SHARK – the How and Why of an Exhibit
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Vertebral Morphology, Dentition, Age, Growth, and Ecology of the Large Lamniform Shark Cardabiodon Ricki
Vertebral morphology, dentition, age, growth, and ecology of the large lamniform shark Cardabiodon ricki MICHAEL G. NEWBREY, MIKAEL SIVERSSON, TODD D. COOK, ALLISON M. FOTHERINGHAM, and REBECCA L. SANCHEZ Newbrey, M.G., Siversson, M., Cook, T.D., Fotheringham, A.M., and Sanchez, R.L. 2015. Vertebral morphology, denti- tion, age, growth, and ecology of the large lamniform shark Cardabiodon ricki. Acta Palaeontologica Polonica 60 (4): 877–897. Cardabiodon ricki and Cardabiodon venator were large lamniform sharks with a patchy but global distribution in the Cenomanian and Turonian. Their teeth are generally rare and skeletal elements are less common. The centra of Cardabiodon ricki can be distinguished from those of other lamniforms by their unique combination of characteristics: medium length, round articulating outline with a very thick corpus calcareum, a corpus calcareum with a laterally flat rim, robust radial lamellae, thick radial lamellae that occur in low density, concentric lamellae absent, small circular or subovate pores concentrated next to each corpus calcareum, and papillose circular ridges on the surface of the corpus calcareum. The large diameter and robustness of the centra of two examined specimens suggest that Cardabiodon was large, had a rigid vertebral column, and was a fast swimmer. The sectioned corpora calcarea show both individuals deposited 13 bands (assumed to represent annual increments) after the birth ring. The identification of the birth ring is supported in the holotype of Cardabiodon ricki as the back-calculated tooth size at age 0 is nearly equal to the size of the smallest known isolated tooth of this species. The birth ring size (5–6.6 mm radial distance [RD]) overlaps with that of Archaeolamna kopingensis (5.4 mm RD) and the range of variation of Cretoxyrhina mantelli (6–11.6 mm RD) from the Smoky Hill Chalk, Niobrara Formation. -
Papers in Press
Papers in Press “Papers in Press” includes peer-reviewed, accepted manuscripts of research articles, reviews, and short notes to be published in Paleontological Research. They have not yet been copy edited and/or formatted in the publication style of Paleontological Research. As soon as they are printed, they will be removed from this website. Please note they can be cited using the year of online publication and the DOI, as follows: Humblet, M. and Iryu, Y. 2014: Pleistocene coral assemblages on Irabu-jima, South Ryukyu Islands, Japan. Paleontological Research, doi: 10.2517/2014PR020. doi:10.2517/2018PR013 Features and paleoecological significance of the shark fauna from the Upper Cretaceous Hinoshima Formation, Himenoura Group, Southwest Japan Accepted Naoshi Kitamura 4-8-7 Motoyama, Chuo-ku Kumamoto, Kumamoto 860-0821, Japan (e-mail: [email protected]) Abstract. The shark fauna of the Upper Cretaceous Hinoshima Formation (Santonian: 86.3–83.6 Ma) of the manuscriptHimenoura Group (Kamiamakusa, Kumamoto Prefecture, Kyushu, Japan) was investigated based on fossil shark teeth found at five localities: Himedo Park, Kugushima, Wadanohana, Higashiura, and Kotorigoe. A detailed geological survey and taxonomic analysis was undertaken, and the habitat, depositional environment, and associated mollusks of each locality were considered in the context of previous studies. Twenty-one species, 15 genera, 11 families, and 6 orders of fossil sharks are recognized from the localities. This assemblage is more diverse than has previously been reported for Japan, and Lamniformes and Hexanchiformes were abundant. Three categories of shark fauna are recognized: a coastal region (Himedo Park; probably a breeding site), the coast to the open sea (Kugushima and Wadanohana), and bottom-dwelling or near-seafloor fauna (Kugushima, Wadanohana, Higashiura, and Kotorigoe). -
