<<

HYPERBOLIC MONOPOLES AND RATIONAL NORMAL

Nigel Hitchin (Oxford)

Edinburgh April 20th 2009 204 Research Notes

A NOTE ON THE OF A

B Y M. F. ATIYAH

Communicated by J. A. TODD

Received 8 May 1951

1. Consider a rational normal cubic C3. In the Klein representation of the lines of $3 by points of a quadric Q in Ss, the tangents of C3 are represented by the points of a rational normal quartic O4. It is the object of this note to examine some of the consequences of this correspondence, in terms of the geometry associated with the two curves.

2. C4 lies on a V, which represents the congruence of chords of O3(l). Also C4 determines a 4-space 2 meeting D. in Qx, say; and since the surface of tangents of O3 is a developable, consecutive tangents intersect, and therefore the tangents to C4 lie on Q, and so on £lv Hence Qx, containing the sextic surface of tangents to C4, must be the quadric threefold / associated with C4, i.e. the quadric determining the same polarity as C4 (2). We note also that the tangents to C4 correspond in #3 to the plane pencils with vertices on O3, and lying in the corresponding osculating planes. 3. We shall prove that the surface U, which is the locus of points of intersection of pairs of osculating planes of C4, is the projection of the Veronese surface V from L, the pole of 2, on to 2. Let P denote a point of C3, and t, n the line and osculating plane at P, and let T, T, w denote the same for the corresponding point of C4. Further, let WXTB2 meet in Q, which is therefore a point of U, and let LQ meet Q. in R, R'. We show that R and R' represent the two lines PXP2 and (nv n2), and therefore that R, or R', is a point of V. The polar 3-space of Q with respect to I, being the same as that with respect to C4, meets C4 twice at each of Tx and T2, and therefore contains TX and T2. But this 3-space is the polar 3-space of LQ with respect to Q. Hence R and R', being conjugate to all the points of rx and T2, represent lines in S3 which intersect all lines of the pencils (Plt n^) (P2, TT2), and so must be. the lines PXP2, {nx, n2) as stated. 4. We now give a geometrical proof of the well-known result: a necessary and suffi- cient condition for four points on Ct to be equianharmonic is that the pole of the 3-space determined by them should lie on / (i.e. that the 3-space should touch /). Let A, B, G be three points on Ct, and let T be a collineation on CA, such that T(ABC) = (BCA). 3 Then T = 1, the identical collineation, and T(H1H2) = {HXH2), where H^, H2 are the Hessian pair ofA,B,C. Since C4 is a rational normal , there is a unique collinea- Z tion S of /S4 which induces T on C4, and 8 = 1. M F Atiyah, A note on the tangents to a twisted cubic, Proc. Camb. Phil. Soc. 48 (1952) 204–205

“.. The tangents at four points of a twisted cubic have a unique transversal if and only if the four points are equianharmonic”. RATIONAL NORMAL CURVES P1 Pn of degree n • ⊂

... not contained in any hyperplane •

= image by a projective transformation of z [1, z, z2, . . . , zn] • "→ Symmetric product Sn(P1) = Pn •

Diagonal ∆ Sn(P1) = (x, x, . . . , x) : x P1 • ⊂ { ∈ }

V = 2-dimensional vector space, SnV symmetric tensor prod- • uct

Sn(P(V )) = P(SnV ), ∆ = [v v . . . v] : v V • { ⊗ ⊗ ⊗ ∈ } SymmetricSymmetric pproroductduct SSnn((PP11)) == PPnn ••

DiagonalDiagonal ∆∆ SSnn((PP11)) == ((x,x,x,x,...... ,,xx)) :: xx PP11 •• ⊂⊂ {{ ∈∈ }}

VV ==2-dimensional2-dim symplecticvectovector space,r space,SnV symmetricSnV symmetrictensortensoprod-r •• uctproduct

SSnn((PP((VV)))) == PP((SSnnVV),), ∆∆ == [[vv vv ...... vv]] :: vv VV •• {{ ⊗⊗ ⊗⊗ ⊗⊗ ∈∈ }} C P(W ) defines an isomorphism • ⊂ W = H0(C, (n)=SnH0(C, (1)) = SnV ∗ ∼ O O ∗

SnV has a symplectic/ orthogonal (n odd/even) structure • EXAMPLES

conic in P2 •

twisted cubic in P3 •

tangents to a twisted cubic Q4 P5 ... • ⊂ ⊂

... lies in P4 Q4 • ∩

(S3V symplectic, P(S3V ) contact, twisted cubic Legendrian) • EXAMPLESEXAMPLES

2 conicconic inin PP2 ••

3 ttwistedwisted cubiccubic inin PP3 ••

4 5 tangentstangents toto aa ttwistedwisted cubiccubic QQ4 PP5 ...... •• ⊂⊂ ⊂⊂

4 4 ...... lieslies inin PP4 QQ4 •• ∩∩

3 3 ((SS3VV symplectic,symplectic, PP((SS3VV )) contact,contact, ttwistedwisted cubiccubic Legendrian)Legendrian) •• 204 Research Notes

A NOTE ON THE TANGENTS OF A TWISTED CUBIC

B Y M. F. ATIYAH

Communicated by J. A. TODD

Received 8 May 1951

1. Consider a rational normal cubic C3. In the Klein representation of the lines of $3 by points of a quadric Q in Ss, the tangents of C3 are represented by the points of a rational normal quartic O4. It is the object of this note to examine some of the consequences of this correspondence, in terms of the geometry associated with the two curves.

