 31 2.9 Gorenstein condition for normal surface singularities . 33 3 Examples of surfaces 36 3.1 Rational ruled surfaces . 36 3.2 More general ruled surfaces . 39 3.3 Numerical invariants . 41 3.4 The invariant e(V ).......................................... 42 3.5 Ample and nef cones . 44 3.6 del Pezzo surfaces . 44 3.7 Lines on a cubic and del Pezzos . 47 3.8 Characterization of del Pezzo surfaces . 50 3.9 K3 surfaces . 51 3.10 Period map . 54 a 3.11 Elliptic surfaces . 56 b Chapter 1 Curves on a surface A surface for us will be smooth, projective, and connected (over C). Equivalently, it is a connected compact complex 2-fold. 1.1 Topological invariants Definition 1.1.1. There are two main topological invariants: 1. the Betti numbers bi(X) := rank Hi(X); ∼ 2. the intersection pairing H2(X; Z) ⊗ H2(X; Z) ! Z = H4(X; Z). ∼ 2 Remark. By Poincar´eduality, bi(X) = b4−i(X) and H2(X; Z) = H (X; Z), and the intersection pairing is just the cup product under this identification. Definition 1.1.2. Let H¯ 2(X; Z) := H2(X; Z)=tors. This is sensible because the torsion dies in the intersec- tion pairing, which induces a pairing H¯ 2 ⊗ H¯ 2 ! Z. Definition 1.1.3. A lattice is a free finite rank Z-module Λ together with a symmetric bilinear map (·; ·):Λ ⊗Z Λ ! Z. It is: 1. non-degenerate if Λ ! Λ_ is injective; 2. uni-modular if Λ ! Λ_ is an isomorphism. If we pick a Z-basis fα1; : : : ; αng of Λ to get the intersection matrix Aij := (αi; αj), then 1. Λ is non-degenerate iff det A 6= 0, and 2. Λ is uni-modular iff det A = ±1. Write α2 := (α; α). We say Λ is 1. type I or odd if there exists α 2 Λ such that α2 ≡ 1 mod 2, and 2. type II or even otherwise, i.e. α2 ≡ 0 mod 2 for all α 2 Λ. Accordingly, one speaks of the type or parity of the lattice. When Λ is non-degenerate, it has signature (r; s) if when A is diagonalized over R, there are r positive eigenvalues and s negative eigenvalues. Theorem 1.1.4. An indefinite unimodular lattice is characterized up to isometry by its type and signature. 1 Example 1.1.5. Clearly H¯ 2 is a free finite rank Z-module, and, equipped with the intersection pairing, is a lattice. By Poincar´eduality it is unimodular. To determine its type we use the Wu formula 2 α ≡ α · c1(X) mod 2 where c1(X) := −c1(KX ), the top Chern class of the canonical bundle. Hence 2 H¯ is of type II () c1(X) is divisible by 2: ± Let b2 (X) denote the number of positive and negative eigenvalues when the intersection pairing is diagonal- + − ized over R, so that (b2 (X); b2 (X)) is the signature. Then ¯ 2 − + H is indefinite () b2 (X) = 0 () b2(X) = b2 (X): This almost never happens. − Example 1.1.6. For smooth projective surfaces, b2 = 0 iff b2(X) = 1. In this case, b1(X) = 0, so X has the same Betti numbers as P2. Now, it does not have to be the case that X = P2, but there are only a finite number of such surfaces, and their universal covers are the unit ball in C2. 1.2 Holomorphic invariants 1 0;1 Definition 1.2.1. The most basic holomorphic invariant is the irregularity q(X) := h (X; OX ) = h (X). By Hodge theory, 0;1 1;0 0;1 b1(X) = h (X) + h (X) = 2h (X) = 2q: We say X is regular if q(X) = 0; equivalently, H1(X; R) = 0. Definition 1.2.2. Let H be a very ample divisor on X. Then there is the sheaf restriction exact sequence 0 !OX !OX (H) !OH (H) ! 0: Here OX (H) is the associated sheaf of sections of H, i.e. meromorphic functions with poles allowed along H, and OH (H) is its restriction OX (H) ⊗ OH of OX (H) to the hypersurface H. Remark. We can view OH (H) as the normal sheaf of H in X, because for divisors, OX (−H) is the conormal sheaf. In fact, this whole sequence arises simply by tensoring OX (H) onto the ideal sheaf sequence 0 ! IY !OX !OX =IY = OY ! 