OFR21 a Guide to Fossil Sharks, Skates, and Rays from The
STATE OF DELAWARE UNIVERSITY OF DELAWARE DELAWARE GEOLOGICAL SURVEY OPEN FILE REPORT No. 21 A GUIDE TO FOSSIL SHARKS J SKATES J AND RAYS FROM THE CHESAPEAKE ANU DELAWARE CANAL AREA) DELAWARE BY EDWARD M. LAUGINIGER AND EUGENE F. HARTSTEIN NEWARK) DELAWARE MAY 1983 Reprinted 6-95 FOREWORD The authors of this paper are serious avocational students of paleontology. We are pleased to present their work on vertebrate fossils found in Delaware, a subject that has not before been adequately investigated. Edward M. Lauginiger of Wilmington, Delaware teaches biology at Academy Park High School in Sharon Hill, Pennsyl vania. He is especially interested in fossils from the Cretaceous. Eugene F. Hartstein, also of Wilmington, is a chemical engineer with a particular interest in echinoderm and vertebrate fossils. Their combined efforts on this study total 13 years. They have pursued the subject in New Jersey, Maryland, and Texas as well as in Delaware. Both authors are members of the Mid-America Paleontology Society, the Delaware Valley Paleontology Society, and the Delaware Mineralogical Society. We believe that Messrs. Lauginiger and Hartstein have made a significant technical contribution that will be of interest to both professional and amateur paleontologists. Robert R. Jordan State Geologist A GUIDE TO FOSSIL SHARKS, SKATES, AND RAYS FROM THE CHESAPEAKE AND DELAWARE CANAL AREA, DELAWARE Edward M. Lauginiger and Eugene F. Hartstein INTRODUCTION In recent years there has been a renewed interest by both amateur and professional paleontologists in the rich upper Cretaceous exposures along the Chesapeake and Delaware Canal, Delaware (Fig. 1). Large quantities of fossil material, mostly clams, oysters, and snails have been collected as a result of this activity. -
Congressional Record—House H8792
H8792 CONGRESSIONAL RECORD — HOUSE December 21, 2010 The Shark Conservation Act would end the The SPEAKER pro tempore. The revolving loans, as determined by the Adminis- practice of shark finning in U.S. waters. question is on the motion offered by trator, on a competitive basis, to eligible entities, However, domestic protections alone will not the gentlewoman from Guam (Ms. including through contracts entered into under save sharks. subsection (e) of this section,’’; and BORDALLO) that the House suspend the (B) in paragraph (1), by striking ‘‘tons of’’; We need further safeguards to keep marine rules and concur in the Senate amend- (3) in subsection (b)— ecosystems and top predator populations ment to the bill, H.R. 81. (A) by striking paragraph (2); healthy. The Shark Conservation Act will bol- The question was taken; and (two- (B) by redesignating paragraph (3) as para- ster the U.S.’s position when negotiating for thirds being in the affirmative) the graph (2); and increased international fishery protections. rules were suspended and the Senate (C) in paragraph (2) (as so redesignated)— (i) in subparagraph (A), in the matter pre- Healthy shark populations in our waters can amendment was concurred in. help drive our economy and make our seas ceding clause (i), by striking ‘‘90’’ and inserting A motion to reconsider was laid on ‘‘95’’; thrive. the table. This bill is not just about preserving a spe- (ii) in subparagraph (B)(i), by striking ‘‘10 f percent’’ and inserting ‘‘5 percent’’; and cies, but about preserving an ecosystem, an (iii) in subparagraph (B)(ii), by striking ‘‘the economy, and a sustainable future. -
71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas. -
NOAA Testimony