2. C4 lies on a Veronese surface V, which represents the congruence of chords of O3(l). Also C4 determines a 4-space 2 meeting D. in Qx, say; and since the surface of tangents of O3 is a developable, consecutive tangents intersect, and therefore the tangents to C4 lie on Q, and so on £lv Hence Qx, containing the sextic surface of tangents to C4, must be the quadric threefold / associated with C4, i.e. the quadric determining the same polarity as C4 (2). We note also that the tangents to C4 correspond in #3 to the plane pencils with vertices on O3, and lying in the corresponding osculating planes. 3. We shall prove that the surface U, which is the locus of points of intersection of pairs of osculating planes of C4, is the projection of the Veronese surface V from L, the pole of 2, on to 2. Let P denote a point of C3, and t, n the tangent line and osculating plane at P, and let T, T, w denote the same for the corresponding point of C4. Further, let WXTB2 meet in Q, which is therefore a point of U, and let LQ meet Q. in R, R'. We show that R and R' represent the two lines PXP2 and (nv n2), and therefore that R, or R', is a point of V. The polar 3-space of Q with respect to I, being the same as that with respect to C4, meets C4 twice at each of Tx and T2, and therefore contains TX and T2. But this 3-space is the polar 3-space of LQ with respect to Q. Hence R and R', being conjugate to all the points of rx and T2, represent lines in S3 which intersect all lines of the pencils (Plt n^) (P2, TT2), and so must be. the lines PXP2, {nx, n2) as stated. 4. We now give a geometrical proof of the well-known result: a necessary and suffi- cient condition for four points on Ct to be equianharmonic is that the pole of the 3-space determined by them should lie on / (i.e. that the 3-space should touch /). Let A, B, G be three points on Ct, and let T be a collineation on CA, such that T(ABC) = (BCA). 3 Then T = 1, the identical collineation, and T(H1H2) = {HXH2), where H^, H2 are the Hessian pair ofA,B,C. Since C4 is a rational normal curve, there is a unique collinea- Z tion S of /S4 which induces T on C4, and 8 = 1. 6246 24 R. RL. . LE. . ES. CSHCWHAWRAZREZNEBNEBREGREGRER nonrmoraml acl urcvuersv eisn inP n.P n.Thes These be ubnudnledsl eas rea recl acslsaifsiseidfi,e db, yb yst usdtuydinygin gth etihreir resrtersictrtiicotnio nto tloi nleianre asru bsuspbascpeasc eosf oPf n.P n.F oFr oera ceha crh ^r ^n tnh etrhee ries ias sae ts eotf of r r ^b^ubnudnledsl eEs nE wn hwichhi cahr ea reeq ueqivuailveanlte,n whet, when rn =r =n, n,to ttoh et htea ntganengte nbt ubnudnledle of oPf n,P na,n adn whichd which, w, hwenh ern >r >n, n,ar ea rien ionn eo-noen-eo nceo rcroersrpeosnpdoenndceen cwe iwthi thth ethe r r ratriaotnioaln anlo nrmoraml aclu rcvuersv eosf oPfn .P nT. hTe hsee ts eotf obfu bnudnledsl eEs nE isn aisn aenx aemxapmlep loef oafn an algaelbgreabirca ifamilc family yof obfu bnudnledsl essu cshu cthh atht aitf iEf v EvE 2 Ea2r ea rtew tow bou bnudnledsl eosf otfh ethe famfaimlyi ltyh etrhee ries ais cao lcloinlleianteiaotnio \n \ Pn ->PPn->Pn ns ucshu cthh atht aEt2 E=2 =*E *Ev v In I§n 2§, 2w, hwichhi cihs iisn dinepdenpdenendte notf o§f 1§, 1a, gae ngernaelr arle sruelstu lits ipsr opvroedv ewd hwichhich givgeisv eas ma emtheothdo odf ocfo ncostnrsutcrtuicntgin &g 2&-b2u-nbdulnedsl e(sa n(dan hde nhceen c&e r-&bur-nbdulnedsl)e so)v oerv ear a proptreocttVeicvEtei vCseuT rsfuOarcfRea cX. e BX.EU vENevrDye rjLyfc E2j-fbcSu2-n bduOlned Nolen o XnT XmH amEy a bye P boeRb otOabitnJaeEidnC eadsT atIhsV et hEdei rdeicrtect imiamgea goef oaf lain lei nbeu bnudnled loen oan dao duobPuleLb lcAeo NvceoErvienrgi nYg Yof oX.f X.T hTuhs utsh et hper opbrolebmlem of ocfo ncostnrsutcrtuicntgin agl la vlle cvteocrt obru bnudnledsl eosn o Xn Xis rise druedceudc etdo tao par opbrolebmle mof odfe tdeert-er- mimniinngin dgi vdiisvoirsso Byrosn o dnRo .du obLule.b lcEeo .vc eoSrviCenrgHisn gWosf AoX.f RX.ZENBERGER 2 2 ThTe hree sruelstus ltosf o§f§ §1§ a1n dan [2dR ea2cr eeai vruseed use d13 i dOn ci§nto 3b§e tr3o 1 t9co6o 0nc]ostnrsutcrtu c&t &-bu-nbdulnedsl eosn oPn2 .P2. ThTe hper opproerpteiertsi eosf othf etshee sbeu bnudnledsl easr ea rdee vdeelvoepleodp,e da,n dan cdo ncotrnatsrtaesdt ewd iwthi tthh othseose LET