0. 1 1 Remark. If X is regular, then H (X; OX (H)) ! H (H; OH (H)) is surjective, because in the exact sequence, 1 H (X; OX ) = 0. Example 1.2.3. If X is a smooth surface in P3, then X is automatically regular. 0 2 Definition 1.2.4. Another holomorphic invariant is the geometric genus pg(X) := dimC H (X; Ω X) = 2 h (X; OX ) (where the equality is by Serre duality). By Hodge theory, 2;0 1;1 0;2 1;1 b2 = h + h + h = 2pg + h : Definition 1.2.5. The topological Euler characteristic is χ(X) := 1 − b1(X) + b2(X) − b3(X) + 1 1;1 = 2 − 2b1(X) + b2(X) = 2 − 4q(X) + 2pg(X) + h : The holomorphic Euler characteristic is 0 1 2 χ(OX ) := h (OX ) − h (OX ) + h (OX ) = 1 − q(X) + pg(X): 2 Theorem 1.2.6 (Hodge index theorem). Take the Hodge decomposition H2(X; C) = H2;0(X) ⊕ H1;1(X) ⊕ H0;2(X): 1. The space H2;0(X) ⊕ H0;2(X) is self-conjugate and therefore is the complexification of the real vector 2;0 0;2 space (H ⊕ H )R. On this space the intersection pairing is automatically positive-definite; 2. The space H1;1(X) is self-conjugate and therefore is the complexification of the real vector space H1;1. R There exists an element x 2 H1;1 such that x2 > 0, and the intersection form on spanfxg? in H1;1 is R R negative definite. + − 1;1 Corollary 1.2.7. b2 = 2pg(X) + 1, and b2 = h − 1. Remark. This element x is the divisor class of a hyperplane section H in a given projective embedding. In particular, H · H = d, the degree of X in the embedding. Theorem 1.2.8. Two identities involving invariants: 2 1. (Noether's formula) c1(X) + c2(X) = 12χ(OX ), which is a consequence is Hirzebruch{Riemann{Roch; + − 2 2. (Hirzebruch signature formula) b2 − b2 = (1=3)(c1 − 2c2). Remark. Any two of the Noether formula, Hirzebruch signature formula, and the Hodge index theorem imply the other. 0 ⊗n Definition 1.2.9. The plurigenera Pn(X) := dim H (X; KX ) are defined for n ≥ 1 and are \higher" holomorphic invariants of X. 1. They are not homotopy or homeomorphism invariants. 2. (Seiberg & Witten) They are diffeomorphism invariants. 1.3 Divisors Definition 1.3.1. Given a divisor D on X, there is an associated sheaf OX (D) given by OX (D)(U) := fg meromorphic on U s.t. (g) + DjU ≥ 0g; i.e. meromorphic functions with poles only along D. ∼ Remark. Note that OX (D1) = OX (D2) iff D1 ≡ D2. Remark. If DjU = V (f) and f is meromorphic on U, then OX (D)(U) = fh=f : h 2 OX (U)g so that OX (D) is a line bundle. Conversely, every line bundle on X is isomorphic to OX (D) for some D. Lemma 1.3.2. There is an exact sequence × × f1g ! C ! k(X) ! Div X ! Pic X ! 0: × Remark. If the line bundle is holomorphic, then D is effective, and 1 2 k(X) is a global section of OX (D) ∼ which vanishes along D. Conversely, if L is a line bundle and s a non-zero global section, then L = OX (D) where D = (s). 3 Definition 1.3.3. Given a divisor D, the complete linear system associated to D is × jDj := Γ(OX (D) − f0g)=C = fE effective : E ≡ Dg where ≡ is linear equivalence. The base locus of jDj is Bs(jDj) := fx 2 X : s(x) = 0 8s 2 Γ(OX (D))g = fx 2 X : x 2 E 8E 2 jDjg: We get a function N _ X n Bs(jDj) ! (P ) ; x 7! hyperplane fs 2 Γ(OX (D)) : s(x) = 0g: An effective divisor C 2 jDj is a fixed curve of jDj if E − C ≥ 0 for every E 2 jDj. 1 Remark. The analytic picture is Pic X = H (X; OX ). It is involved in the exponential sheaf sequence × 0 ! Z !OX !OX ! 0 which induces an exact sequence 1 1 1 × 2 c1 2 0 ! H (X; Z) ! H (X; OX ) ! H (X; OX ) ! H (X; Z) −! H (X; OX ) !··· where c1 is the (first) Chern class map.