WRITTEN TESTIMONY BY ALAN RISENHOOVER, DIRECTOR OF THE OFFICE OF SUSTAINABLE FISHERIES, NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION U.S. DEPARTMENT OF COMMERCE HEARING ON LEGISLATION ON SHARK FIN AND BILLFISH SALES BEFORE THE COMMITTEE ON NATURAL RESOURCES SUBCOMMITTEE ON WATER, POWER AND OCEANS U.S. HOUSE OF REPRESENTATIVES April 17, 2018 Introduction Good afternoon, Chairman Lamborn, Ranking Member Huffman, and Members of the Subcommittee. My name is Alan Risenhoover and I am the Director of the Office of Sustainable Fisheries within the National Oceanic and Atmospheric Administration’s (NOAA) National Marine Fisheries Service (NMFS) in the Department of Commerce. Shark and billfish species are important contributors to the nation’s valuable commercial and recreational fisheries as well as serving an important role in our ocean ecosystem. I appreciate the opportunity to speak with you today about the work by NMFS to conserve and manage sharks and billfish and to provide our perspective on the main bills being discussed. Shark Conservation and Management Almost two decades ago Congress prohibited shark finning—which is removing shark fins at sea and discarding the rest of the shark—when it amended the Magnuson-Stevens Fishery Conservation and Management Act by enacting the Shark Finning Prohibition Act of 2000. The law prohibits any person under U.S. jurisdiction from engaging in the finning of sharks, possessing shark fins aboard a fishing vessel without the corresponding carcass, and landing shark fins without the corresponding carcass. In 2008, NOAA implemented even more stringent regulations to require all Atlantic sharks to be landed with all fins naturally attached to facilitate species identification and reporting and improve the enforceability of existing shark management measures, including the finning ban. -
Fishing for Sharks History of Shark Finning Protection Towards Sharks Importance of Sharks Sharks Are a Top Predator of the Ocean
Shark Finning Tiana Barron-Wright Fishing for Sharks History of Shark Finning Protection Towards Sharks Importance of Sharks Sharks are a top predator of the ocean. However, sharks are a target Shark fin soup originated in 968 AD by an emperor from the Sung The Shark Finning Prohibition Act of 2000, was signed by former Sharks play an important role in the ecosystem. Sharks maintain the for humans. Shark finning is the process of cutting off a shark’s Dynasty. The emperor created shark fin soup to display his wealth, President Bill Clinton. This act prohibited the process of shark finning in species below them in the ecosystem and serve as a health indicator for the fins while it is still alive and throwing the shark back into the power and generosity towards his guest. Serving shark fin soup the United States. This bans anyone in the United States jurisdiction from ocean. The decrease of sharks in the oceans has led to the decline of coral ocean where it will die. After getting their fins cut off, some sharks shark finning, owning shark fins without the shark’s body, and landing reefs, sea grass beds, and the loss of commercial fisheries. Without sharks was seen as a show of respect. Chinese Emperors thought the dish in the ecosystem, other predators can thrive. For example, groupers can can starve to death, get eaten by other fish or drown to death. shark fins without the body. This act also has NOAA (National Oceanic had medicinal benefits. Shark fin soup is considered a delicacy in and Atmospheric Administration) Fisheries to give Congress a report increase in numbers and eat herbivores. -
Shrouded in Mystery Understanding the Conservation Status of Sharks
MARCH 2015 A publication of the Association of Zoos & Aquariums Shrouded in Mystery Understanding the Conservation Status of Sharks DISPELLING MYTHS SAWFISH RECOVERY LOVE THEM OR HATE THEM Engaging People in Learning Is a Mythical Fish Recovering? Sharks are Both Feared About Sharks and Fascinating March 2015 Features 18 24 30 36 Shrouded in Mystery Dispelling Myths Sawfi sh Recovery Love Them or Hate Them The International Union for Through informative Once abundant in the Sharks are iconic animals Conservation of Nature Red displays, underwater waters of more than 90 that are both feared and List of Threatened Species tunnels, research, interactive