k be an algebraically closed , and Pn the n-dimensional projective of othf et hael malomsto sdte cdoemcopmopsaobslaeb lbeu bnudnledsl,e ds,e fdinefeidn eadn dan cdl acslsaifsiseidfi eidn i(n1 3(1).3). r space 2def2ined over k. We consider algebraic vector bundles with fibre k , A AJf cJ-fbcu-nbdulned loen oPn2 Ph2a sh aCs hCerhne rcnl acslsaesss ecsv ccv 2 cw2 hwirchhi cmh amy abye bree graergdaerd eads as group GL(r, k), and base Pn, and then speak of & -bundles, or, when r = 1, intiengtergse.r sI. t Iist sish oswhonw inn i(n1 3()1 3th) atht aatn yan iyn tiengtergse rcsx , ccx2, ca2c taucatlulayl loyc coucrc uars atsh ethe of line bundles. The equivalence classes of 2lin2e bundles on an algebraic CherChern cnl acslsaesss eosf oafn aanl malomsto sdt ecdoemcopmospaobslaeb l&e &-bu-nbdulned. leT. hTe hree sruelstus ltosf o§f 3§ 3 variety have been classified (10): they are in one-one correspondence with shoswho wth atht aatn yan iyn tiengtergse rcslt cc2 cw hwichhi csha tsisaftyis fcyf —cf4—c24 c< <0 . a0c. taucatlulayl loyc coucrc uars as the divisor classes. In parltticu2lar, on P there is on2e equivalence class of thet hCe hCerhne rcnl acslsaesss eosf oaf bau bnudnled lwe hwichhi cihs niso nnt oatl malomsto sdte cdoemcopmospaobslaeb, lea,n dan tdh atht at line bundles for each (positive or negative) integer. If H is the line bundle thethree reex iesxt isbtu bnudnledsl ews hwichhi chha vhea vteh et hsea msaem Ce hCerhne rcnl acslsaesss easn dan ddo dnoo nt oetv enven on P which corresponds to a hyperplane divisor, then the dual bundle belboenlognn tgo ttoh et hsea msaem ael gaelbgreabirca ifamily.c family. Thes These ree sruelstus ltms amy abye bree arde aidn dine-de- H* is the line bundle defined by the natural projection kn+1—{0} -> P . penpdenendtelnyt loyf o(f1 3()1 3a)n dan, dwhe, when kn =k =C iCs tihs et hfielde field of ocfo mcopmlepxl enxu nmubmerbse,r sy,i eylidelnd Writing Hr for the tensor product of r copies of H, and H~r for (H*)r it corcoolrloarlliaersi easb oabuot utth et hael gaelbgreabirca isct rsutcrtuucrteusr ews hwichhi ccha rnc abne bgei vgeinv etno tao cao nco- n- follows thrat any line bundle on P has the form H , where now r may be tintuinouos uf o^f1 - ^bthu-ebnruedn laedrsle e osin ndo ePncn oPmn posable & -bundles on Pn, and it is no r lo1n.1g1.e .r1T .t hTee h pcera ospejre oc(jateisvc iteti v ilesi nfleoi nrm eb aumyn adbyle e bsd eeo sndce rasilcbgreeidbb erbday icb hyco umhrovomegseo)ng teehonauetso uaspll a &rpaam-rbaeumtneedrtlserss (d:(f>),ca(d:(f>),n be ocr o onwrs htwreunhc etnedo n cforo oncmfou nsfliiuonsnei o nbc uanc daonlec sco ucbrc yub re yxb toyen neos nipoea nrpsa.a mraIemntederet e(6)rd , (6) iwf h twhicehhri,ce h b,i syby coancnvo eenxnvateicnottn is,o enqm, uaemyn actyea koteaf kbtehu ent hdvelea slvu aoeln u0 eP =n0 (=on o>o( o=1(()=l:(Ol:)O)a)s) asw ewll ealls afinites finite va lvuaelsues n n $ =$ =0O 0(O= ( =(0 O(:0 lO):) l. ))Denot. Denote0 t eh-> et hHPne- fno-+-lfdo Elds y -m>sy mH*memt r-ei>ct r 0ipc, ropdroudctu cotf oPft Pbty b yS (PS x(P). x). n n At hApeo npi noEti n smt 6su ^s6t (^bi^e() i d^ce)o crocromersprpeoossnpadobsnl det:so E tao = sa e H*>@Hts e(dt v(d...,6v...,6nQ) . n)oT f hopifso pifnotlisln otowsf s o Pf(x 2,P ) axf,n rdoamn sd o tshoe to an equatioxn p 3 j (-1)^(5)0*-* = 0, fatoct atnh aetq uHat(Pionn, H ~ ) = 0,j w(h-e1r)e^ (H5 )i0s* t-h*e =sh e0a,f of germs of sections of H (14). where a^s) is the ith. elementary symmetric function of 9 ..., 6 . wHheorwe ea^s)ver, ist itsh etr uith.e (e3l)e,m theantt airfy E s yism am fcert-bundleric func (rtio n> on)fV 9thVe...,ren 6isn .an exact Let i : P -> P be a normal embedding of the projective line1. 1The image sequencLert ier: x oPf xt -h>er Pfro brme a normal embedding of the . The image 8 0 -+ I,_n H- -> E -+ F -+ 0, r n n where j ^ _ n is the trivial bundle Pn X k ~ , and F is a & -bundle. For this n reason it is important to construct all ifc -bundles on Pn as a preliminary to an attempt at a general classification. This paper is chiefly concerned 2 n with the construction of & -bundles on P2, although in § 1 a class of k - bundles on Pn is constructed which occurs in connexion with rational Proc. London Math. Soc. (3) 11 (1961) 623-40 1. SCHWARZENBERGER BUNDLES