Recommended publications
  • ON the EXISTENCE of CURVES with Ak-SINGULARITIES on K3 SURFACES
    Math: Res: Lett: 18 (2011), no: 00, 10001{10030 c International Press 2011 ON THE EXISTENCE OF CURVES WITH Ak-SINGULARITIES ON K3 SURFACES Concettina Galati and Andreas Leopold Knutsen Abstract. Let (S; H) be a general primitively polarized K3 surface. We prove the existence of irreducible curves in jOS (nH)j with Ak-singularities and corresponding to regular points of the equisingular deformation locus. Our result is optimal for n = 1. As a corollary, we get the existence of irreducible curves in jOS (nH)j of geometric genus g ≥ 1 with a cusp and nodes or a simple tacnode and nodes. We obtain our result by studying the versal deformation family of the m-tacnode. Moreover, using results of Brill-Noether theory on curves of K3 surfaces, we provide a regularity condition for families of curves with only Ak-singularities in jOS (nH)j: 1. Introduction Let S be a complex smooth projective K3 surface and let H be a globally generated line bundle of sectional genus p = pa(H) ≥ 2 and such that H is not divisible in Pic S. The pair (S; H) is called a primitively polarized K3 surface of genus p: It is well-known that the moduli space Kp of primitively polarized K3 surfaces of genus p is non-empty, smooth and irreducible of dimension 19: Moreover, if (S; H) 2 Kp is a very general element (meaning that it belongs to the complement of a countable ∼ union of Zariski closed proper subsets), then Pic S = Z[H]: If (S; H) 2 Kp, we denote S by VnH;1δ ⊂ jOS(nH)j = jnHj the so called Severi variety of δ-nodal curves, defined as the Zariski closure of the locus of irreducible and reduced curves with exactly δ nodes as singularities.
    [Show full text]
  • 10. Relative Proj and the Blow up We Want to Define a Relative Version Of
    10. Relative proj and the blow up We want to define a relative version of Proj, in pretty much the same way we defined a relative version of Spec. We start with a scheme X and a quasi-coherent sheaf S sheaf of graded OX -algebras, M S = Sd; d2N where S0 = OX . It is convenient to make some simplifying assump- tions: (y) X is Noetherian, S1 is coherent, S is locally generated by S1. To construct relative Proj, we cover X by open affines U = Spec A. 0 S(U) = H (U; S) is a graded A-algebra, and we get πU : Proj S(U) −! U a projective morphism. If f 2 A then we get a commutative diagram - Proj S(Uf ) Proj S(U) π U Uf ? ? - Uf U: It is not hard to glue πU together to get π : Proj S −! X. We can also glue the invertible sheaves together to get an invertible sheaf O(1). The relative consruction is very similar to the old construction. Example 10.1. If X is Noetherian and S = OX [T0;T1;:::;Tn]; n then satisfies (y) and Proj S = PX . Given a sheaf S satisfying (y), and an invertible sheaf L, it is easy to construct a quasi-coherent sheaf S0 = S ? L, which satisfies (y). The 0 d graded pieces of S are Sd ⊗ L and the multiplication maps are the obvious ones. There is a natural isomorphism φ: P 0 = Proj S0 −! P = Proj S; which makes the digram commute φ P 0 - P π0 π - S; and ∗ 0∗ φ OP 0 (1) 'OP (1) ⊗ π L: 1 Note that π is always proper; in fact π is projective over any open affine and properness is local on the base.
