Chm424 Course Title
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Material Safety Data Sheet
Material Safety Data Sheet Antimony trichloride, reagent ACS, crystals, 99+% ACC# 00252 Section 1 - Chemical Product and Company Identification MSDS Name: Antimony trichloride, reagent ACS, crystals, 99+% Catalog Numbers: AC401370000, AC401370050, AC401371000, AC401375000 Synonyms: Trichlorostibine; Antimonous chloride; Antimony(III) chloride; Antimony trichloride. Company Identification: Acros Organics N.V. One Reagent Lane Fair Lawn, NJ 07410 For information in North America, call: 800-ACROS-01 For emergencies in the US, call CHEMTREC: 800-424-9300 Section 2 - Composition, Information on Ingredients CAS# Chemical Name Percent EINECS/ELINCS 10025-91-9 Antimony(III) chloride >99 233-047-2 Section 3 - Hazards Identification EMERGENCY OVERVIEW Appearance: white solid. Danger! Corrosive. Causes severe eye and skin burns. Causes severe digestive and respiratory tract burns. May be harmful if swallowed. Moisture sensitive. Hygroscopic (absorbs moisture from the air). Target Organs: Lungs, cardiovascular system, eyes, skin, mucous membranes. Potential Health Effects Eye: Causes eye burns. Skin: Causes skin burns. Ingestion: Causes gastrointestinal tract burns. May be harmful if swallowed. Inhalation: Causes chemical burns to the respiratory tract. May cause lung damage. May produce cardiovascular effects. Chronic: Chronic exposure may cause liver damage. Section 4 - First Aid Measures Eyes: In case of contact, immediately flush eyes with plenty of water for a t least 15 minutes. Get medical aid immediately. Skin: In case of contact, immediately flush skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Get medical aid immediately. Wash clothing before reuse. Ingestion: If swallowed, do NOT induce vomiting. Get medical aid immediately. If victim is fully conscious, give a cupful of water. -
Ettore Majorana and the Birth of Autoionization
Ettore Majorana and the birth of autoionization E. Arimondo∗,† Charles W. Clark,‡ and W. C. Martin§ National Institute of Standards and Technology Gaithersburg, MD 20899, USA (Dated: May 19, 2009) Abstract In some of the first applications of modern quantum mechanics to the spectroscopy of many-electron atoms, Ettore Majorana solved several outstanding problems by developing the theory of autoionization. Later literature makes only sporadic refer- ences to this accomplishment. After reviewing his work in its contemporary context, we describe subsequent developments in understanding the spectra treated by Ma- jorana, and extensions of his theory to other areas of physics. We find many puzzles concerning the way in which the modern theory of autoionization was developed. ∗ Permanent address: Dipartimento di Fisica E. Fermi, Universit`adi Pisa, Italy †Electronic address: [email protected] ‡Electronic address: [email protected] §Electronic address: [email protected] 1 Contents I.Introduction 2 II.TheState of Atomic Spectroscopy circa 1931 4 A.Observed Spectra 4 B.Theoriesof Unstable Electronic States 6 III.Symmetry Considerations for Doubly-Excited States 7 IV.Analyses of the Observed Double-Excitation Spectra 8 A.Double Excitation in Helium 8 B.TheIncomplete np2 3P Terms in Zinc, Cadmium, and Mercury 9 V.Contemporary and Subsequent Work on Autoionization 12 A.Shenstone’s Contemporary Identification of Autoionization 12 B.Subsequent foundational work on autoionization 13 VI.Continuing Story of P − P0 Spectroscopy for Zinc, Cadmium, and Mercury 14 VII.Continuing Story of Double Excitation in Helium 16 VIII.Autoionization as a pervasive effect in physics 18 Acknowledgments 19 References 19 Figures 22 I. -
Final Program