2. RESTRICTION TO RATIONAL NORMAL CURVES

3. HYPERBOLIC MONOPOLES AND RATIONAL MAPS SCHWARZENBERGER BUNDLES FIRST DEFINITION

SrV Sr nV SnV • → − ⊗

Pn = P(SnV ) •

SrV Sr nV H0(Pn, (1)) • → − ⊗ O

0 (Er ) SrV (1) Sr nV 0 • → O n∗ → O ⊗ → O ⊗ − → FIRSTFIRSTDEFIN DEFINITIONITION

r r n n SSrVV SSr− nVV SSnVV •• →→ − ⊗⊗

n n PPn==PP((SSnVV)) ••

r r n 00 n SSrVV SSr− nVV HH ((PPn,, (1))(1)) •• →→ − ⊗⊗ OO

r r r n 00 E(rEn∗) SrV S (1)V Sr(1)nV S −0 V 0 •• →→O n∗ → → O→⊗ O →⊗O − ⊗→ → SECOND DEFINITION

f : Y = P(Sn 1V ) P(V ) P(SnV ) • − × →

or SnV = degree n homogeneous polynomials p(z ,z ) and • 0 1

Y = ([p(z)], [w]) : p(w)=0 • { } SECOND DEFINITION

f : Y = P(Sn 1V ) P(V ) P(SnV ) • − × →

or SnV = degree n homogeneous polynomials p(z ,z ) and • 0 1

Y = ([p(z)], [w]) : p(w)=0 • { }

f : P(Sn 1V ) P(V ) P(SnV ) n-fold branched covering • − × →

r En = f (0, r) • ∗O

∆ P(SnV ) defines Er • ⊂ n

rational normal curve φ ∆ defines φ Er • ∗ ∗ n = Schwarzenberger bundle PROPERTIES

c(Er) = (1 h)n r 1 • n − − −

T Pn = En(1) • n

Er is stable • n

The unstable hyperplanes (H0(Pn 1, (Er) ) = 0) are defined • − n ∗ # by the of ∆

(SnV = SnV so P(SnV ) = P(SnV ) ) • ∼ ∗ ∼ ∨ PROPERTIESPROPERTIES

r n r 1 cc((EEnr))==(1(1 hh))n− r− 1 •• n −− − −

n n TTPPn==EEnn(1)(1) •• n

r EEnr isis stablestable •• n

0 n 1 r TheTheunstableunstablehyphyperplaneserplanes((HH0((PPn− 1,,((EEnr))∗))==0)0)aareredefineddefined •• − n ∗ # # bbyy thethe dualdual curvecurve ofof ∆∆

n n n n ((SSnVV =∼=SSnVV∗ soso PP((SSnVV))=∼=PP((SSnVV))∨)) •• ∼ ∗ ∼ ∨ RESTRICTION TO RATIONAL CURVES

Birkhoff-Grothendieck: Any holomorphic on P1 is a direct sum of line bundles. RESTRICTION TO RATIONAL NORMAL CURVES

C Pn rational normal curve: degree n • ⊂

1 C = P , n(1) = 1(n) • ∼ OP |C ∼ OP

c (Er) = (r + 1 n)h, degree (r + 1 n)n on C • 1 n − −

generic splitting type Cn (r + 1 n) • ⊗ O − RESTRICTIONRESTRICTION TOTO RRAATIONTIONALAL NNORMALORMAL CURVESCURVES

CC PPnn rationalrational nonormalrmal curve:curve: degreedegree nn •• ⊂⊂

11 CC =∼= PP ,, Pnn(1)(1) CC =∼= P11((nn)) •• ∼ OOP || ∼ OOP

rr cc1((EEn)) == ((rr ++11 nn))hh,, degreedegree ((rr ++11 nn))nn onon CC •• 1 n −− −−

genericgeneric ssplittingplitting ttypypee CCnn ((rr ++11 nn)) •• ⊗⊗OO −− WHEN DOES Er CONTAIN (m) FOR m r? n|C O ≥

0 ( 1) Sr nV SrV Er 0 • → O − ⊗ − → → n →

α ... H1(P1, ( n r)) Sr nV H1(P1, ( r)) SrV ... • → O − − ⊗ − → O − ⊗ →

H0(P1,Er( r)) = ker α • n − α : Cn+r 1 Cr n+1 Cr 1 Cr+1 • − ⊗ − → − ⊗

matrices A : Cm Cn of non-maximal rank are • → (n m + 1) −

(r 1)(r +1) (r +n 1)(r n+1)+1 = (n 1)2 constraints • − − − − − α : Cn+r 1 Cr n+1 Cr 1 Cr+1 • − ⊗ − → − ⊗ α : Cn+r 1 Cr n+1 Cr 1 Cr+1 • − ⊗ − → − ⊗ matrices A : Cm Cn of non-maximal rank are codimension • → (n m + 1) matrices− A : Cm Cn of non-maximal rank are codimension • → (n m + 1) − (r 1)(r +1) (r +n 1)(r n+1)+1 = (n 1)2 constraints • − − − − − (r 1)(r +1) (r +n 1)(r n+1)+1 = (n 1)2 constraints • − − − − − THE CASE n = 2

∆, C P2 conics • ⊂

(n 1)2 = 1 constraint • −

jumping conics – four parameter family. • rational normal curve C P(W ) defines an isomorphism • ⊂ W = H0(C, (n)=SnH0(C, (1)) = SnV ∗ ∼ O O ∗

SnV has a symplectic/ orthogonal (n odd/even) structure •

“in-and-circumscribed polygon” •

DUALITY rational normal curve B defines a vector bundle Er(B) •

take another rational normal curve C •

Define C < B if H0(C, Er(B)( r)) = 0 • − " C

B Theorem: C < B if and only if B∨ < C∨

B = φ(∆), C = ψ(∆) •

B = (φT ) 1(∆) • ∨ −

C < B φ 1ψ(∆) < ∆ • ⇔ −

B < C ψT (φT ) 1(∆) < ∆ • ∨ ∨ ⇔ −

(φ 1ψ)T (∆) < ∆ • ⇔ − Theorem: C < B if and only if B < C Theorem: C < B if and only if ∨B∨ < ∨C∨