    [Show full text]
  • The Geometry of Syzygies
    The Geometry of Syzygies A second course in Commutative Algebra and Algebraic Geometry David Eisenbud University of California, Berkeley with the collaboration of Freddy Bonnin, Clement´ Caubel and Hel´ ene` Maugendre For a current version of this manuscript-in-progress, see www.msri.org/people/staff/de/ready.pdf Copyright David Eisenbud, 2002 ii Contents 0 Preface: Algebra and Geometry xi 0A What are syzygies? . xii 0B The Geometric Content of Syzygies . xiii 0C What does it mean to solve linear equations? . xiv 0D Experiment and Computation . xvi 0E What’s In This Book? . xvii 0F Prerequisites . xix 0G How did this book come about? . xix 0H Other Books . 1 0I Thanks . 1 0J Notation . 1 1 Free resolutions and Hilbert functions 3 1A Hilbert’s contributions . 3 1A.1 The generation of invariants . 3 1A.2 The study of syzygies . 5 1A.3 The Hilbert function becomes polynomial . 7 iii iv CONTENTS 1B Minimal free resolutions . 8 1B.1 Describing resolutions: Betti diagrams . 11 1B.2 Properties of the graded Betti numbers . 12 1B.3 The information in the Hilbert function . 13 1C Exercises . 14 2 First Examples of Free Resolutions 19 2A Monomial ideals and simplicial complexes . 19 2A.1 Syzygies of monomial ideals . 23 2A.2 Examples . 25 2A.3 Bounds on Betti numbers and proof of Hilbert’s Syzygy Theorem . 26 2B Geometry from syzygies: seven points in P3 .......... 29 2B.1 The Hilbert polynomial and function. 29 2B.2 . and other information in the resolution . 31 2C Exercises . 34 3 Points in P2 39 3A The ideal of a finite set of points .
    [Show full text]
  • Real Rank Two Geometry Arxiv:1609.09245V3 [Math.AG] 5
    Real Rank Two Geometry Anna Seigal and Bernd Sturmfels Abstract The real rank two locus of an algebraic variety is the closure of the union of all secant lines spanned by real points. We seek a semi-algebraic description of this set. Its algebraic boundary consists of the tangential variety and the edge variety. Our study of Segre and Veronese varieties yields a characterization of tensors of real rank two. 1 Introduction Low-rank approximation of tensors is a fundamental problem in applied mathematics [3, 6]. We here approach this problem from the perspective of real algebraic geometry. Our goal is to give an exact semi-algebraic description of the set of tensors of real rank two and to characterize its boundary. This complements the results on tensors of non-negative rank two presented in [1], and it offers a generalization to the setting of arbitrary varieties, following [2]. A familiar example is that of 2 × 2 × 2-tensors (xijk) with real entries. Such a tensor lies in the closure of the real rank two tensors if and only if the hyperdeterminant is non-negative: 2 2 2 2 2 2 2 2 x000x111 + x001x110 + x010x101 + x011x100 + 4x000x011x101x110 + 4x001x010x100x111 −2x000x001x110x111 − 2x000x010x101x111 − 2x000x011x100x111 (1) −2x001x010x101x110 − 2x001x011x100x110 − 2x010x011x100x101 ≥ 0: If this inequality does not hold then the tensor has rank two over C but rank three over R. To understand this example geometrically, consider the Segre variety X = Seg(P1 × P1 × P1), i.e. the set of rank one tensors, regarded as points in the projective space P7 = 2 2 2 7 arXiv:1609.09245v3 [math.AG] 5 Apr 2017 P(C ⊗ C ⊗ C ).