1 General Information SCOPE OF THE CONFERENCE The 11th Joint MMM/Intermag Conference is sponsored jointly by the American Institute of Physics (PCI) and the Magnetics Society of the IEEE, in cooperation with The American Physical Society. Members of the inter- national scientific and engineering communities interested in recent devel- opments in fundamental and applied magnetism are invited to attend the Conference and contribute to its technical sessions. Sessions will include invited and contributed papers, oral and poster presentations and invited symposia. This Conference provides an outstanding opportunity for partici- pants to meet their colleagues and discuss new, advanced and controversial developments. WASHINGTON, DC The 2010 Joint Conference will be held in the nation’s capital. The city wel- comes 15 million visitors each year of which 1.2 million are international. There are more than 100 restaurants located in the downtown area alone, and the city has been called “one of the most exciting restaurant cities on the East Coast” by Travel & Leisure. To obtain an in-depth and current view of what to see and do while you are here, visit the official website at: http://www.washington.org. Here you will find information on how to trav- el to the Marriott Washington Wardman Park from any of the three local air- ports; you can check on the weather in mid-January, and can request a free Visitors Guide prior to making your trip. VISA REQUIREMENTS The US has updated its visa policies to increase security, so it may take you 3-6 months to apply for and receive your visa. -
CAS No.) Screening Justification Is Public Comment Now Open? CAS No
EGLE Air Quality Division (AQD) Air Toxics Screening Level Justifications (Numerically by CAS No.) Screening Justification Is Public Comment Now Open? CAS No. Chemical Name Level & Responses Info E-Mail AQD Deadline None ad acid View View Not Open for Public Comment None amyl acetate (mixture) View View Not Open for Public Comment None atlox 848 View View Not Open for Public Comment None biosam tp-1.5 View View Not Open for Public Comment None calcium chloride View View Not Open for Public Comment None epoxy resin solution View View Not Open for Public Comment None heptamethyl-1-vinyl-1,7-dichlorotetrasilazane View View Not Open for Public Comment None n-butylglucamine View View Not Open for Public Comment None n-chloro-2,6-difluorobenzamide View View Not Open for Public Comment None trichloroethylene View View Not Open for Public Comment None triethylammonium suleptanate View View Not Open for Public Comment 50-00-0 formaldehyde View View Not Open for Public Comment 50-03-3 hydrocortisone acetate View View Not Open for Public Comment 50-21-5 lactic acid View View Not Open for Public Comment 50-28-2 estradiol View View Not Open for Public Comment 50-29-3 ddt View View Not Open for Public Comment 50-32-8 benzo(a)pyrene View View Not Open for Public Comment 51-28-5 2,4-dinitrophenol View View Not Open for Public Comment 53-36-1 methyl predisolone acetate View View Not Open for Public Comment 53-70-3 dibenz(a,h)anthracene View View Not Open for Public Comment 56-23-5 carbon tetrachloride View View Not Open for Public Comment 56-49-5 3-methylcholanthrene View View Not Open for Public Comment 56-55-3 benz(a)anthracene View View Not Open for Public Comment 56-81-5 glycerol View View Not Open for Public Comment 57-11-4 stearic acid View View Not Open for Public Comment Revised Monday, September 27, 2021 Page 1 of 51 EGLE Air Quality Division (AQD) Air Toxics Screening Level Justifications (Numerically by CAS No.) Screening Justification Is Public Comment Now Open? CAS No. -
Auger Cascades in Resonantly Excited Neon
Auger cascades in resonantly excited neon masterarbeit zur Erlangung des akademischen Grades „Master of Science“ eingereicht bei der Physikalisch-Astronomischen Fakultät der Friedrich-Schiller-Universität Jena von Sebastian Stock geboren am 21. März 1993 in Aalen Jena, März 2017 Die in dieser Arbeit präsentierten Ergebnisse wurden ebenfalls in dem folgenden Artikel veröentlicht: S. Stock, R. Beerwerth, and S. Fritzsche. “Auger cascades in resonantly excited neon”. To be submitted. Erstgutachter: Prof. Dr. Stephan Fritzsche Zweitgutachter: Priv.