BB==φ(φ∆(∆),)C, C==ψ(ψ∆(∆) ) • •

T 1 B∨B==(φ(φ)T−) (1∆(∆) ) • • ∨ −

1 C C<

T T 1 B∨B<

1 T (φ(−φ ψ1)ψ)(T∆(∆) <) <∆∆ • •⇔⇔ − TheoTheoremrem: C: C<

B = φ(∆), C = ψ(∆) B• B==φ(φ∆(∆),)C, C==ψ(ψ∆(∆) ) • •

B = (TφT )1 1(∆) B• ∨B=∨ =(φ(φ)T−) −(1∆(∆) ) • • ∨ −

C < B φ1 1ψ(∆) < ∆ C• C<

B < C TψT (TφT )1 1(∆) < ∆ B• ∨B<∨

(φ1 1ψT)T (∆) < ∆ • ⇔(φ(−φ −ψ1)ψ)(T∆(∆) <) <∆∆ • •⇔⇔ − TheoTheoremrem: C: C<

B = φ(∆), C = ψ(∆) B• B==φ(φ∆(∆),)C, C==ψ(ψ∆(∆) ) • •

B = (TφT )1 1(∆) B• ∨B=∨ =(φ(φ)T−) −(1∆(∆) ) • • ∨ −

C < B φ1 1ψ(∆) < ∆ C• C<

B < C TψT (TφT )1 1(∆) < ∆ B• ∨B<∨

(φ1 1ψT)T (∆) < ∆ • ⇔(φ(−φ −ψ1)ψ)(T∆(∆) <) <∆∆ • •⇔⇔ −

RTP: ψ(∆) < ∆ if and only if ψT (∆) < ∆ •

Condition is invariant under Aut(∆) = P SL(2, C) •

Pn 1 P1 Pn − × →

C RTP: ψ(∆) < ∆ if and only if ψT (∆) < ∆ •

n-fold covering • RTP: ψ(∆) < ∆ if and only if ψT (∆) < ∆ • RTP: ψ(∆S) "< ∆C if Pand1 only if ψT (∆) < ∆ • • → × Condition is invariant under Aut(∆) = P SL(2, C) • Condition chois invaoseriantan identificationunder Aut(∆)C==P SPL1(2=, C∆) (condition invariant • • ∼ under Aut(∆)) n 1 1 n P − P P Pn 1 P1 Pn × → − × → S • ∪ ∪ C C C RTP: ψ(∆) < ∆ if and only if ψT (∆) < ∆ • RTP: ψ(∆) < ∆ if and only if ψT (∆) < ∆ • n-fold covering • n-foldRTPcoveri: ψ(ng∆)RTP< ∆: ifψ(and∆)

S " C P1 • → ×

choose an identification C = P1 = ∆ (condition invariant • ∼ under Aut(∆))

S • C RTP: ψ(∆) < ∆ if and only if ψT (∆) < ∆ • RTP: ψ(∆) < ∆ if and only if ψT (∆) < ∆ • n-fold covering • n-foldRTPcoveri: ψ(ng∆)RTP< ∆: ifψ(and∆)

SS "" CC PP11 •• →→ ××

chochooseose anan identificationidentification CC == PP11 == ∆∆ (condition(condition invainvariantriant •• ∼∼ underunder Aut(Aut(∆∆))))

SS n •• S : φ zi( w)n j = 0 ij − − CC i,j!=0

φ φT (w, z) (z, w) • "→ ⇔ "→

( r, r) is trivial on S if and only if its inverse (r, r) is • O − O − trivial. RTP: ψ(∆) < ∆ if and only if ψT (∆) < ∆ • RTP: ψ(∆) < ∆ if and only if ψT (∆) < ∆ • n-fold covering • n-foldRTPcoveri: ψ(ng∆)RTP< ∆: ifψ(and∆)

r En( r) C = f C P1( r, r) S • − | ∗O × − |

H0(C, Er( r)) = H0(S, ( r, r)) • n − ∼ O −

H0(C, Er( r)) = 0 if and only if ( r, r) is trivial on S • n − % O − RTP: ψ(∆) < ∆ if and only if ψT (∆) < ∆ • RTP: ψ(∆) < ∆ if and only if ψT (∆) < ∆ • n-fold covering • n-foldRTPcoveri: ψ(ng∆)RTP< ∆: ifψ(and∆)

r( ) = ( ) Enr( r ) C = f C P1 ( r, r ) S • En − r | C f∗O C× P1 − r, r | S • − | ∗O × − |

0( r( )) = 0( ( )) HH0(CC,,EEnr( rr)) ∼= HH0(SS,, ( rr,,rr)) •• n −− ∼ OO −−

0( r( )) = 0 if and only if ( ) is trivial on HH0(CC,,EEnr( rr)) = 0 if and only if ( rr,,rr) is trivial on SS •• n −− % % OO −− φ φT (w, z) (z, w) • !→ ⇔ !→

( r, r) is trivial on S if and only if its inverse (r, r) is • O − O − trivial. HYPERBOLIC MONOPOLES H3 hyperbolic three-space of curvature 1 • −

Bogomolny equations F = d φ for SU(2) connection A • A ∗ A

boundary conditions: • mass = φ p charge = n = deg φ : S2 S2 | | → R →

M F Atiyah, Magnetic monopoles in hyperbolic spaces in • “Vector bundles on algebraic varieties (Bombay, 1984)” 1– 33, Tata Inst. Fund. Res. Stud. Math., 11, Bombay, 1987. space of geodesics S2 S2 ∆ • × \