    [Show full text]
  • Arxiv:2008.05229V2 [Math.AG]
    A TORELLI THEOREM FOR MODULI SPACES OF PARABOLIC VECTOR BUNDLES OVER AN ELLIPTIC CURVE THIAGO FASSARELLA AND LUANA JUSTO Abstract. Let C be an elliptic curve, w ∈ C, and let S ⊂ C be a finite subset of cardinality at least 3. We prove a Torelli type theorem for the moduli space of rank two parabolic vector bundles with determinant line bundle OC (w) over (C,S) which are semistable with respect to a weight vector 1 1 2 ,..., 2 . 1. Introduction Let C be a smooth complex curve of genus g ≥ 2 and fix w ∈ C. Let M be the corresponding moduli space of semistable rank two vector bundles having OC (w) as determinant line bundle. A classical Torelli type theorem of D. Mumford and P. Newstead [MN68] says that the isomorphism class of M determines the isomorphism class of C. This result has been extended first in [Tyu70, NR75, KP95] to higher rank and later to the parabolic context, which we now describe. We now assume g ≥ 0. Let S ⊂ C be a finite subset of cardinality n ≥ 1. Let Ma be the moduli space of rank two parabolic vector bundles on (C,S) with fixed determinant line bundle OC (w), and which are µa-semistable, see Section 2. The subscript a refers to a particular choice of a weight vector a = (a1, . , an) of real numbers, 0 ≤ ai ≤ 1, which gives the slope-stability condition. The moduli 1 1 space associated to the central weight aF = 2 ,..., 2 is particularly interesting, for instance when g = 0 and n ≥ 5 it is a Fano variety that is smooth if n is odd and has isolated singularities if n is even, see [Muk05, Cas15, AM16, AFKM19].
    [Show full text]
  • 1 Real-Time Algebraic Surface Visualization
    1 Real-Time Algebraic Surface Visualization Johan Simon Seland1 and Tor Dokken2 1 Center of Mathematics for Applications, University of Oslo [email protected] 2 SINTEF ICT [email protected] Summary. We demonstrate a ray tracing type technique for rendering algebraic surfaces us- ing programmable graphics hardware (GPUs). Our approach allows for real-time exploration and manipulation of arbitrary real algebraic surfaces, with no pre-processing step, except that of a possible change of polynomial basis. The algorithm is based on the blossoming principle of trivariate Bernstein-Bezier´ func- tions over a tetrahedron. By computing the blossom of the function describing the surface with respect to each ray, we obtain the coefficients of a univariate Bernstein polynomial, de- scribing the surface’s value along each ray. We then use Bezier´ subdivision to find the first root of the curve along each ray to display the surface. These computations are performed in parallel for all rays and executed on a GPU. Key words: GPU, algebraic surface, ray tracing, root finding, blossoming 1.1 Introduction Visualization of 3D shapes is a computationally intensive task and modern GPUs have been designed with lots of computational horsepower to improve performance and quality of 3D shape visualization. However, GPUs were designed to only pro- cess shapes represented as collections of discrete polygons. Consequently all other representations have to be converted to polygons, a process known as tessellation, in order to be processed by GPUs. Conversion of shapes represented in formats other than polygons will often give satisfactory visualization quality. However, the tessel- lation process can easily miss details and consequently provide false information.
    [Show full text]
  • A Torelli Theorem for Moduli Spaces of Principal Bundles Over a Curve Tome 62, No 1 (2012), P
    R AN IE N R A U L E O S F D T E U L T I ’ I T N S ANNALES DE L’INSTITUT FOURIER Indranil BISWAS & Norbert HOFFMANN A Torelli theorem for moduli spaces of principal bundles over a curve Tome 62, no 1 (2012), p. 87-106. <http://aif.cedram.org/item?id=AIF_2012__62_1_87_0> © Association des Annales de l’institut Fourier, 2012, tous droits réservés. L’accès aux articles de la revue « Annales de l’institut Fourier » (http://aif.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://aif.cedram.org/legal/). Toute re- production en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l’utilisation à fin strictement per- sonnelle du copiste est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/ Ann. Inst. Fourier, Grenoble 62, 1 (2012) 87-106 A TORELLI THEOREM FOR MODULI SPACES OF PRINCIPAL BUNDLES OVER A CURVE by Indranil BISWAS & Norbert HOFFMANN (*) 0 Abstract. — Let X and X be compact Riemann surfaces of genus > 3, and 0 d let G and G be nonabelian reductive complex groups. If one component MG(X) of the coarse moduli space for semistable principal G–bundles over X is isomorphic d0 0 0 to another component MG0 (X ), then X is isomorphic to X . Résumé. — Soient X et X0 des surfaces de Riemann compactes de genre au moins 3, et G et G0 des groupes complexes réductifs non abéliens.