-Doz. Dr. Andrey Volotka Abstract ¿e Auger cascades following the resonant 1s → 3p and 1s → 4p excitation of neutral neon are studied theoretically. In order to accurately predict Auger electron spectra, shake probabilities, ion yields, and the population of nal states, the complete cascade of decays from neutral to doubly-ionized neon is simulated by means of extensive mcdf calculations. Experimentally known values for the energy levels of neutral, singly and doubly ionized neon are utilized in order to further improve the simulated spectra. ¿e obtained results are compared to experimental ndings. For the most part, quite good agreement between theory and experiment is found. However, for the lifetime widths of certain energy levels of Ne+, larger dierences between the calculated values and the experiment are found. It is presumed that these discrepancies originate from the approximations that are utilized in the calculations of the Auger amplitudes. Contents 1 Introduction1 2 Overview of the Auger cascades3 3 Theory 7 3.1 Calculation of Auger amplitudes........................7 3.2 ¿e mcdf method.................................8 3.3 Shake processes and the biorthonormal transformation...........9 4 Calculations 11 4.1 Bound state wave function generation.................... -
Interhalogen Compounds
INTERHALOGEN COMPOUNDS Smt. EDNA RICHARD Asst. Professor Department of Chemistry INTERHALOGEN COMPOUND An interhalogen compound is a molecule which contains two or more different halogen atoms (fluorine, chlorine, bromine, iodine, or astatine) and no atoms of elements from any other group. Most interhalogen compounds known are binary (composed of only two distinct elements) The common interhalogen compounds include Chlorine monofluoride, bromine trifluoride, iodine pentafluoride, iodine heptafluoride, etc Interhalogen compounds into four types, depending on the number of atoms in the particle. They are as follows: XY XY3 XY5 XY7 X is the bigger (or) less electronegative halogen. Y represents the smaller (or) more electronegative halogen. Properties of Interhalogen Compounds •We can find Interhalogen compounds in vapour, solid or fluid state. • A lot of these compounds are unstable solids or fluids at 298K. A few other compounds are gases as well. As an example, chlorine monofluoride is a gas. On the other hand, bromine trifluoride and iodine trifluoride are solid and liquid respectively. •These compounds are covalent in nature. •These interhalogen compounds are diamagnetic in nature. This is because they have bond pairs and lone pairs. •Interhalogen compounds are very reactive. One exception to this is fluorine. This is because the A-X bond in interhalogens is much weaker than the X-X bond in halogens, except for the F-F bond. •We can use the VSEPR theory to explain the unique structure of these interhalogens. In chlorine trifluoride, the central atom is that of chlorine. It has seven electrons in its outermost valence shell. Three of these electrons form three bond pairs with three fluorine molecules leaving four electrons. -
Chapter 1 Chemistry of Non-Aqueous Solutions
EFOP-3.4.3-16-2016-00014 projekt Lecture notes in English for the Chemistry of non-aqueous solutions, melts and extremely concentrated aqueous solutions (code of the course KMN131E-1) Pál Sipos University of Szeged, Faculty of Science and Informatics Institute of Chemistry Department of Inorganic and Analytical Chemistry Szeged, 2020. Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.szechenyi2020.hu EFOP-3.4.3-16-2016-00014 projekt Content Course description – aims, outcomes and prior knowledge 5 1. Chemistry of non-aqueous solutions 6 1.1 Physical properties of the molecular liquids 10 1.2 Chemical properties of the molecular liquids – acceptor and donor numbers 18 1.2.1 DN scales 18 1.2.1 AN scales 19 1.3 Classification of the solvents according to Kolthoff 24 1.4 The effect of solvent properties on chemical reactions 27 1.5 Solvation and complexation of ions and electrolytes in non-aqueous solvents 29 1.5.1 The heat of dissolution 29 1.5.2 Solvation of ions, ion-solvent interactions 31 1.5.3 The structure of the solvated ions 35 1.5.4 The effect of solvents on the complex formation 37 1.5.5 Solvation of ions in solvent mixtures 39 1.5.6 The permittivity of solvents and the association of ions 42 1.5.7 The structure of the ion-pairs 46 1.6 Acid-base reactions in non-aqueous solvents 48 1.6.1 Acid-base reactions in amphiprotic solvents of high permittivity 50 1.6.2 Acid-base reactions in aprotic solvents of high permittivity 56 1.6.3 Acid-base reactions in amphiprotic solvents of low permittivity 61 1.6.4 Acid-base reactions in amphiprotic solvents of low permittivity 61 1.7 The pH scale in non-aqueous solvents 62 1.8 Acid-base titrations in non-aqueous solvents 66 1.9 Redox reactions in non-aqueous solutions 70 2 EFOP-3.4.3-16-2016-00014 projekt 1.7.1 Potential windows of non-aqueous solvents 74 1.10 Questions and problems 77 2. -