countries around the world, fascinating. Misrepresented indicates that 181 of the touch tanks and candid sawfi sh are now extinct from in a wide array of media, the 1,041 species of sharks and conversations with guests, half of their former range, public often struggles to get rays are threatened with Association of Zoos and and all fi ve species are a clear understanding of the extinction, but the number Aquariums-accredited classifi ed as endangered complex and important role could be even higher. facilities have remarkable or critically endangered by that these remarkable fi sh play BY LANCE FRAZER ways of engaging people in the International Union for in oceans around the world. informal and formal learning. Conservation of Nature. BY DR. SANDRA ELVIN AND BY KATE SILVER BY EMILY SOHN DR. PAUL BOYLE March 2015 | www.aza.org 1 7 13 24 Member View Departments 7 County-Wide Survey 9 Pizzazz in Print 11 By the Numbers 44 Faces & Places Yields No Trace of Rare This Vancouver Aquarium ad AZA shark and ray 47 Calendar Western Pond Turtle was one of fi ve that ran as conservation. -
Mosasaurs Continuing from Last Time…
Pliosaurs and Mosasaurs Continuing From Last Time… • Pliosauridae: the big marine predators of the Jurassic Pliosauridae • Some of the largest marine predators of all time, these middle Jurassic sauropterygians include such giants as Kronosaurus, Liopleurodon, Macroplata, Peloneustes, Pliosaurus, and Brachauchenius Pliosaur Mophology • While the number of cervical vertebrae is less than in plesiosaurs, there is still variation: Macroplata (29) vs. Kronosaurus (13) Pliosaur Morphology • Larger pliosaurs adopted a more streamlined body shape, like modern whales, with a large skull and compact neck, and generally the hind limbs were larger than the front, while plesiosaurs had larger forelimbs Pliosaur Morphology • Powerful limb girdles and large (banana sized) conical teeth helped pliosaurs eat larger, quicker prey than the piscivorous plesiosaurs Liopleurodon • NOT 25 m long in general (average of 40 feet), though perhaps certain individuals could reach that size, making Liopleurodon ferox the largest carnivore to ever live • Recent skull studies indicate that Liopleurodon could sample water in stereo through nostrils, locating scents much as we locate sound Cretaceous Seas • Breakup of Gondwana causes large undersea mountain chains to form, raising sea levels everywhere • Shallow seas encourage growth of corals, which increases calcium abundance and chalk formation • Warm seas and a gentle thermal gradient yield a hospitable environment to rays, sharks, teleosts, and the first radiation of siliceous diatoms Kronosaurus • Early Cretaceous -
Dr. Kenshu Shimada: Peer-Reviewed Published Articles [Last Updated 04/26/2019]
Dr. Kenshu Shimada: Peer-Reviewed Published Articles [last updated 04/26/2019] [* = undergraduate student; ** = graduate student] 2019 [105] Shimada, K. In press. A new species and biology of the Late Cretaceous 'blunt-snouted' bony fish, Thryptodus (Actinopterygii: Tselfatiiformes), from the United States. Cretaceous Research. [104] Cronin, T. J.*, and K. Shimada . In press. New anatomical information on the Late Cretaceous bony fish, Micropycnodon kansasensis (Actinopterygii: Pycnodontiformes), from the Niobrara Chalk of western Kansas, U.S.A. Transactions of Kansas Academy of Science. [103] Pimiento, C., J. L. Cantalapiedra, K. Shimada , D. J. Field, and J. B. Smaers. 2019. Evolutionary pathways towards shark gigantism. Evolution, 73(3):588–599. 2018 [102] Johnson-Ransom, E. D.*, E. V. Popov, T. A. Deméré, and K. Shimada. 2018. The Late Cretaceous chimaeroid fish, Ischyodus bifurcatus Case (Chondrichthyes: Holocephali), from California, USA, and its paleobiogeographical significance. Paleontological Research, 2(4):364-372. [101] Guinot, G., S. Adnet, K. Shimada , C. J. Underwood, M. Siversson, D. J. Ward, J. Kriwet, and H. Cappetta. 2018. On the need of providing tooth morphology in descriptions of extant elasmobranch species. Zootaxa, 4461(1):118–126. [100] Jacobs, P. K.*, and K. Shimada . 2018. Ontogenetic growth pattern of the extant smalltooth sandtiger shark, Odontaspis ferox (Lamniformes: Odontaspididae)— application from and to paleontology. Journal of Fossil Research, 51(1):23–29. [99] Guzzo, F.*, and K. Shimada . 2018. A new fossil vertebrate locality of the Jetmore Chalk Member of the Upper Cretaceous Greenhorn Limestone in north-central Kansas, U.S.A. Transactions of the Kansas Academy of Science, 121(1-2):59-68. -