    [Show full text]
  • CHERN CLASSES of BLOW-UPS 1. Introduction 1.1. a General Formula
    CHERN CLASSES OF BLOW-UPS PAOLO ALUFFI Abstract. We extend the classical formula of Porteous for blowing-up Chern classes to the case of blow-ups of possibly singular varieties along regularly embed- ded centers. The proof of this generalization is perhaps conceptually simpler than the standard argument for the nonsingular case, involving Riemann-Roch without denominators. The new approach relies on the explicit computation of an ideal, and a mild generalization of the well-known formula for the normal bundle of a proper transform ([Ful84], B.6.10). We also discuss alternative, very short proofs of the standard formula in some cases: an approach relying on the theory of Chern-Schwartz-MacPherson classes (working in characteristic 0), and an argument reducing the formula to a straight- forward computation of Chern classes for sheaves of differential 1-forms with loga- rithmic poles (when the center of the blow-up is a complete intersection). 1. Introduction 1.1. A general formula for the Chern classes of the tangent bundle of the blow-up of a nonsingular variety along a nonsingular center was conjectured by J. A. Todd and B. Segre, who established several particular cases ([Tod41], [Seg54]). The formula was eventually proved by I. R. Porteous ([Por60]), using Riemann-Roch. F. Hirzebruch’s summary of Porteous’ argument in his review of the paper (MR0121813) may be recommend for a sharp and lucid account. For a thorough treatment, detailing the use of Riemann-Roch ‘without denominators’, the standard reference is §15.4 in [Ful84]. Here is the formula in the notation of the latter reference.
    [Show full text]
  • On the Euler Number of an Orbifold 257 Where X ~ Is Embedded in .W(X, G) As the Set of Constant Paths
    Math. Ann. 286, 255-260 (1990) Imam Springer-Verlag 1990 On the Euler number of an orbifoid Friedrich Hirzebruch and Thomas HSfer Max-Planck-Institut ffir Mathematik, Gottfried-Claren-Strasse 26, D-5300 Bonn 3, Federal Republic of Germany Dedicated to Hans Grauert on his sixtieth birthday This short note illustrates connections between Lothar G6ttsche's results from the preceding paper and invariants for finite group actions on manifolds that have been introduced in string theory. A lecture on this was given at the MPI workshop on "Links between Geometry and Physics" at Schlol3 Ringberg, April 1989. Invariants of quotient spaces. Let G be a finite group acting on a compact differentiable manifold X. Topological invariants like Betti numbers of the quotient space X/G are well-known: i a 1 b,~X/G) = dlmH (X, R) = ~ g~)~ tr(g* I H'(X, R)). The topological Euler characteristic is determined by the Euler characteristic of the fixed point sets Xa: 1 Physicists" formula. Viewed as an orbifold, X/G still carries someinformation on the group action. In I-DHVW1, 2; V] one finds the following string-theoretic definition of the "orbifold Euler characteristic": e X, 1 e(X<~.h>) Here summation runs over all pairs of commuting elements in G x G, and X <g'h> denotes the common fixed point set ofg and h. The physicists are mainly interested in the case where X is a complex threefold with trivial canonical bundle and G is a finite subgroup of $U(3). They point out that in some situations where X/G has a resolution of singularities X-~Z,X/G with trivial canonical bundle e(X, G) is just the Euler characteristic of this resolution [DHVW2; St-W].