Water Splitting by Heterogeneous Catalysis
!"#$ #"%"" &' () * ( +# ,% - . ( (.( ( . %/ .0! 1 ( % 2 3 . 4 . 5 % . . % . . . . . . 3 % !# 3 ( 3 ( 3 ( 3 %/. . - % . (. 6 7 % ( 2!0! . (/ (3 . 7 % ( ( 3 % . 3 ( %/ . 8 9 3 8 % ( :;0 9 . <= 3 9 . % ( . ( 3 > % !"#$ ?@@ %% @ A B ?? ? ? #;C#C# ,8D$CD#$$D$":D! ,8D$CD#$$D$";"C ! " # $ (#" D# WATER SPLITTING BY HETEROGENEOUS CATALYSIS Henrik Svengren Water splitting by heterogeneous catalysis Henrik Svengren ©Henrik Svengren, Stockholm University 2017 ISBN print 978-91-7797-039-2 ISBN PDF 978-91-7797-040-8 Printed in Sweden by Universitetsservice US-AB, Stockholm 2017 Distributed by the Department of Materials and Environmental Chemistry To my beloved family Cover image + Heterogeneous catalysis of water oxidation according to 2H2O ĺ O2 + 4H on CoSbO4/CoSb2O6, investigated in Paper II. The figure is composed of SEM- and TEM images, structural drawings, reactant- and product molecules. i Examination Faculty opponent Docent Tomas Edvinsson Solid State Physics Department of Engineering Sciences Uppsala University, -
Halogen Fluorides Chlorine Trifluoride ( Clf3 )
Journal content Halogen fluorides Chlorine trifluoride ( ClF3), Bromine trifluoride (BrF3) Trifluorides of bromine and chlorine are strong fluorinating reagents and chlorine trifluoride is among the most reactive and aggressive compounds and does not yield to fluorine in chemical activity. Main constants of these compounds are as follows: ClF3 BrF3 Molecular mass 92.46 136.91 Boiling temperature,oC 11.75 125.75 Melting temperature, oC -76.3 8.77 Density at 25oC,g/cm3 1.8094 2.8 ClF3 was obtained and identified by O.Ruff and H.Krug in 1930 [2], BrF3 was produced by P.Leberau [3] and E.B.R.Prideaux [4] in 1905. Both halogen fluorides are produced in industry by direct fluorination of Cl2(Br2) in a nickel equipment followed by further purification from admixtures by fractional distillation [5]. Methods to produce ClF3 and BrF3, their chemical and physical properties, molecular structure etc. have been reviewed in detail in a number of papers including [1,6,7,8], while there are few data about their application except application in nuclear [1,8] and space [8] engineering. Since the reviews contain information up to the late 60-s ( 1966-1967), it seems expedient to examine improvements in a technology of production and purification of ClF3 and BrF3 and also data about their application published since 1967. 1. Technology of production and purification of ClF3 and BrF3 There are practically no records for the period under review (1967-1999). Three reports [9,10,11] relate to investigation of kinetics of reactions to produce ClF3 under specific conditions. -
A Review of the Structural Architecture of Tellurium Oxycompounds
Mineralogical Magazine, May 2016, Vol. 80(3), pp. 415–545 REVIEW OPEN ACCESS A review of the structural architecture of tellurium oxycompounds 1 2,* 3 A. G. CHRISTY ,S.J.MILLS AND A. R. KAMPF 1 Research School of Earth Sciences and Department of Applied Mathematics, Research School of Physics and Engineering, Australian National University, Canberra, ACT 2601, Australia 2 Geosciences, Museum Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia 3 Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA [Received 24 November 2015; Accepted 23 February 2016; Associate Editor: Mark Welch] ABSTRACT Relative to its extremely low abundance in the Earth’s crust, tellurium is the most mineralogically diverse chemical element, with over 160 mineral species known that contain essential Te, many of them with unique crystal structures. We review