L CP n line, L orthogonal n 2-space • ⊂ ⊥ −

x L, x (x, x + L ) P (T CP n) • ∈ &→ ⊥ ∈ ∗

quaternionic K¨ahler manifold = U(n + 1)/U(2) U(n 1) • × − SPECTRAL CURVE

geodesics: P1 P1 w =¯z • × \{ }

spectral curve S: divisor of a section of (n, n) • O

constraint: (r, r) is trivial on S where r =2p + n (p = • O − mass, n = charge) Theorem: C < B if and only if B∨ < C∨

Fact: A monopole (A, φ) transforms to a monopole (with oppo- site orientation) under a hyperbolic reflection in a point. MONOPOLE MODULI SPACES

MONOPOLES ON R3

moduli space M4n is hyperk¨ahler •

twistor space complex manifold Z2n+1 •

holomorphic fibration p : Z P1 • →

complex symplectic fibres •

M = a space of sections • each fibre of p = based degree n rational maps • ∼ each fibre of p = based degree n rational maps • ∼ S(z) = p(z)/q(z), zeros of q: z , . . . , zn • 1 S(z) = p(z)/q(z), zeros of q: z , . . . , zn • 1 symplectic form: • symplectic form: • dz d log p(z ) i ∧ i !i dz d log p(z ) i ∧ i !i L Faybusovich & M Gekhtman, Poisson brackets on rational functions and multi-Hamiltonian structure for integrable lattices, Phys. Lett. A 272 (2000), 236–244

K L Vaninsky, The Atiyah-Hitchin bracket and the open Toda lattice, J. Geom. Phys. 46 (2003) 283–307

K L Vaninsky, The Atiyah-Hitchin bracket and the cubic nonlinear Schr¨odinger equation, IMRP (2006), 17683, 1–60. fix p: Lagrangian submanifold fix p: Lagrangian •submanifold •

fix q: Lagrangian submanifold fix q: Lagrangian •submanifold •

Define fx(S) = p(x), gx(S) = q(x) Define fx(S) = p(x•), gx(S) = q(x) • Poisson bracket: Poisson bracket: • • p(x)q(y) q(x)p(y) p(x)q(y) qf(xx, g)yp(y=) − fx, gy = −{ } x y { } x y − − (Bezoutian) (Bezoutian) • • MONOPOLES ON H3

For each point on S2 = ∂H3 the moduli space is isomorphic to the space of based rational maps.

M F Atiyah, Instantons in two and four dimensions, Commun. Math. Phys. 93 (1984), 437–451

P J Braam & D M Austin, Boundary values of hyperbolic monopoles, Nonlinearity 3 (1990), 809–823

M K Murray, P Norbury & M A Singer, Hyperbolic monopoles and holomorphic spheres, Ann. Global Anal. Geom. 23 (2003) 101–128

SYMPLECTIC STRUCTURE

O Nash, A new approach to monopole moduli spaces, Nonlin- earity 20 (2007) 1645-1675

spectral curve S P1 P1 • ⊂ ×

constraint lifts S to ( r, r) • O −

deformation theory of a curve in a three-manifold • SYMPLECTIC STRUCTURE SYMPLECTIC STRUCTURE O Nash, A new approach to monopole moduli spaces, Nonlin- earitOy N20ash,(2007)A new1645-1675approach to monopole moduli spaces, Nonlin- earity 20 (2007) 1645-1675

spectral curve S P1 P1 • spectral curve⊂S ×P1 P1 • ⊂ × constraint lifts S to ( r, r) • constraint lifts S Oto− ( r, r) • O − deformation theory of a curve in a three-manifold • deformation theory of a curve in a three-manifold • SCHWARZENBERGER BUNDLES AND RATIONAL MAPS

0 Sr nV ( 1) SrV Er 0 • → − − → → n →

SkV = homogeneous polynomials q(z , z ) of degree k • 0 1

fibre of Er over [q] P(SnV ) = polynomials p of degree r • n ∈ ∼ modulo q

common factor? • SCHWARZENBERGER BUNDLES AND RATIONAL MAPS

r n r r 0 Sr−nV ( 1) SrV Enr 0 • → − − → → n →

k SkV = homogeneous polynomials q(z0, z1) of degree k • 0 1

r n fibre of Enr over [q] P(SnV ) =∼ polynomials p of degree r • n ∈ ∼ modulo q

common factor? • f : Y X • →

evaluation map ev : f ∗f L L • ∗ →

section α of Hom(f Er, (0, r)) on Pn 1 P1 • ⇒ ∗ n O − ×

kernel of α = rank (n 1) bundle over Pn 1 P1 p, q = • − − × ⇒ p, q with common factor

(Er) = complement • n 0 f : Y X • → f : Y X • →

evaluation map ev : f ∗f L L • ∗ → evaluation map ev : f ∗f L L • ∗ → section α of Hom(f Er, (0, r)) on Pn 1 P1 • ⇒ ∗ n O − × section α of Hom(f Er, (0, r)) on Pn 1 P1 • ⇒ ∗ n O − × kernel of α = rank (n 1) bundle over Pn 1 P1 p, q = • − − × ⇒ p,kernelq withofcommonα = rankfacto(n r1) bundle over Pn 1 P1 = p, q with • − − × common factor

(Er) = complement • n 0 (Er) = complement • n 0 choose [a , a ] P1, restrict to q with q(a , a ) = 0 • 0 1 ∈ 0 1 "