    [Show full text]
  • Hyperbolic Monopoles and Rational Normal Curves
    HYPERBOLIC MONOPOLES AND RATIONAL NORMAL CURVES Nigel Hitchin (Oxford) Edinburgh April 20th 2009 204 Research Notes A NOTE ON THE TANGENTS OF A TWISTED CUBIC B Y M. F. ATIYAH Communicated by J. A. TODD Received 8 May 1951 1. Consider a rational normal cubic C3. In the Klein representation of the lines of $3 by points of a quadric Q in Ss, the tangents of C3 are represented by the points of a rational normal quartic O4. It is the object of this note to examine some of the consequences of this correspondence, in terms of the geometry associated with the two curves. 2. C4 lies on a Veronese surface V, which represents the congruence of chords of O3(l). Also C4 determines a 4-space 2 meeting D. in Qx, say; and since the surface of tangents of O3 is a developable, consecutive tangents intersect, and therefore the tangents to C4 lie on Q, and so on £lv Hence Qx, containing the sextic surface of tangents to C4, must be the quadric threefold / associated with C4, i.e. the quadric determining the same polarity as C4 (2). We note also that the tangents to C4 correspond in #3 to the plane pencils with vertices on O3, and lying in the corresponding osculating planes. 3. We shall prove that the surface U, which is the locus of points of intersection of pairs of osculating planes of C4, is the projection of the Veronese surface V from L, the pole of 2, on to 2. Let P denote a point of C3, and t, n the tangent line and osculating plane at P, and let T, T, w denote the same for the corresponding point of C4.
    [Show full text]
  • Fundamental Algebraic Geometry
    http://dx.doi.org/10.1090/surv/123 hematical Surveys and onographs olume 123 Fundamental Algebraic Geometry Grothendieck's FGA Explained Barbara Fantechi Lothar Gottsche Luc lllusie Steven L. Kleiman Nitin Nitsure AngeloVistoli American Mathematical Society U^VDED^ EDITORIAL COMMITTEE Jerry L. Bona Peter S. Landweber Michael G. Eastwood Michael P. Loss J. T. Stafford, Chair 2000 Mathematics Subject Classification. Primary 14-01, 14C20, 13D10, 14D15, 14K30, 18F10, 18D30. For additional information and updates on this book, visit www.ams.org/bookpages/surv-123 Library of Congress Cataloging-in-Publication Data Fundamental algebraic geometry : Grothendieck's FGA explained / Barbara Fantechi p. cm. — (Mathematical surveys and monographs, ISSN 0076-5376 ; v. 123) Includes bibliographical references and index. ISBN 0-8218-3541-6 (pbk. : acid-free paper) ISBN 0-8218-4245-5 (soft cover : acid-free paper) 1. Geometry, Algebraic. 2. Grothendieck groups. 3. Grothendieck categories. I Barbara, 1966- II. Mathematical surveys and monographs ; no. 123. QA564.F86 2005 516.3'5—dc22 2005053614 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA.
    [Show full text]
  • Weighted Fano Varieties and Infinitesimal Torelli Problem 3
    WEIGHTED FANO VARIETIES AND INFINITESIMAL TORELLI PROBLEM ENRICO FATIGHENTI, LUCA RIZZI AND FRANCESCO ZUCCONI Abstract. We solve the infinitesimal Torelli problem for 3-dimensional quasi-smooth Q-Fano hypersurfaces with at worst terminal singularities. We also find infinite chains of double coverings of increasing dimension which alternatively distribute themselves in examples and counterexamples for the infinitesimal Torelli claim and which share the analogue, and in some cases the same, Hodge-diagram properties as the length 3 Gushel- Mukai chain of prime smooth Fanos of coindex 3 and degree 10. 1. Introduction Minimal model program suggests us to formulate inside the category of varieties with terminal singularities many questions which were initially asked for smooth varieties. The construction of the period map, and the related Torelli type problems are definitely among these problems. 1.1. Infinitesimal Torelli. A Q-Fano variety is a projective variety X such that X has at worst Q-factorial terminal singularities, −KX is ample and Pic(X) has rank 1; cf. [CPR00]. In this paper we give a full answer to the infinitesimal Torelli problem in the case of quasi- smooth Q-Fano hypersurfaces of dimension 3 with terminal singularities and with Picard number 1. In subsections 2.1 of this paper the reader can find a basic dictionary and up to date references needed to understand the statement of the infinitesimal Torelli problem and where to find the meaning of infinitesimal variation of Hodge structures (IVHS; to short). Here we stress only that the method à la Griffiths based on the extension of the Macaulay’s theorem in algebra to the weighted case, cf.
    [Show full text]