Università Di Pisa
UNIVERSITÀ DI PISA Dottorato di ricerca in scienze della terra XIX Ciclo DISSERTAZIONE FINALE ANALISI SISTEMATICA, PALEOECOLOGICA E PALEOBIOGEOGRAFICA DELLA SELACIOFAUNA PLIO-PLEISTOCENICA DEL MEDITERRANEO Candidato Presidente della Scuola di Dottorato Stefano MARSILI Prof. Paolo Roberto FEDERICI Tutore Prof. Walter LANDINI Dipartimento di scienze della terra 2006 Indice INDICE ABSTRACT CAPITOLO 1 – INTRODUZIONE 1.1. Premessa. 1 1.2. Il Mediterraneo e l’attuale diversità del popolamento a squali. 4 CAPITOLO 2 – MATERIALI E METODI 7 CAPITOLO 3 – INQUADRAMENTO GEOLGICO E STRATIGRAFICO 3.1. Premessa. 15 3.2. Inquadramento geologico e stratigrafico delle sezioni campionate. 16 3.2.1. Le sezioni plioceniche della Romagna. 16 3.2.1.1. Sezione Rio Merli. 17 3.2.1.2. Sezione Rio dei Ronchi. 17 3.2.1.3. Sezione Rio Co di Sasso. 18 3.2.1.4. Sezione Rio Cugno. 19 3.2.2. Le sezioni pleistoceniche dell’Italia Meridionale. 19 3.2.2.1. La sezione di Fiumefreddo. 20 3.2.2.2. La sezione di Grammichele. 22 3.2.2.3. La sezione di Vallone Catrica. 23 3.2.2.4. La sezione di Archi. 23 3.3. Inquadramento geologico e stratigrafico dei bacini centrali del Tora-Fine, di Volterra e di Siena: premessa. 24 3.3.1. Bacino del Tora-Fine. 26 3.3.2. Bacino di Siena-Radicofani. 27 3.3.3. Bacino di Volterra. 29 3.4. Inquadramento geologico e stratigrafico delle principali località storiche. 30 3.4.1. Emilia Romagna. 30 3.4.2. Piemonte. 32 3.4.3. Liguria. 32 3.4.4. Basilicata. -
Body Length Estimation of Neogene Macrophagous Lamniform Sharks (Carcharodon and Otodus) Derived from Associated Fossil Dentitions
Palaeontologia Electronica palaeo-electronica.org Body length estimation of Neogene macrophagous lamniform sharks (Carcharodon and Otodus) derived from associated fossil dentitions Victor J. Perez, Ronny M. Leder, and Teddy Badaut ABSTRACT The megatooth shark, Otodus megalodon, is widely accepted as the largest mac- rophagous shark that ever lived; and yet, despite over a century of research, its size is still debated. The great white shark, Carcharodon carcharias, is regarded as the best living ecological analog to the extinct megatooth shark and has been the basis for all body length estimates to date. The most widely accepted and applied method for esti- mating body size of O. megalodon was based upon a linear relationship between tooth crown height and total body length in C. carcharias. However, when applying this method to an associated dentition of O. megalodon (UF-VP-311000), the estimates for this single individual ranged from 11.4 to 41.1 m. These widely variable estimates showed a distinct pattern, in which anterior teeth resulted in lower estimates than pos- terior teeth. Consequently, previous paleoecological analyses based on body size esti- mates of O. megalodon may be subject to misinterpretation. Herein, we describe a novel method based on the summed crown width of associated fossil dentitions, which mitigates the variability associated with different tooth positions. The method assumes direct proportionality between the ratio of summed crown width to body length in eco- logically and taxonomically related fossil and modern species. Total body lengths were estimated from 11 individuals, representing five lamniform species: Otodus megal- odon, Otodus chubutensis, Carcharodon carcharias, Carcharodon hubbelli, and Carcharodon hastalis.