[a , a ] = [0, 1], q = degree n polynomial in z = z /z • 0 1 1 0

p = aq + b, deg b < n •

based rational map b(z)/q(z) • TWISTOR SPACES

spectral curve S defines a rational normal curve C P(SnV ) • ⊂

n w φ zi( w)n j "→ ij − − i,j!=0

constraint H0(C,Er( r)) = 0 lifts C to Er( r) • n − % n − 0

C S requires an isomorphism C = P1 • ⇒ ∼

(Note: ( r)= n( r/n) ) • O − OP − |C TWISTOR SPACES

TWISTOR SPACES spectral curve S defines a rational normal curve C P(SnV ) • ⊂ spectral curve S defines a rational normal curve C P(SnV ) • n ⊂ w φ zi( w)n j "→ ij − − i,j!=0n w φ zi( w)n j "→ ij − − i,j!=0 constraint H0(C,Er( r)) = 0 lifts C to Er( r) • n − % n − 0 0 r r constraint H (C,En( r)) = 0 lifts C to En( r)0 • C S requires an isomorphism− % C = P1 − • ⇒ ∼ 1 C S requires an isomorphism C =∼ P • (Note:⇒ ( r)= n( r/n) ) • O − OP − |C

(Note: ( r)= n( r/n) ) • O − OP − |C TWISTOR SPACES

TWISTOR SPACES spectral curve S defines a rational normal curve C P(SnV ) • ⊂ spectral curve S defines a rational normal curve C P(SnV ) • n ⊂ TWISTORw φ SPACESzi( w)n j "→ ij − − i,j!=0n i n j w φijz ( w) − "→ − n spectral curve S definesi,j a!=0 rational normal curve C P(S V ) • constraint H0(C,Er( r)) = 0 lifts C to Er( r) ⊂ • n − % n − 0 0 r r constraint H (C,E ( r))n= 0 lifts C to E ( r)0 n i n1 j n • C S requires an isomorphismw − % φijzC(=wP) − − • ⇒ "→ −∼ i,j!=0 C S requires an isomorphism C = P1 • ⇒ ∼ (Note: ( r)= Pn( r/n) C) • constraintO H−0(C,EOr( r−)) = 0| lifts C to Er( r) • n − % n − 0 (Note: ( r)= n( r/n) ) • O − OP − |C C S requires an isomorphism C = P1 • ⇒ ∼

(Note: ( r)= n( r/n) ) • O − OP − |C RATIONAL CURVES

spectral curve S defines a rational normal curve C P(SnV ) • ∈

C S requires an isomorphism C = P1 • ⇒ ∼

Z2n+1 = Er(r, r/n) P(V¯) P(SnV ) (w, q) : q(w¯) = 0 n − 0 × \ { } RATIONAL CURVES

n spectralRATIONcurveALS definesCURVESa rational normal curve C P(S V ) • ∈

spectralRAcurveTIONC SALSdefinesrequiresCURVESa ratanionalisomonormalrphismcurveC =CP1P(SnV ) • • ⇒ ∼ ∈

spectral curveC SSdefinesrequiresZ2n+1a=aratnEisomoionalr(r, norphismr/nrmal) PcurveC(V=¯)PC1P(PSn(SVn)V ) (w, q) : q(w¯) = 0 • • ⇒ n − 0 ∼ × ∈ \ { }

2n+1 r 1 n C S Zrequires=aEn isomo(r, r/nrphism)0 P(VC¯)= PP(S V ) (w, q) : q(w¯) = 0 • ⇒ n − ∼× \ { }

Z2n+1 = Er(r, r/n) P(V¯) P(SnV ) (w, q) : q(w¯) = 0 n − 0 × \ { } MONOPOLES ON H3

complex manifold Z2n+1 •

holomorphic fibration p : Z P1 • →

complex symplectic fibres •

M = a space of sections • PROBLEMS

no real structure •

symplectic forms along fibres do not vary holomorphically • CHARGE 2 MONOPOLES CENTRES

V = V¯ Hermitian form = point in H3 • ∼ ⇒

spectral curve equation SnV SnV¯ • ∈ ⊗

SnV SnV = 1 + S2V + . . . + S2nV • ⊗

centred monopole: S2V component vanishes • V = V¯ • ∼ ⇒

real structure on Schwarzenberger bundle •

if C = φ(∆), C¯ = φT (∆) •

charge 2 centred: 1 + S4V symmetric • V = V¯ • V ∼= V¯ ⇒ • ∼ ⇒

real structure on Schwarzenberger bundle • real structure on Schwarzenberger bundle •

if C = φ(∆), C¯ = φT (∆) • if C = φ(∆), C¯ = φT (∆) •

charge 2 centred: 1 + S4V symmetric • charge 2 centred: 1 + S4V symmetric • r The projective Schwarzenberger bundle P((E2)0) is the twistor space for a 4-dimensional self-dual Einstein manifold.

N J Hitchin A new family of Einstein metrics, in “Manifolds and geometry (Pisa, 1993)”, 190–222, Sympos. Math., XXXVI, Cambridge Univ. Press, Cambridge, 1996 EXAMPLE: CHARGE 2

2 2 2 2 g = fdr + T1σ1 + T2σ2 + T3σ3

(1 r2)2 T1 = − (1 + r + r2)(r + 2)(2r + 1)

1+r + r2 T2 = (r + 2)(2r + 1)2

r(1 + r + r2) T3 = (r + 2)2(2r + 1)

1+r + r2 f = r(r + 2)2(2r + 1)2 M4 = S4 RP 2 • \

(irreducible 5-dimensional rep of SO(3)) •

orbifold singularity around RP 2, (r 2)-fold quotient. • −

4 ... SO(3) bundle Hr over M – smooth, Einstein (3-Sasakian) • M4 = S4 RP 2 • \ M4 = S4 RP 2 • \ (irreducible 5-dimensional rep of SO(3)) • (irreducible 5-dimensional rep of SO(3)) • orbifold singularity around RP 2, (r 2)-fold quotient. • − orbifold singularity around RP 2, (r 2)-fold quotient. • − 4 ... SO(3) bundle Hr over M – smooth, Einstein (3-Sasakian) • 4 ... SO(3) bundle Hr over M – smooth, Einstein (3-Sasakian) • r = 3, M4 = S4 •

twistor space P3 = P(S3V ) •

What’s the link with P(E3)? • 2 THE TWISTED CUBIC C P3 rational normal curve • ⊂

x = C unique secant through x • " ⇒

f : P3 C Sp2C = P2 • \ → !

x on a tangent to C f(x) ∆ • ⇒ ∈ p

x C P3 rational normal curve • ⊂

x = C unique secant through x • " ⇒

f : P3 C S2C = P2 • \ → p!