the crystal structures of 703 tellurium oxysalts for which good refinements exist, including 55 that are known to occur as minerals. The dataset is restricted to compounds where oxygen is the only ligand that is strongly bound to Te, but most of the Periodic Table is represented in the compounds that are reviewed. The dataset contains 375 structures that contain only Te4+ cations and 302 with only Te6+, with 26 of the compounds containing Te in both valence states. Te6+ was almost exclusively in rather regular octahedral coordination by oxygen ligands, with only two instances each of 4- and 5-coordination. Conversely, the lone-pair cation Te4+ displayed irregular coordination, with a broad range of coordination numbers and bond distances. -
The Colorimetric Reaction Between Vitamin A2 Aldehyde and Antimony Trichloride
556 A. W. PHILLIPS AND P. A. GIBBS 1961 logical properties of peptides derived from casein The authors wish to thank Dr D. A. H. Hearfield for reflected more specific differences in chemical details of the assay and inoculum media, Dr A. J. Woiwod constitution. and Mr R. Knight for constructing the high-voltage power pack, and Miss E. M. Anderson for her able technical STMMARY assistance. 1. Columns of Sephadex G-25 have been used REFERENCES for the fractionation preliminary of tryptic digests Cole, S. W. & Onslow, H. (1916). Lancet, ii, 9. of casein. Gladstone, G. P. & Fildes, P. (1940). Brit. J. exp. Path. 21, 2. Fractions from Sephadex columns have been 161. examined for their ability to stimulate the growth Green, A. A. (1933). J. Amer. chem. Soc. 55, 2331. of a strain of Streptococcus equi8imili8. Maximum Hearfield, D. A. H. & Phillips, A. W. (1961). Nature, Lond., stimulatory activity appeared to be localized in a 190, 266. fairly narrow region of the total peptide material. Ingram, V. M. (1958). Biochim. biophys. Acta, 28, 546. 3. Further fractionation of peptides derived Katz, A. M., Dreyer, W. J. & Anfinsen, C. B. (1959). from casein has been achieved by subjecting frac- J. biol. Chem. 234, 2897. Merrifield, R. B. & Woolley, D. W. (1958). J. Amer. chem. tions from columns of Sephadex to two-dimensional Soc. 80, 6635. separations involving the successive use of paper Porath, J. (1960). Biochim. biophy8. Acta, 39, 193. chromatography and high-voltage electrophoresis. Woiwod, A. J. (1949). J. gen. Microbiol. 3, 312. Over one hundred spots due to peptides have been Woiwod, A. -
Inorganic Seminar Abstracts
C 1 « « « • .... * . i - : \ ! -M. • ~ . • ' •» »» IB .< L I B RA FLY OF THE. UN IVERSITY Of 1LLI NOIS 546 1^52-53 Return this book on or before the Latest Date stamped below. University of Illinois Library «r L161— H41 Digitized by the Internet Archive in 2012 with funding from University of Illinois Urbana-Champaign http://archive.org/details/inorganicsemi195253univ INORGANIC SEMINARS 1952 - 1953 TABLE OF CONTENTS 1952 - 1953 Page COMPOUNDS CONTAINING THE SILICON-SULFUR LINKAGE 1 Stanley Kirschner ANALYTICAL PROCEDURES USING ACETIC ACID AS A SOLVENT 5 Donald H . Wilkins THE SOLVENT PHOSPHORYL CHLORIDE, POCl 3 12 S.J. Gill METHODS FOR PREPARATION OF PURE SILICON 17 Alex Beresniewicz IMIDODISULFINAMIDE 21 G.R. Johnston FORCE CONSTANTS IN POLYATOMIC MOLECILES 28 Donn D. Darsow METATHESIS IN LIQUID ARSENIC TRICHLORIDE 32 Harold H. Matsuguma THE RHENI DE OXIDATION STATE 40 Robert L. Rebertus HALOGEN CATIONS 45 L.H. Diamond REACTIONS OF THE NITROSYL ION 50 M.K. Snyder THE OCCURRENCE OF MAXIMUM OXIDATION STATES AMONG THE FLUOROCOMPLEXES OF THE FIRST TRANSITION SERIES 56 D.H. Busch POLY- and METAPHOSPHATES 62 V.D. Aftandilian PRODUCTION OF SILICON CHLORIDES BY ELECTRICAL DISCHARGE AND HIGH TEMPERATURE TECHNIQUES 67 VI. £, Cooley FLUORINE CONTAINING OXYHALIDES OF SULFUR 72 E.H. Grahn PREPARATION AND PROPERTIES OF URANYL CARBONATES 76 Richard *• Rowe THE NATURE OF IODINE SOLUTIONS 80 Ervin c olton SOME REACTIONS OF OZONE 84 Barbara H. Weil ' HYDRAZINE BY ELECTROLYSIS IN LIQUID AMMONIA 89 Robert N. Hammer NAPHTHAZARIN COMPLEXES OF THORIUM AND RARE EARTH METAL IONS 93 Melvin Tecotzky THESIS REPORT 97 Perry Kippur ION-PAIR FORMATION IN ACETIC ACID 101 M.M.