C P3 rational normal curve x on a tangent to C f(x) •∆ ⊂ • ⇒ ∈ p C P3 rational normal curve x = C unique secant through x • ⊂ • " ⇒

x = C unique secant throughfx: P3 C S2C = P2 • " ⇒ •x \ →

f : P3 C S2C = P2 f(x) = (p, p ) • \ → • %

f(x) = (p, p ) x on a tangent to C f(x) ∆ • % • ⇒ ∈

x on a tangent to C f(x) ∆ • ⇒ ∈ C P3 rational normal curve • ⊂

x = C unique secant through x • " ⇒

f : P3 C S2C = P2 • \ → p!

C P3 rational normal curve x on a tangent to C f(x) •∆ ⊂ • ⇒ ∈ p C P3 rational normal curve x = C unique secant through x • ⊂ • " ⇒

x = C unique secant throughfx: P3 C S2C = P2 • " ⇒ •x \ →

f : P3 C S2C = P2 f(x) = (p, p ) • \ → • %

f(x) = (p, p ) x on a tangent to C f(x) ∆ • % • ⇒ ∈

x on a tangent to C f(x) ∆ • ⇒ ∈ Blow up C: P1 fibration = P(E3) • 2

lines in P3 sections of P(E3) ... • ∼ 2

... constrained conics in P2 • M F Atiyah, A note on the tangents to a twisted cubic, Proc. Camb. Phil. Soc. 48 (1952) 204–205

“.. The tangents at four points of a twisted cubic have a unique transversal if and only if the four points are equianharmonic”. M F Atiyah, A note on the tangents to a twisted cubic, Proc. Camb. Phil. Soc. 48 (1952) 204–205

“.. The tangents at four points of a twisted cubic have a unique transversal if and only if the four points are equianharmonic”.

There is a unique constrained conic passing through four points of ∆ if and only if the four points are equianharmonic. ∆ : z2 + z2 + z2 =0 • 0 1 2

C :(x + x )z2 +(x + x )z2 +(x + x )z2 =0 • 1 2 0 2 0 1 0 1 2

cross-ratio of intersection points: (x x )/(x x ) • 1 − 0 2 − 0 constraint: σ = x x + x x + x x =0 • 2 1 2 2 0 0 1

in pencil: x x + t, • i !→ i 2 σ2 +2σ1t +3t =0

one root: σ2 =3σ • 1 2

x2 x (x + x )+x2 + x2 x x =0 • 1 − 1 0 2 0 2 − 0 2 constraint:constraint: σσ2 == xx1xx2 ++xx2xx0 ++xx0xx1 =0=0 •• 2 1 2 2 0 0 1

inin pencil: pencil: xxi xxi ++tt,, •• i !→!→ i +2 +3 22 =0 σσ22 +2σσ11tt +3tt =0

2 oneone root: root: σσ12 =3=3σσ2 •• 1 2

2 2 2 xx12 xx1((xx0 ++xx2)+)+xx02 ++xx22 xx0xx2 =0=0 •• 1 −− 1 0 2 0 2 −− 0 2 constraint:constraint: σσ2 == xx1xx2 ++xx2xx0 ++xx0xx1 =0=0 •• constraint: σ2 = x1 x2 + x2 x0 + x0 x1 =0 • 2 1 2 2 0 0 1

inin pencil: pencil: xxi xxi ++tt,, •• in pencil: xi !→!→ xi + t, • i !→ i σ +2σ t +3t22 =0 σ22 +2σ11t +3t2 =0 σ2 +2σ1t +3t =0

2 oneone root: root: σσ12 =3=3σσ2 •• one root: σ12 =3σ2 • 1 2 2 2 2 xx12 xx1((xx0 ++xx2)+)+xx02 ++xx22 xx0xx2 =0=0 •• x12−− x1 (x0 + x2 )+x02 + x22−− x0 x2 =0 • 1 − 1 0 2 0 2 − 0 2 constraint:constraint: σσ2 == xx1xx2 ++xx2xx0 ++xx0xx1 =0=0 •• constraint: σ2 = x1 x2 + x2 x0 + x0 x1 =0 • 2 1 2 2 0 0 1

inin pencil: pencil: xxi xxi ++tt,, •• in pencil: xi !→!→ xi + t, • i !→ i σ +2σ t +3t22 =0 σ22 +2σ11t +3t2 =0 σ2 +2σ1t +3t =0

2 oneone root: root: σσ12 =3=3σσ2 •• one root: σ12 =3σ2 • •1 2 x0 + x2 i√3(x0 x2) x1 = ± − x22 x (x + x )+x22 +•x22 x x =0 2 • x112− x11(x00 + x22)+x002 + x222− x00x22 =0 x + x i√3(x x ) • x1 − x1(x0 + x2)+x0 + x2 − x0x2 =0 x = 0 2 ± 0 − 2 • − − 1 2 cross-ratio: • • x + x i√3(x x ) 1 i√3 x = 0 2 ± 0 − 2 cross-ratio: ± 1 2 • 2 1 i√3 ± 2 cross-ratio: • 1 i√3 ± 2 HAPPY BIRTHDAY, SIR MICHAEL! •